# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibble)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("LULU", "NFLX", "TSLA")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                    LULU         NFLX         TSLA
## 2013-01-31 -0.099648621  0.579217838  0.102078031
## 2013-02-28 -0.028667850  0.129468358 -0.074128613
## 2013-03-28 -0.072675014  0.006360086  0.084208141
## 2013-04-30  0.199678726  0.132375029  0.354111527
## 2013-05-31  0.021827566  0.046038160  0.593716693
## 2013-06-28 -0.172219789 -0.069356053  0.093672182
## 2013-07-31  0.060283297  0.146848896  0.223739545
## 2013-08-30  0.018090317  0.149523807  0.229971572
## 2013-09-30  0.031814882  0.085363333  0.134706682
## 2013-10-31 -0.056828694  0.042020457 -0.189806650
## 2013-11-29  0.009077290  0.126045634 -0.228409431
## 2013-12-31 -0.166441463  0.006458101  0.167108548
## 2014-01-31 -0.256166339  0.105976904  0.187261770
## 2014-02-28  0.096324451  0.084967328  0.299722757
## 2014-03-31  0.044322103 -0.235772615 -0.160783192
## 2014-04-30 -0.135407489 -0.089040664 -0.002690159
## 2014-05-30 -0.028712197  0.260398879 -0.000577395
## 2014-06-30 -0.097598276  0.053062782  0.144457218
## 2014-07-31 -0.050929282 -0.041427369 -0.072372711
## 2014-08-29  0.037249178  0.122147224  0.188794049
## 2014-09-30  0.050779716 -0.056990909 -0.105566506
## 2014-10-31 -0.008606221 -0.138642145 -0.004046457
## 2014-11-28  0.145850093 -0.125081715  0.011599756
## 2014-12-31  0.146443150 -0.014472737 -0.094774520
## 2015-01-30  0.171689820  0.257187515 -0.088365243
## 2015-02-27  0.032672998  0.072268007 -0.001277805
## 2015-03-31 -0.066761991 -0.130782761 -0.074350086
## 2015-04-30 -0.005953300  0.289324645  0.180226844
## 2015-05-29 -0.062403748  0.114579340  0.103899535
## 2015-06-30  0.088153643  0.051346185  0.067300966
## 2015-07-31 -0.038082035  0.197231491 -0.007896618
## 2015-08-31  0.018129305  0.006278917 -0.066366266
## 2015-09-30 -0.234100082 -0.107942856 -0.002653542
## 2015-10-30 -0.029655629  0.048393444 -0.182659742
## 2015-11-30 -0.027839679  0.129220163  0.106828579
## 2015-12-31  0.092797635 -0.075337494  0.041471546
## 2016-01-29  0.168021184 -0.219478323 -0.227360646
## 2016-02-29  0.010577022  0.016950560  0.003810669
## 2016-03-31  0.076394063  0.090226757  0.179948112
## 2016-04-29 -0.032420609 -0.127082269  0.046721799
## 2016-05-31 -0.007964569  0.130402555 -0.075597977
## 2016-06-30  0.127322736 -0.114425090 -0.050296472
## 2016-07-29  0.050040152 -0.002517409  0.100785361
## 2016-08-31 -0.014790098  0.065736403 -0.102058076
## 2016-09-30 -0.226875536  0.011224669 -0.038366402
## 2016-10-31 -0.063118299  0.236709156 -0.031364578
## 2016-11-30 -0.004551793 -0.065099285 -0.043041257
## 2016-12-30  0.131357532  0.056493450  0.120665160
## 2017-01-31  0.038042384  0.128033700  0.164624944
## 2017-02-28 -0.033896443  0.010041082 -0.007730394
## 2017-03-31 -0.229638753  0.039185485  0.107278734
## 2017-04-28  0.002503149  0.029267774  0.120916240
## 2017-05-31 -0.074433469  0.068984174  0.082295867
## 2017-06-30  0.212019098 -0.087485368  0.058654469
## 2017-07-31  0.032481646  0.195442598 -0.111459838
## 2017-08-31 -0.068656876 -0.039009334  0.095543417
## 2017-09-29  0.078504418  0.037301402 -0.042474117
## 2017-10-31 -0.011958805  0.079877199 -0.028457431
## 2017-11-30  0.084895681 -0.046100666 -0.070862536
## 2017-12-29  0.160149003  0.023081622  0.008061927
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               LULU         NFLX          TSLA
## LULU  0.0113251360 -0.001187046 -0.0004300193
## NFLX -0.0011870458  0.017786495  0.0049890795
## TSLA -0.0004300193  0.004989080  0.0209573545
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.35, 0.35, 0.3)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.07822348
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##            LULU       NFLX       TSLA
## [1,] 0.01529929 0.03269205 0.03023214
rowSums(component_contribution)
## [1] 0.07822348
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 3
##    LULU  NFLX  TSLA
##   <dbl> <dbl> <dbl>
## 1 0.196 0.418 0.386
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 3 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 LULU         0.196
## 2 NFLX         0.418
## 3 TSLA         0.386

