Análisis de factores

Análisis descriptivo

#Información general
summary(base[ , c(2:16)])
     TPVLDA         Computadora          Internet          Celular        tot sucursales   
 Min.   :-1.4670   Min.   :-2.56248   Min.   :-1.3280   Min.   :-1.5799   Min.   :-2.3223  
 1st Qu.:-0.5313   1st Qu.:-0.65348   1st Qu.:-0.7261   1st Qu.:-0.6467   1st Qu.:-0.7828  
 Median :-0.2923   Median : 0.09301   Median :-0.1743   Median :-0.1742   Median : 0.2951  
 Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
 3rd Qu.: 0.3628   3rd Qu.: 0.65572   3rd Qu.: 0.5216   3rd Qu.: 0.6829   3rd Qu.: 0.7893  
 Max.   : 2.5531   Max.   : 1.88630   Max.   : 2.8138   Max.   : 2.8156   Max.   : 1.5071  
 credito personal      ANALF             SBASC             OVSDE             OVSEE        
 Min.   :-1.7849   Min.   :-1.0318   Min.   :-1.5978   Min.   :-0.8760   Min.   :-1.1990  
 1st Qu.:-0.6422   1st Qu.:-0.6574   1st Qu.:-0.6752   1st Qu.:-0.6183   1st Qu.:-0.6763  
 Median : 0.1947   Median :-0.3738   Median :-0.1598   Median :-0.1978   Median :-0.3841  
 Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
 3rd Qu.: 0.6402   3rd Qu.: 0.3763   3rd Qu.: 0.2966   3rd Qu.: 0.1351   3rd Qu.: 0.4755  
 Max.   : 1.9786   Max.   : 2.8364   Max.   : 2.4983   Max.   : 4.1446   Max.   : 2.2777  
     OVSAE              OVPT              VHAC            PL.5000             PO2SM         
 Min.   :-0.9378   Min.   :-0.8617   Min.   :-1.1058   Min.   :-1.66967   Min.   :-2.26077  
 1st Qu.:-0.7031   1st Qu.:-0.5517   1st Qu.:-0.7584   1st Qu.:-0.86083   1st Qu.:-0.75536  
 Median :-0.4028   Median :-0.3700   Median :-0.2699   Median : 0.05406   Median : 0.09959  
 Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.00000  
 3rd Qu.: 0.2750   3rd Qu.: 0.1823   3rd Qu.: 0.6159   3rd Qu.: 0.52689   3rd Qu.: 0.67245  
 Max.   : 2.5912   Max.   : 3.1578   Max.   : 2.6345   Max.   : 1.92051   Max.   : 1.90994  

Outliers univariados

boxplot(base$TPVLDA)

boxplot(base$Computadora)

boxplot(base$Internet)

boxplot(base$Celular)

boxplot(base$`tot sucursales`)

boxplot(base$`credito personal`)

boxplot(base$ANALF)

boxplot(base$SBASC)

boxplot(base$OVSDE)

boxplot(base$OVSEE)

boxplot(base$OVSAE)

boxplot(base$OVPT)

boxplot(base$VHAC)

boxplot(base$PL.5000)

boxplot(base$PO2SM)

Outliers multivariados

#Outliers multivariados (paqueter?a mvoutlier)
sign2(base[ , c(2:16)], makeplot = T)
$wfinal01
 [1] 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1

$x.dist
 [1]  3.029409  3.716198  5.775303  3.434803  2.147148  3.822039  6.365092  3.942662  3.938364
[10]  4.656607  2.663701 14.154400  3.134436  2.737565  2.727689  3.966358  3.279303  5.183301
[19]  3.242875  6.913043  2.606947  2.744266  3.814099  3.607587  2.387355  2.037107  3.300276
[28]  2.154322  2.794889  4.114330  5.846786  3.034652

