3.1 Parameter versus variabel Mengapa sebenarnya tidak ada perbedaan. Perbedaan Newton antara a, b, c, dan x, y, z.

3.2 Parameter fungsi pemodelan Berikan parameterisasi eksponensial, sinus, hukum pangkat … Idenya adalah untuk membuat argumen ke fungsi matematika berdimensi. Parameter dan logaritma – Anda dapat mengambil log apa pun yang Anda suka. Satuan muncul sebagai konstanta

3.3 Polinomial dan parameter Setiap parameter memiliki dimensinya sendiri

3.4 Parameter danmakeFun() Jelaskan cara makeFun()kerjanya di sini. 1

3.5 Fungsi tanpa parameter: splines dan smooths “Smoothers” dan “splines” adalah dua jenis fungsi tujuan umum yang dapat menangkap pola dalam data, tetapi tidak ada bentuk aljabar sederhana. Smoother dan splines tidak ditentukan oleh bentuk dan parameter aljabar, tetapi oleh data dan algoritma. Sebagai ilustrasi, pertimbangkan beberapa data sederhana. Kumpulan data Loblollyberisi 84 pengukuran usia dan tinggi pinus loblolly.

library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
library(devtools)
## Loading required package: usethis
gf_point(height ~ age, data=datasets::Loblolly)

Beberapa pinus berusia tiga tahun dengan tinggi yang sangat mirip diukur dan dilacak dari waktu ke waktu: usia lima tahun, usia sepuluh tahun, dan seterusnya.

gf_point(Seed ~ age, data=datasets::Loblolly)

Spline dan konektor tidak selalu sesuai dengan yang Anda inginkan, terutama bila data tidak dibagi menjadi kelompok-kelompok terpisah, seperti data pinus loblolly. Misalnya, trees.csvkumpulan data adalah pengukuran volume, ketebalan, dan tinggi pohon ceri hitam. Pohon-pohon ditebang untuk diambil kayunya, dan minat dalam melakukan pengukuran adalah untuk membantu memperkirakan berapa banyak volume kayu yang dapat digunakan yang dapat diperoleh dari sebuah pohon, berdasarkan lingkar (yaitu, keliling) dan tinggi. Ini akan berguna, misalnya, dalam memperkirakan berapa nilai uang sebuah pohon.

Cherry <- datasets::trees
gf_point(Volume ~ Girth, data = Cherry)

untuk membuat spline atau konektor linier:

g1 = spliner(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
g2 = connector(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
slice_plot(g1(x) ~ x, domain(x = 8:18)) %>%
  slice_plot(g2(x) ~ x, color ="red") %>%
  gf_point(Volume ~ Girth, data = Cherry) %>%
  gf_labs(x = "Girth (inches)")

Untuk situasi seperti itu, di mana Anda memiliki alasan untuk percaya bahwa fungsi mulus lebih tepat daripada fungsi dengan banyak pasang surut, jenis fungsi yang berbeda sesuai: lebih halus.

g3 <- smoother(Volume ~ Girth, data = Cherry, span=1.5)
gf_point(Volume~Girth, data=Cherry) %>%
  slice_plot(g3(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)")

Parameter hiper span mengatur ini:

g4 <- smoother(Volume ~ Girth, data=Cherry, span=1.0)
gf_point(Volume~Girth, data = Cherry) %>%
  slice_plot(g4(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)", y = "Wood volume")

Tentu saja, seringkali Anda ingin menangkap hubungan di mana ada lebih dari satu variabel sebagai input. Smoother melakukan ini dengan sangat baik; cukup tentukan variabel mana yang akan menjadi input.

g5 <- smoother(Volume ~ Girth+Height, 
               data = Cherry, span = 1.0)
gf_point(Height ~ Girth, data = Cherry) %>%
  contour_plot(g5(Girth, Height) ~ Girth + Height) %>%
  gf_labs(x = "Girth (inches)", 
          y = "Height (ft)", 
          title = "Volume (ft^3)")

Saat Anda membuat konektor yang lebih halus atau spline atau linier, ingat aturan ini: 1. Anda memerlukan bingkai data yang berisi data. 2. Anda menggunakan rumus dengan variabel yang Anda inginkan sebagai output dari fungsi di sisi kiri tilde, dan variabel input di sisi kanan. 3. Fungsi yang dibuat akan memiliki nama input yang cocok dengan variabel yang Anda tentukan sebagai input. (Untuk saat ini, hanya smootherakan menerima lebih dari satu variabel input.) 4. Kelancaran suatu smootherfungsi dapat diatur oleh spanargumen. Rentang 1,0 biasanya cukup mulus. Kesalahannya adalah 0,5. 5. Saat membuat spline, Anda memiliki opsi untuk mendeklarasikan monotonic=TRUE. Ini akan mengatur hal-hal untuk menghindari benjolan asing dalam data yang menunjukkan pola naik yang stabil atau pola turun yang stabil.