Using maps package
Install and load the
necesaries packages
# install.packages("sf")
# install.packages("raster")
# install.packages("dplyr")
# install.packages("spData")
# install.packages("spDataLarge")
# install.packages("tmap")
# install.packages("leaflet")
# install.packages("ggplot2")
# install.packages("spDataLarge", repos = "https://nowosad.github.io/drat/", type = "source")
# install.packages("tmaptools")
# install.packages("rgdal")
# install.packages("OpenStreetMap")
#install.packages("maps")
library("maps")
library("tmaptools")
library("rgdal")
## Loading required package: sp
## Please note that rgdal will be retired during 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## See https://r-spatial.org/r/2022/04/12/evolution.html and https://github.com/r-spatial/evolution
## rgdal: version: 1.6-2, (SVN revision 1183)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: /usr/share/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: /usr/share/proj
## Linking to sp version:1.5-1
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
library("OpenStreetMap")
library("sf")
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1; sf_use_s2() is TRUE
library("raster")
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:raster':
##
## intersect, select, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("spData")
library("tmap") # for static and interactive maps
library("leaflet") # for interactive maps
library("ggplot2") # tidyverse data visualization package
library("spDataLarge")
Filter the region of
interest
## make a df with only the country to overlap
map_data_py <- map_data("world")[map_data('world')$region == "Paraguay",]
#View(map_data_py)
summary(map_data_py$long)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -62.65 -58.25 -57.83 -57.58 -55.65 -54.24
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -27.55 -26.05 -23.58 -23.74 -22.10 -19.29
Draw the map
## The map (maps + ggplot2 )
ggplot() +
## First layer: worldwide map
geom_polygon(data = map_data("world"),
aes(x=long, y=lat, group = group),
color = '#9c9c9c', fill = '#f3f3f3') +
## Second layer: Country map
geom_polygon(data = map_data_py,
aes(x=long, y=lat, group = group),
color = 'red', fill = 'pink') +
coord_map() +
coord_fixed(1.3,
xlim = c(-65, -50),
ylim = c(-28, -18)) +
ggtitle("A map of Paraguay") +
theme(panel.background =element_rect(fill = 'blue'))
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.

Using tmap library
#https://geocompr.robinlovelace.net/adv-map.html
data(World)
#str(World)
#View(World)
# create two shapes, one with border, one with selection (life expectancy bigger then 80 years) and only text
#
tm_shape(World) + tm_borders() +
tm_shape(World) + tm_text("iso_a3")

tm_shape(World) +
tm_borders() +
tm_shape(World %>% filter(life_exp > 80)) +
tm_text("iso_a3")

data("World")
tm_shape(World) +
tm_polygons("HPI")

data(World, metro, rivers, land)
tmap_mode("plot")
## tmap mode set to plotting
## tmap mode set to plotting
tm_shape(land) +
tm_raster("elevation", palette = terrain.colors(10)) +
tm_shape(World) +
tm_borders("white", lwd = .5) +
tm_text("iso_a3", size = "AREA") +
tm_shape(metro) +
tm_symbols(col = "red", size = "pop2020", scale = .5) +
tm_legend(show = FALSE)
## old-style crs object detected; please recreate object with a recent sf::st_crs()
## old-style crs object detected; please recreate object with a recent sf::st_crs()
## old-style crs object detected; please recreate object with a recent sf::st_crs()

url <- "https://geodata.ucdavis.edu/gadm/gadm4.0/shp/gadm40_PRY_shp.zip"
download.file(url, "paraguay.zip")
unzip("paraguay.zip", exdir = "paraguay")
py <- st_read("paraguay/gadm40_PRY_2.shp")
## Reading layer `gadm40_PRY_2' from data source
## `/cloud/project/paraguay/gadm40_PRY_2.shp' using driver `ESRI Shapefile'
## Simple feature collection with 218 features and 12 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -62.64652 ymin: -27.60586 xmax: -54.25863 ymax: -19.29137
## Geodetic CRS: WGS 84
py <- st_read("paraguay/gadm40_PRY_2.shp")
## Reading layer `gadm40_PRY_2' from data source
## `/cloud/project/paraguay/gadm40_PRY_2.shp' using driver `ESRI Shapefile'
## Simple feature collection with 218 features and 12 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -62.64652 ymin: -27.60586 xmax: -54.25863 ymax: -19.29137
## Geodetic CRS: WGS 84
#añadir un valor aleatorio para la escala de calor en el mapa
py$refer <- rnorm(218,0,1)
#View(py)
map <- tm_shape(py) + tm_fill("NAME_1") + tm_borders()
print(map)

## tmap mode set to interactive viewing
tm_shape(py) +
tm_polygons(c("refer")) +
tm_facets(sync = TRUE, ncol = 2 )
## Variable(s) "refer" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.
An example of “Heat
Map” for the whole world, with two variables simultaneously
data("World")
tmap_mode("view")
## tmap mode set to interactive viewing
tm_shape(World) +
tm_polygons(c("HPI", "economy")) +
tm_facets(sync = TRUE, ncol = 2)