$const
[1] 4.830804

Correlaciones

cor(base[ , c(2:16)])
                     TPVLDA Computadora   Internet    Celular tot sucursales credito personal
TPVLDA           1.00000000   0.3211264  0.2520438  0.2084463      0.1141993       0.09570040
Computadora      0.32112643   1.0000000  0.9207734  0.8717914      0.4501411      -0.25916431
Internet         0.25204377   0.9207734  1.0000000  0.9635150      0.4241603      -0.23703187
Celular          0.20844633   0.8717914  0.9635150  1.0000000      0.4470104      -0.27069204
tot sucursales   0.11419929   0.4501411  0.4241603  0.4470104      1.0000000      -0.19762609
credito personal 0.09570040  -0.2591643 -0.2370319 -0.2706920     -0.1976261       1.00000000
ANALF            0.33184509   0.8355190  0.8977926  0.8917320      0.3837681      -0.33572067
SBASC            0.33991048   0.8903111  0.9129792  0.8701910      0.3900256      -0.19620873
OVSDE            0.44664125   0.5422728  0.4308686  0.4511071      0.1983923      -0.34739819
OVSEE            0.73090281   0.4304681  0.4650434  0.4814938      0.2844547      -0.00947867
OVSAE            0.42046604   0.6894991  0.7669452  0.7690263      0.4094815      -0.31258891
OVPT             0.53331816   0.6912093  0.7385973  0.7217778      0.3297049      -0.27943586
VHAC             0.25982876   0.6153161  0.6576599  0.7020129      0.4172392      -0.39888500
PL.5000          0.27971594   0.8824886  0.8882354  0.8566881      0.5306178      -0.27544375
PO2SM            0.04989999   0.6794932  0.6729675  0.6917547      0.7300096      -0.39897534
                      ANALF      SBASC      OVSDE       OVSEE      OVSAE       OVPT       VHAC
TPVLDA            0.3318451  0.3399105  0.4466413  0.73090281  0.4204660  0.5333182  0.2598288
Computadora       0.8355190  0.8903111  0.5422728  0.43046811  0.6894991  0.6912093  0.6153161
Internet          0.8977926  0.9129792  0.4308686  0.46504339  0.7669452  0.7385973  0.6576599
Celular           0.8917320  0.8701910  0.4511071  0.48149379  0.7690263  0.7217778  0.7020129
tot sucursales    0.3837681  0.3900256  0.1983923  0.28445466  0.4094815  0.3297049  0.4172392
credito personal -0.3357207 -0.1962087 -0.3473982 -0.00947867 -0.3125889 -0.2794359 -0.3988850
ANALF             1.0000000  0.9285371  0.5886507  0.51688213  0.8607664  0.8901424  0.8217527
SBASC             0.9285371  1.0000000  0.4882323  0.49419507  0.7459456  0.8086467  0.6862301
OVSDE             0.5886507  0.4882323  1.0000000  0.48192354  0.4670627  0.5478587  0.5609712
OVSEE             0.5168821  0.4941951  0.4819235  1.00000000  0.5623158  0.6313315  0.4303666
OVSAE             0.8607664  0.7459456  0.4670627  0.56231577  1.0000000  0.9012056  0.7207574
OVPT              0.8901424  0.8086467  0.5478587  0.63133146  0.9012056  1.0000000  0.7200972
VHAC              0.8217527  0.6862301  0.5609712  0.43036664  0.7207574  0.7200972  1.0000000
PL.5000           0.8109444  0.8019325  0.4768334  0.47696644  0.7136100  0.6556000  0.6140227
PO2SM             0.6951518  0.7177941  0.3944560  0.36833528  0.5491192  0.5387849  0.6135388
                    PL.5000       PO2SM
TPVLDA            0.2797159  0.04989999
Computadora       0.8824886  0.67949316
Internet          0.8882354  0.67296749
Celular           0.8566881  0.69175471
tot sucursales    0.5306178  0.73000957
credito personal -0.2754437 -0.39897534
ANALF             0.8109444  0.69515179
SBASC             0.8019325  0.71779412
OVSDE             0.4768334  0.39445603
OVSEE             0.4769664  0.36833528
OVSAE             0.7136100  0.54911917
OVPT              0.6556000  0.53878493
VHAC              0.6140227  0.61353883
PL.5000           1.0000000  0.69564447
PO2SM             0.6956445  1.00000000
abs(cor(base[ , c(2:16)])) > 0.6
                 TPVLDA Computadora Internet Celular tot sucursales credito personal ANALF SBASC
TPVLDA             TRUE       FALSE    FALSE   FALSE          FALSE            FALSE FALSE FALSE
Computadora       FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
Internet          FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
Celular           FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
tot sucursales    FALSE       FALSE    FALSE   FALSE           TRUE            FALSE FALSE FALSE
credito personal  FALSE       FALSE    FALSE   FALSE          FALSE             TRUE FALSE FALSE
ANALF             FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
SBASC             FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
OVSDE             FALSE       FALSE    FALSE   FALSE          FALSE            FALSE FALSE FALSE
OVSEE              TRUE       FALSE    FALSE   FALSE          FALSE            FALSE FALSE FALSE
OVSAE             FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
OVPT              FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
VHAC              FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
PL.5000           FALSE        TRUE     TRUE    TRUE          FALSE            FALSE  TRUE  TRUE
PO2SM             FALSE        TRUE     TRUE    TRUE           TRUE            FALSE  TRUE  TRUE
                 OVSDE OVSEE OVSAE  OVPT  VHAC PL.5000 PO2SM
TPVLDA           FALSE  TRUE FALSE FALSE FALSE   FALSE FALSE
Computadora      FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
Internet         FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
Celular          FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
tot sucursales   FALSE FALSE FALSE FALSE FALSE   FALSE  TRUE
credito personal FALSE FALSE FALSE FALSE FALSE   FALSE FALSE
ANALF            FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
SBASC            FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
OVSDE             TRUE FALSE FALSE FALSE FALSE   FALSE FALSE
OVSEE            FALSE  TRUE FALSE  TRUE FALSE   FALSE FALSE
OVSAE            FALSE FALSE  TRUE  TRUE  TRUE    TRUE FALSE
OVPT             FALSE  TRUE  TRUE  TRUE  TRUE    TRUE FALSE
VHAC             FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
PL.5000          FALSE FALSE  TRUE  TRUE  TRUE    TRUE  TRUE
PO2SM            FALSE FALSE FALSE FALSE  TRUE    TRUE  TRUE

Prueba KMO

KMO(base[ , c(2:16)])
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = base[, c(2:16)])
Overall MSA =  0.86
MSA for each item = 
          TPVLDA      Computadora         Internet          Celular   tot sucursales 
            0.69             0.87             0.88             0.90             0.72 
credito personal            ANALF            SBASC            OVSDE            OVSEE 
            0.71             0.85             0.86             0.81             0.77 
           OVSAE             OVPT             VHAC          PL.5000            PO2SM 
            0.93             0.89             0.92             0.92             0.80 