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                    LULU         NFLX         TSLA
## 2013-01-31 -0.099648621  0.579217838  0.102078031
## 2013-02-28 -0.028667850  0.129468358 -0.074128613
## 2013-03-28 -0.072675014  0.006360086  0.084208141
## 2013-04-30  0.199678726  0.132375029  0.354111527
## 2013-05-31  0.021827566  0.046038160  0.593716693
## 2013-06-28 -0.172219789 -0.069356053  0.093672182
## 2013-07-31  0.060283297  0.146848896  0.223739545
## 2013-08-30  0.018090317  0.149523807  0.229971572
## 2013-09-30  0.031814882  0.085363333  0.134706682
## 2013-10-31 -0.056828694  0.042020457 -0.189806650
## 2013-11-29  0.009077290  0.126045634 -0.228409431
## 2013-12-31 -0.166441463  0.006458101  0.167108548
## 2014-01-31 -0.256166339  0.105976904  0.187261770
## 2014-02-28  0.096324451  0.084967328  0.299722757
## 2014-03-31  0.044322103 -0.235772615 -0.160783192
## 2014-04-30 -0.135407489 -0.089040664 -0.002690159
## 2014-05-30 -0.028712197  0.260398879 -0.000577395
## 2014-06-30 -0.097598276  0.053062782  0.144457218
## 2014-07-31 -0.050929282 -0.041427369 -0.072372711
## 2014-08-29  0.037249178  0.122147224  0.188794049
## 2014-09-30  0.050779716 -0.056990909 -0.105566506
## 2014-10-31 -0.008606221 -0.138642145 -0.004046457
## 2014-11-28  0.145850093 -0.125081715  0.011599756
## 2014-12-31  0.146443150 -0.014472737 -0.094774520
## 2015-01-30  0.171689820  0.257187515 -0.088365243
## 2015-02-27  0.032672998  0.072268007 -0.001277805
## 2015-03-31 -0.066761991 -0.130782761 -0.074350086
## 2015-04-30 -0.005953300  0.289324645  0.180226844
## 2015-05-29 -0.062403748  0.114579340  0.103899535
## 2015-06-30  0.088153643  0.051346185  0.067300966
## 2015-07-31 -0.038082035  0.197231491 -0.007896618
## 2015-08-31  0.018129305  0.006278917 -0.066366266
## 2015-09-30 -0.234100082 -0.107942856 -0.002653542
## 2015-10-30 -0.029655629  0.048393444 -0.182659742
## 2015-11-30 -0.027839679  0.129220163  0.106828579
## 2015-12-31  0.092797635 -0.075337494  0.041471546
## 2016-01-29  0.168021184 -0.219478323 -0.227360646
## 2016-02-29  0.010577022  0.016950560  0.003810669
## 2016-03-31  0.076394063  0.090226757  0.179948112
## 2016-04-29 -0.032420609 -0.127082269  0.046721799
## 2016-05-31 -0.007964569  0.130402555 -0.075597977
## 2016-06-30  0.127322736 -0.114425090 -0.050296472
## 2016-07-29  0.050040152 -0.002517409  0.100785361
## 2016-08-31 -0.014790098  0.065736403 -0.102058076
## 2016-09-30 -0.226875536  0.011224669 -0.038366402
## 2016-10-31 -0.063118299  0.236709156 -0.031364578
## 2016-11-30 -0.004551793 -0.065099285 -0.043041257
## 2016-12-30  0.131357532  0.056493450  0.120665160
## 2017-01-31  0.038042384  0.128033700  0.164624944
## 2017-02-28 -0.033896443  0.010041082 -0.007730394
## 2017-03-31 -0.229638753  0.039185485  0.107278734
## 2017-04-28  0.002503149  0.029267774  0.120916240
## 2017-05-31 -0.074433469  0.068984174  0.082295867
## 2017-06-30  0.212019098 -0.087485368  0.058654469
## 2017-07-31  0.032481646  0.195442598 -0.111459838
## 2017-08-31 -0.068656876 -0.039009334  0.095543417
## 2017-09-29  0.078504418  0.037301402 -0.042474117
## 2017-10-31 -0.011958805  0.079877199 -0.028457431
## 2017-11-30  0.084895681 -0.046100666 -0.070862536
## 2017-12-29  0.160149003  0.023081622  0.008061927
calculate_component_contribution <- function(.data, w) {
    
         # Covariance of asset returns
        covariance_matrix <- cov(asset_returns_wide_tbl)
        
        # Standard deviation of portfolio
        # Summarizes how much each asset's returns vary with those of             other assets within the portfolio into a single number

        sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
        
        # Component contribution
        # Similar to the formula for sd_portfolio
        # Mathematical trick to summarize the same, sd_portfolio, by asset         instead of a single number
        component_contribution <- (t(w) %*% covariance_matrix * w) /              sd_portfolio[1,1]
        component_contribution
        
        # Component contribution in percentage
        component_percentages <- (component_contribution /                        sd_portfolio[1,1]) %>%
            round(3) %>%
            as_tibble()
        
        return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.35, .35, .30))
## # A tibble: 1 × 3
##    LULU  NFLX  TSLA
##   <dbl> <dbl> <dbl>
## 1 0.196 0.418 0.386

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.35, .35, .30)) %>%
    
    #Transform to long form
    pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue")+

    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.35, .35, .30)) %>%
    
    #Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%

#add weights
    add_column(weight = c(.35, .35, .30)) %>%
    
#Transform to long
   pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +

    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq()+
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent",
         X = NULL)

Which of the assets in your portfolio the largest contributor to the portfolio volatility? Do you think your portfolio risk is concentrated in any one asset?

# The largest contributor in my portfolio is Netflix and this also has the most volatility. The other two stocks I have chosen around the same as Netflix, I think my portfolio is balanced in this area.