This example illustrates influence of linear dependency in data on correlation coefficients. Lets construct two well correlated vectors with random noise:
b <- 1:100+10*rnorm(100) a <- 1:100+10*rnorm(100)
summary(a)
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -10.19 25.86 48.44 49.67 70.71 110.80
summary(b)
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -12.36 25.23 51.47 51.05 77.44 123.00