Componentes principales

base.pca <- prcomp(base[ , c(2:16)], center = TRUE, scale = TRUE)
summary(base.pca)
Importance of components:
                          PC1    PC2    PC3     PC4     PC5     PC6     PC7     PC8     PC9
Standard deviation     3.0284 1.2934 1.0370 0.96640 0.76478 0.65986 0.55518 0.51059 0.46916
Proportion of Variance 0.6114 0.1115 0.0717 0.06226 0.03899 0.02903 0.02055 0.01738 0.01467
Cumulative Proportion  0.6114 0.7229 0.7946 0.85691 0.89590 0.92493 0.94548 0.96286 0.97753
                          PC10    PC11    PC12    PC13    PC14   PC15
Standard deviation     0.34873 0.26923 0.25879 0.20083 0.13831 0.1282
Proportion of Variance 0.00811 0.00483 0.00446 0.00269 0.00128 0.0011
Cumulative Proportion  0.98564 0.99047 0.99494 0.99763 0.99890 1.0000
base.pca$rotation
                        PC1         PC2         PC3          PC4         PC5         PC6
TPVLDA            0.1386124  0.63072748  0.03104095 -0.209389803  0.05293211 -0.22969467
Computadora       0.2968004 -0.07794920 -0.16116583  0.117830164  0.34697131 -0.15121997
Internet          0.3043960 -0.09893402 -0.22596556  0.203106779  0.07950990 -0.15158576
Celular           0.3025390 -0.12026165 -0.16946635  0.163628090  0.03319264 -0.06372044
tot sucursales    0.1762639 -0.24855421 -0.14122994 -0.751065728 -0.08909099  0.06905875
credito personal -0.1163164  0.31563549 -0.72603509  0.008573354  0.05003200  0.55145884
ANALF             0.3169304 -0.01574866  0.02960649  0.196651968 -0.10600890  0.15385818
SBASC             0.3043545 -0.02292677 -0.17337134  0.173955377  0.05195059  0.06999864
OVSDE             0.2056990  0.19911110  0.45483532 -0.025715255  0.61830973  0.37575642
OVSEE             0.2046488  0.46426561 -0.02223843 -0.295343191 -0.03921245 -0.17921010
OVSAE             0.2874131  0.08827898  0.05748820  0.082576811 -0.45524956 -0.07781626
OVPT              0.2890336  0.19340899  0.09845259  0.108467722 -0.36228409  0.02347033
VHAC              0.2660755 -0.04856623  0.25535519  0.023037695 -0.25893388  0.55202794
PL.5000           0.2921200 -0.10684418 -0.17145410 -0.005960827  0.23043395 -0.25393540
PO2SM             0.2537009 -0.30905499 -0.01747706 -0.366197254  0.05015325  0.10369582
                         PC7         PC8         PC9        PC10        PC11        PC12
TPVLDA            0.31073631 -0.14987859 -0.45382577  0.02573263 -0.25458838  0.29239459
Computadora       0.21174043 -0.08353801 -0.16788764  0.09782674 -0.08048039 -0.71956673
Internet         -0.03141060  0.12088119 -0.03925252  0.26431614  0.01273083  0.11589127
Celular          -0.16788254  0.29459226  0.03374277  0.48405247 -0.15875093  0.34275185
tot sucursales    0.35289697  0.08935195  0.06108683  0.27096440  0.27706875  0.01939850
credito personal  0.05572142  0.02586564  0.15569151 -0.09378484 -0.08455648 -0.01394581
ANALF            -0.03287977 -0.11856126  0.02219990 -0.06061847  0.16441373  0.29838739
SBASC            -0.09036980 -0.46240223 -0.17765432  0.02469125  0.18013136  0.02581226
OVSDE             0.10968392  0.02806896  0.38027429  0.08998794 -0.01682058  0.07387313
OVSEE            -0.66113250  0.22291851  0.12338426  0.02193683  0.16353229 -0.26179158
OVSAE             0.27047543  0.12213930  0.44087221 -0.06730859 -0.53032322 -0.16528312
OVPT              0.13008472 -0.32360802  0.23551963 -0.03634321  0.45705305 -0.06927778
VHAC             -0.04651288  0.37014462 -0.54026252 -0.10642517 -0.02433131 -0.16480254
PL.5000           0.13366869  0.36179087  0.03778812 -0.71676926  0.17521064  0.18683765
PO2SM            -0.36511962 -0.44115212  0.01302651 -0.24409337 -0.45988143  0.08584422
                        PC13         PC14        PC15
TPVLDA           -0.07785972  0.011250096  0.02147511
Computadora      -0.16738369 -0.107249282  0.26339420
Internet          0.01842487  0.797950259 -0.19565951
Celular          -0.29052628 -0.501672629 -0.06462256
tot sucursales    0.14678386 -0.011179644  0.04373389
credito personal -0.09126932  0.020691462  0.01106197
ANALF             0.15743691  0.062826226  0.81286077
SBASC             0.59000917 -0.264492445 -0.36550245
OVSDE             0.04702854  0.042173809 -0.10840270
OVSEE             0.13567779  0.006816167  0.07052636
OVSAE             0.29541531 -0.024026659 -0.05278970
OVPT             -0.54052690 -0.002375206 -0.20368450
VHAC             -0.03862651  0.034044865 -0.12862041
PL.5000          -0.03134537 -0.110797154 -0.11585997
PO2SM            -0.27544248  0.098343278 -0.01918130
parallel <- fa.parallel(base[ , c(2:16)],fm="minres",fa='fa') #Sugiere un solo factor
Warning: The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.Warning: An ultra-Heywood case was detected.  Examine the results carefullyWarning: The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.Warning: The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.Warning: The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.Warning: The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.Warning: The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.Warning: An ultra-Heywood case was detected.  Examine the results carefully
Parallel analysis suggests that the number of factors =  1  and the number of components =  NA 

Más de componentes principales



dimensiones <- c("TPVLDA","Computadora", "Internet","Celular","tot sucursales","credito personal","ANALF", "SBASC", "OVSDE", "OVSAE", "OVPT", "OVSEE", "VHAC", "PL.5000", "PO2SM")


# implementacion de fase previa de FA
summary(pre_factor(base, vars = dimensiones))
Pre-factor analysis diagnostics
Data        : base 
Variables   : TPVLDA, Computadora, Internet, Celular, tot sucursales, credito personal, ANALF, SBASC, OVSDE, OVSAE, OVPT, OVSEE, VHAC, PL.5000, PO2SM 
Observations: 32 
Correlation : Pearson

Bartlett test
Null hyp. : variables are not correlated
Alt. hyp. : variables are correlated
Chi-square: 537.99 df(105), p.value < .001

KMO test:  0.86 

Variable collinearity:

Fit measures:
# implementacion del FA
summary(full_factor(base, dimensiones, nr_fact = length(dimensions)))
Factor analysis
Data        : base 
Variables   : TPVLDA, Computadora, Internet, Celular, tot sucursales, credito personal, ANALF, SBASC, OVSDE, OVSAE, OVPT, OVSEE, VHAC, PL.5000, PO2SM 
Factors     : 9 
Method      : PCA 
Rotation    : varimax 
Observations: 32 
Correlation : Pearson

Factor loadings:

Fit measures:

Attribute communalities:

Factor scores (max 10 shown):

Matriz rotada

#Varimax
fa.varimax <- fa(base[ , c(2:16)], rotate="varimax", nfactors= 1)
print(fa.varimax$loadings[1:9,])
          TPVLDA      Computadora         Internet          Celular   tot sucursales 
       0.3854954        0.8942971        0.9235486        0.9161628        0.4973958 
credito personal            ANALF            SBASC            OVSDE 
      -0.3229777        0.9695611        0.9227021        0.5861276 
#Oblimin
fa.oblimin <- fa(base[ , c(2:16)], rotate="oblimin", nfactors= 1)
print(fa.oblimin$loadings[1:9,])
          TPVLDA      Computadora         Internet          Celular   tot sucursales 
       0.3854954        0.8942971        0.9235486        0.9161628        0.4973958 
credito personal            ANALF            SBASC            OVSDE 
      -0.3229777        0.9695611        0.9227021        0.5861276 

Ambos resultados son iguales pues solo es un factor

Factor Scores

base$TPVLDA_f= base$TPVLDA * base.pca$rotation[1]
base$Computadora_f= base$Computadora * base.pca$rotation[2]
base$Internet_f = base$Internet * base.pca$rotation[3]
base$Celular_f = base$Celular * base.pca$rotation[4]
base$sucursales_f = base$`tot sucursales` * base.pca$rotation[5]
base$credito_personal_f = base$`credito personal` * base.pca$rotation[6]
base$ANALF_f = base$ANALF * base.pca$rotation[7]
base$SBASC_f = base$SBASC * base.pca$rotation[8]
base$OVSDE_f = base$OVSDE * base.pca$rotation[9]
base$OVSEE_f = base$OVSEE * base.pca$rotation[10]
base$OVSAE_f = base$OVSAE * base.pca$rotation[11]
base$OVPT_f = base$OVPT * base.pca$rotation[12]
base$VHAC_f = base$VHAC * base.pca$rotation[13]
base$PL.5000_f = base$PL.5000 * base.pca$rotation[14]
base$PO2SM_f = base$PO2SM * base.pca$rotation[15]

Generación de índice

FS = rowSums(base[17:31])
base$indice_marginacion = FS

Análisis de conglomerados

Generación de un data frame

Distancia euclidiana

m.distancia <- get_dist(df, method = "euclidean")
fviz_dist(m.distancia, gradient = list(low = "blue", mid = "white", high = "red"))

Determinación de clusters con método democrático

resnumclust<- NbClust(df[2:length(df)], distance = "euclidean", min.nc=2, max.nc=10, method = "kmeans", index = "alllong")
Warning: NaNs produced
*** : The Hubert index is a graphical method of determining the number of clusters.
                In the plot of Hubert index, we seek a significant knee that corresponds to a 
                significant increase of the value of the measure i.e the significant peak in Hubert
                index second differences plot. 
 

*** : The D index is a graphical method of determining the number of clusters. 
                In the plot of D index, we seek a significant knee (the significant peak in Dindex
                second differences plot) that corresponds to a significant increase of the value of
                the measure. 
 
******************************************************************* 
* Among all indices:                                                
* 4 proposed 2 as the best number of clusters 
* 15 proposed 3 as the best number of clusters 
* 2 proposed 5 as the best number of clusters 
* 3 proposed 7 as the best number of clusters 
* 3 proposed 10 as the best number of clusters 

                   ***** Conclusion *****                            
 
* According to the majority rule, the best number of clusters is  3 
 
 
******************************************************************* 

k-Means 3 clusters

k3 <- kmeans(df[2:length(df)], centers = 3, nstart = 25)
k3
K-means clustering with 3 clusters of sizes 14, 3, 15

Cluster means:
    Internet    Celular tot sucursales credito personal      ANALF      SBASC      OVSDE
1  0.4157513  0.4342305      0.2419071       -0.2945925  0.2100660  0.3101229  0.2495675
2  1.9665695  2.0083337      0.9647562       -0.7043717  2.5100662  2.1219295  1.5674243
3 -0.7813485 -0.8069485     -0.4187312        0.4158273 -0.6980748 -0.7138339 -0.5464146
       OVSEE      OVSAE        OVPT       VHAC    PL.5000      PO2SM
1  0.1476553  0.1243782 -0.05473154  0.1740851  0.5553052  0.4517736
2  1.5822649  2.3317319  2.77763282  2.0982836  1.6536253  1.4933155
3 -0.4542646 -0.5824327 -0.50444379 -0.5821361 -0.8490099 -0.7203184

Clustering vector:
 [1] 3 3 3 1 3 3 2 3 3 1 1 2 1 3 3 1 1 1 3 2 1 3 3 1 3 3 1 3 1 1 1 1

Within cluster sum of squares by cluster:
[1] 74.41930 17.72338 70.67351
 (between_SS / total_SS =  59.6 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss" "betweenss"   
[7] "size"         "iter"         "ifault"      
str(k3)
List of 9
 $ cluster     : int [1:32] 3 3 3 1 3 3 2 3 3 1 ...
 $ centers     : num [1:3, 1:13] 0.416 1.967 -0.781 0.434 2.008 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:3] "1" "2" "3"
  .. ..$ : chr [1:13] "Internet" "Celular" "tot sucursales" "credito personal" ...
 $ totss       : num 403
 $ withinss    : num [1:3] 74.4 17.7 70.7
 $ tot.withinss: num 163
 $ betweenss   : num 240
 $ size        : int [1:3] 14 3 15
 $ iter        : int 2
 $ ifault      : int 0
 - attr(*, "class")= chr "kmeans"
df$cluster <- k3$cluster_3

Visualización de Clusters

fviz_cluster(k3, data = df[2:length(df)])

fviz_cluster(k3, data = df[2:length(df)], ellipse.type = "euclid",repel = TRUE,star.plot = TRUE) #ellipse.type= "t", "norm", "euclid"

fviz_cluster(k3, data = df[2:length(df)], ellipse.type = "norm")

fviz_cluster(k3, data = df[2:length(df)], ellipse.type = "norm",palette = "Set2", ggtheme = theme_minimal())

Dendograma

res3 <- hcut(df[2:length(df)], k = 3, stand = TRUE)
fviz_dend(res3, rect = TRUE, cex = 0.5,
          k_colors = c("green","red", "blue"))
Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as of ggplot2 3.3.4.

k-Means 5 clusters

k5 <- kmeans(df[2:length(df)], centers = 5, nstart = 25)
k5
K-means clustering with 5 clusters of sizes 8, 11, 3, 7, 3

Cluster means:
    Internet     Celular tot sucursales credito personal       ANALF       SBASC       OVSDE
1 -0.7641724 -0.81970809      0.5152920        0.2869474 -0.72289859 -0.62433809 -0.51698898
2  0.5651552  0.57713179      0.3802326       -0.3188716  0.29314632  0.40084363 -0.05620644
3 -0.1320630 -0.08974102     -0.2652862       -0.2055692 -0.09456189 -0.02251995  1.37073878
4 -0.8009782 -0.79236617     -1.4861863        0.5631187 -0.66970481 -0.81611485 -0.58004381
5  1.9665695  2.00833374      0.9647562       -0.7043717  2.51006616  2.12192953  1.56742434
       OVSEE      OVSAE        OVPT        VHAC    PL.5000       PO2SM
1 -0.3640065 -0.6194047 -0.56168166 -0.63022649 -0.7405673 -0.15190668
2 -0.2090412  0.2759344 -0.02825534  0.21219139  0.6632019  0.55497854
3  1.4555424 -0.4313281 -0.15181095  0.03436199  0.1596838  0.07335534
4 -0.5574167 -0.5401789 -0.43902908 -0.52717573 -0.9729444 -1.36993186
5  1.5822649  2.3317319  2.77763282  2.09828359  1.6536253  1.49331549

Clustering vector:
 [1] 1 1 4 2 1 4 5 1 4 3 2 5 2 4 1 2 2 3 4 5 2 4 4 2 1 1 2 1 2 2 3 2

Within cluster sum of squares by cluster:
[1] 22.60951 45.05272 11.61840 26.65406 17.72338
 (between_SS / total_SS =  69.3 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss" "betweenss"   
[7] "size"         "iter"         "ifault"      
str(k5)
List of 9
 $ cluster     : int [1:32] 1 1 4 2 1 4 5 1 4 3 ...
 $ centers     : num [1:5, 1:13] -0.764 0.565 -0.132 -0.801 1.967 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:5] "1" "2" "3" "4" ...
  .. ..$ : chr [1:13] "Internet" "Celular" "tot sucursales" "credito personal" ...
 $ totss       : num 403
 $ withinss    : num [1:5] 22.6 45.1 11.6 26.7 17.7
 $ tot.withinss: num 124
 $ betweenss   : num 279
 $ size        : int [1:5] 8 11 3 7 3
 $ iter        : int 3
 $ ifault      : int 0
 - attr(*, "class")= chr "kmeans"
df$cluster <- k3$cluster_5

Visualización de Clusters

fviz_cluster(k5, data = df[2:length(df)])

fviz_cluster(k5, data = df[2:length(df)], ellipse.type = "euclid",repel = TRUE,star.plot = TRUE) #ellipse.type= "t", "norm", "euclid"

fviz_cluster(k5, data = df[2:length(df)], ellipse.type = "norm")

fviz_cluster(k5, data = df[2:length(df)], ellipse.type = "norm",palette = "Set2", ggtheme = theme_minimal())

Dendograma

res5 <- hcut(df[2:length(df)], k = 5, stand = TRUE)
fviz_dend(res5, rect = TRUE, cex = 0.5,
          k_colors = c("green","red", "blue"))
Warning: Length of color vector was shorter than the number of clusters - color vector was recycled

LS0tCnRpdGxlOiAiRXZpZGVuY2lhIG11bHRpdmFyaWFudGUiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICBkZl9wcmludDogcGFnZWQKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAotLS0KCmBgYHtyLCBpbmNsdWRlPUZBTFNFfQojIyMjIExlY3R1cmEgZGUgYmFzZSB5IGxpYnJlcsOtYXMKbGlicmFyeShtdm91dGxpZXIpCmxpYnJhcnkocHN5Y2gpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGZhY3RvZXh0cmEpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkocmFkaWFudCkKbGlicmFyeShyZWFkeGwpCmxpYnJhcnkoTmJDbHVzdCkKbGlicmFyeSh3cml0ZXhsKQoKYmFzZSA8LSByZWFkX2V4Y2VsKCJEZXNrdG9wLzV0byBzZW1lc3RyZS9NdWx0aXZhcmlhbnRlL0V2aWRlbmNpYS54bHN4IiwgCiAgICAgICAgICAgICAgICAgICBzaGVldCA9ICJFc3RhbmRhcml6YWRvcyIpCmBgYAoKIyBBbsOhbGlzaXMgZGUgZmFjdG9yZXMKCiMjIEFuw6FsaXNpcyBkZXNjcmlwdGl2bwoKYGBge3J9CiNJbmZvcm1hY2nDs24gZ2VuZXJhbApzdW1tYXJ5KGJhc2VbICwgYygyOjE2KV0pCmBgYAoKIyMjIyBPdXRsaWVycyB1bml2YXJpYWRvcwoKYGBge3J9CmJveHBsb3QoYmFzZSRUUFZMREEpCmJveHBsb3QoYmFzZSRDb21wdXRhZG9yYSkKYm94cGxvdChiYXNlJEludGVybmV0KQpib3hwbG90KGJhc2UkQ2VsdWxhcikKYm94cGxvdChiYXNlJGB0b3Qgc3VjdXJzYWxlc2ApCmJveHBsb3QoYmFzZSRgY3JlZGl0byBwZXJzb25hbGApCmJveHBsb3QoYmFzZSRBTkFMRikKYm94cGxvdChiYXNlJFNCQVNDKQpib3hwbG90KGJhc2UkT1ZTREUpCmJveHBsb3QoYmFzZSRPVlNFRSkKYm94cGxvdChiYXNlJE9WU0FFKQpib3hwbG90KGJhc2UkT1ZQVCkKYm94cGxvdChiYXNlJFZIQUMpCmJveHBsb3QoYmFzZSRQTC41MDAwKQpib3hwbG90KGJhc2UkUE8yU00pCmBgYAoKIyMjIyBPdXRsaWVycyBtdWx0aXZhcmlhZG9zCgpgYGB7cn0KI091dGxpZXJzIG11bHRpdmFyaWFkb3MgKHBhcXVldGVyP2EgbXZvdXRsaWVyKQpzaWduMihiYXNlWyAsIGMoMjoxNildLCBtYWtlcGxvdCA9IFQpCmBgYAoKIyMjIENvcnJlbGFjaW9uZXMKCmBgYHtyfQpjb3IoYmFzZVsgLCBjKDI6MTYpXSkKYWJzKGNvcihiYXNlWyAsIGMoMjoxNildKSkgPiAwLjYKYGBgCgojIyBQcnVlYmEgS01PCgpgYGB7cn0KS01PKGJhc2VbICwgYygyOjE2KV0pCmBgYAoKIyMgQ29tcG9uZW50ZXMgcHJpbmNpcGFsZXMKCmBgYHtyfQpiYXNlLnBjYSA8LSBwcmNvbXAoYmFzZVsgLCBjKDI6MTYpXSwgY2VudGVyID0gVFJVRSwgc2NhbGUgPSBUUlVFKQpzdW1tYXJ5KGJhc2UucGNhKQpiYXNlLnBjYSRyb3RhdGlvbgoKcGFyYWxsZWwgPC0gZmEucGFyYWxsZWwoYmFzZVsgLCBjKDI6MTYpXSxmbT0ibWlucmVzIixmYT0nZmEnKSAjU3VnaWVyZSB1biBzb2xvIGZhY3RvcgpgYGAKCiMjIyBNw6FzIGRlIGNvbXBvbmVudGVzIHByaW5jaXBhbGVzCgpgYGB7cn0KCgpkaW1lbnNpb25lcyA8LSBjKCJUUFZMREEiLCJDb21wdXRhZG9yYSIsICJJbnRlcm5ldCIsIkNlbHVsYXIiLCJ0b3Qgc3VjdXJzYWxlcyIsImNyZWRpdG8gcGVyc29uYWwiLCJBTkFMRiIsICJTQkFTQyIsICJPVlNERSIsICJPVlNBRSIsICJPVlBUIiwgIk9WU0VFIiwgIlZIQUMiLCAiUEwuNTAwMCIsICJQTzJTTSIpCgoKIyBpbXBsZW1lbnRhY2lvbiBkZSBmYXNlIHByZXZpYSBkZSBGQQpzdW1tYXJ5KHByZV9mYWN0b3IoYmFzZSwgdmFycyA9IGRpbWVuc2lvbmVzKSkKCgojIGltcGxlbWVudGFjaW9uIGRlbCBGQQpzdW1tYXJ5KGZ1bGxfZmFjdG9yKGJhc2UsIGRpbWVuc2lvbmVzLCBucl9mYWN0ID0gbGVuZ3RoKGRpbWVuc2lvbnMpKSkKCmBgYAoKIyMgTWF0cml6IHJvdGFkYQoKYGBge3J9CiNWYXJpbWF4CmZhLnZhcmltYXggPC0gZmEoYmFzZVsgLCBjKDI6MTYpXSwgcm90YXRlPSJ2YXJpbWF4IiwgbmZhY3RvcnM9IDEpCnByaW50KGZhLnZhcmltYXgkbG9hZGluZ3NbMTo5LF0pCgojT2JsaW1pbgpmYS5vYmxpbWluIDwtIGZhKGJhc2VbICwgYygyOjE2KV0sIHJvdGF0ZT0ib2JsaW1pbiIsIG5mYWN0b3JzPSAxKQpwcmludChmYS5vYmxpbWluJGxvYWRpbmdzWzE6OSxdKQpgYGAKCkFtYm9zIHJlc3VsdGFkb3Mgc29uIGlndWFsZXMgcHVlcyBzb2xvIGVzIHVuIGZhY3RvcgoKIyMgRmFjdG9yIFNjb3JlcwoKYGBge3J9CmJhc2UkVFBWTERBX2Y9IGJhc2UkVFBWTERBICogYmFzZS5wY2Ekcm90YXRpb25bMV0KYmFzZSRDb21wdXRhZG9yYV9mPSBiYXNlJENvbXB1dGFkb3JhICogYmFzZS5wY2Ekcm90YXRpb25bMl0KYmFzZSRJbnRlcm5ldF9mID0gYmFzZSRJbnRlcm5ldCAqIGJhc2UucGNhJHJvdGF0aW9uWzNdCmJhc2UkQ2VsdWxhcl9mID0gYmFzZSRDZWx1bGFyICogYmFzZS5wY2Ekcm90YXRpb25bNF0KYmFzZSRzdWN1cnNhbGVzX2YgPSBiYXNlJGB0b3Qgc3VjdXJzYWxlc2AgKiBiYXNlLnBjYSRyb3RhdGlvbls1XQpiYXNlJGNyZWRpdG9fcGVyc29uYWxfZiA9IGJhc2UkYGNyZWRpdG8gcGVyc29uYWxgICogYmFzZS5wY2Ekcm90YXRpb25bNl0KYmFzZSRBTkFMRl9mID0gYmFzZSRBTkFMRiAqIGJhc2UucGNhJHJvdGF0aW9uWzddCmJhc2UkU0JBU0NfZiA9IGJhc2UkU0JBU0MgKiBiYXNlLnBjYSRyb3RhdGlvbls4XQpiYXNlJE9WU0RFX2YgPSBiYXNlJE9WU0RFICogYmFzZS5wY2Ekcm90YXRpb25bOV0KYmFzZSRPVlNFRV9mID0gYmFzZSRPVlNFRSAqIGJhc2UucGNhJHJvdGF0aW9uWzEwXQpiYXNlJE9WU0FFX2YgPSBiYXNlJE9WU0FFICogYmFzZS5wY2Ekcm90YXRpb25bMTFdCmJhc2UkT1ZQVF9mID0gYmFzZSRPVlBUICogYmFzZS5wY2Ekcm90YXRpb25bMTJdCmJhc2UkVkhBQ19mID0gYmFzZSRWSEFDICogYmFzZS5wY2Ekcm90YXRpb25bMTNdCmJhc2UkUEwuNTAwMF9mID0gYmFzZSRQTC41MDAwICogYmFzZS5wY2Ekcm90YXRpb25bMTRdCmJhc2UkUE8yU01fZiA9IGJhc2UkUE8yU00gKiBiYXNlLnBjYSRyb3RhdGlvblsxNV0KYGBgCgojIyBHZW5lcmFjacOzbiBkZSDDrW5kaWNlCgpgYGB7cn0KRlMgPSByb3dTdW1zKGJhc2VbMTc6MzFdKQpiYXNlJGluZGljZV9tYXJnaW5hY2lvbiA9IEZTCgpgYGAKCgojIEFuw6FsaXNpcyBkZSBjb25nbG9tZXJhZG9zCgojIyMjIEdlbmVyYWNpw7NuIGRlIHVuIGRhdGEgZnJhbWUKCmBgYHtyLCBpbmNsdWRlPUZBTFNFfQpkZiA8LSBiYXNlWyAsIGMoMjoxNildCmRmCmRmIDwtIGRmWzI6bGVuZ3RoKGRmKV0KYGBgCgojIyBEaXN0YW5jaWEgZXVjbGlkaWFuYQoKYGBge3J9Cm0uZGlzdGFuY2lhIDwtIGdldF9kaXN0KGRmLCBtZXRob2QgPSAiZXVjbGlkZWFuIikKZnZpel9kaXN0KG0uZGlzdGFuY2lhLCBncmFkaWVudCA9IGxpc3QobG93ID0gImJsdWUiLCBtaWQgPSAid2hpdGUiLCBoaWdoID0gInJlZCIpKQpgYGAKCiMjIERldGVybWluYWNpw7NuIGRlIGNsdXN0ZXJzIGNvbiBtw6l0b2RvIGRlbW9jcsOhdGljbwoKYGBge3J9CnJlc251bWNsdXN0PC0gTmJDbHVzdChkZlsyOmxlbmd0aChkZildLCBkaXN0YW5jZSA9ICJldWNsaWRlYW4iLCBtaW4ubmM9MiwgbWF4Lm5jPTEwLCBtZXRob2QgPSAia21lYW5zIiwgaW5kZXggPSAiYWxsbG9uZyIpCmBgYAoKCiMjIyBrLU1lYW5zIDMgY2x1c3RlcnMKCmBgYHtyfQprMyA8LSBrbWVhbnMoZGZbMjpsZW5ndGgoZGYpXSwgY2VudGVycyA9IDMsIG5zdGFydCA9IDI1KQprMwpzdHIoazMpCmRmJGNsdXN0ZXIgPC0gazMkY2x1c3Rlcl8zCgpgYGAKCiMjIFZpc3VhbGl6YWNpw7NuIGRlIENsdXN0ZXJzCgpgYGB7cn0KZnZpel9jbHVzdGVyKGszLCBkYXRhID0gZGZbMjpsZW5ndGgoZGYpXSkKZnZpel9jbHVzdGVyKGszLCBkYXRhID0gZGZbMjpsZW5ndGgoZGYpXSwgZWxsaXBzZS50eXBlID0gImV1Y2xpZCIscmVwZWwgPSBUUlVFLHN0YXIucGxvdCA9IFRSVUUpICNlbGxpcHNlLnR5cGU9ICJ0IiwgIm5vcm0iLCAiZXVjbGlkIgpmdml6X2NsdXN0ZXIoazMsIGRhdGEgPSBkZlsyOmxlbmd0aChkZildLCBlbGxpcHNlLnR5cGUgPSAibm9ybSIpCmZ2aXpfY2x1c3RlcihrMywgZGF0YSA9IGRmWzI6bGVuZ3RoKGRmKV0sIGVsbGlwc2UudHlwZSA9ICJub3JtIixwYWxldHRlID0gIlNldDIiLCBnZ3RoZW1lID0gdGhlbWVfbWluaW1hbCgpKQpgYGAKCiMjIERlbmRvZ3JhbWEKCmBgYHtyfQpyZXMzIDwtIGhjdXQoZGZbMjpsZW5ndGgoZGYpXSwgayA9IDMsIHN0YW5kID0gVFJVRSkKZnZpel9kZW5kKHJlczMsIHJlY3QgPSBUUlVFLCBjZXggPSAwLjUsCiAgICAgICAgICBrX2NvbG9ycyA9IGMoImdyZWVuIiwicmVkIiwgImJsdWUiKSkKYGBgCgoKIyMjIGstTWVhbnMgNSBjbHVzdGVycwoKYGBge3J9Cms1IDwtIGttZWFucyhkZlsyOmxlbmd0aChkZildLCBjZW50ZXJzID0gNSwgbnN0YXJ0ID0gMjUpCms1CnN0cihrNSkKZGYkY2x1c3RlciA8LSBrMyRjbHVzdGVyXzUKCmBgYAoKIyMgVmlzdWFsaXphY2nDs24gZGUgQ2x1c3RlcnMKCmBgYHtyfQpmdml6X2NsdXN0ZXIoazUsIGRhdGEgPSBkZlsyOmxlbmd0aChkZildKQpmdml6X2NsdXN0ZXIoazUsIGRhdGEgPSBkZlsyOmxlbmd0aChkZildLCBlbGxpcHNlLnR5cGUgPSAiZXVjbGlkIixyZXBlbCA9IFRSVUUsc3Rhci5wbG90ID0gVFJVRSkgI2VsbGlwc2UudHlwZT0gInQiLCAibm9ybSIsICJldWNsaWQiCmZ2aXpfY2x1c3RlcihrNSwgZGF0YSA9IGRmWzI6bGVuZ3RoKGRmKV0sIGVsbGlwc2UudHlwZSA9ICJub3JtIikKZnZpel9jbHVzdGVyKGs1LCBkYXRhID0gZGZbMjpsZW5ndGgoZGYpXSwgZWxsaXBzZS50eXBlID0gIm5vcm0iLHBhbGV0dGUgPSAiU2V0MiIsIGdndGhlbWUgPSB0aGVtZV9taW5pbWFsKCkpCmBgYAoKIyMgRGVuZG9ncmFtYQoKYGBge3J9CnJlczUgPC0gaGN1dChkZlsyOmxlbmd0aChkZildLCBrID0gNSwgc3RhbmQgPSBUUlVFKQpmdml6X2RlbmQocmVzNSwgcmVjdCA9IFRSVUUsIGNleCA9IDAuNSwKICAgICAgICAgIGtfY29sb3JzID0gYygiZ3JlZW4iLCJyZWQiLCAiYmx1ZSIpKQpgYGAK