suppressWarnings({library(tidyverse)
library(tmap)
library(ggplot2)
library(units)
library(sf)
library(dplyr)
library(leaflet)
library(tidycensus)
library(leafsync)
library(dbscan)
library(sfnetworks)
library(tigris)
library(tidygraph)
library(plotly)
library(osmdata)
library(here)})
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## udunits database from C:/Program Files/R/R-4.2.1/library/units/share/udunits/udunits2.xml
## 
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf_use_s2() is TRUE
## 
## To enable caching of data, set `options(tigris_use_cache = TRUE)`
## in your R script or .Rprofile.
## 
## 
## Attaching package: 'tidygraph'
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## 
## Attaching package: 'plotly'
## 
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## The following object is masked from 'package:graphics':
## 
##     layout
## 
## 
## Data (c) OpenStreetMap contributors, ODbL 1.0. https://www.openstreetmap.org/copyright
## 
## here() starts at C:/Users/lvillaquiran3/CP-8883/CP8883/FinalMaps
options(tigris_use_cache = TRUE)
March18delay<- read.csv("specificMarchDaysDelayData.csv")


data_stats <- readRDS("NJ_TRACTS_FINAL.rds")


data_stats2 <- data_stats %>% mutate(pct_black = race.black*100/ population) %>% 
               mutate(pct_white = race.white*100/ population) %>% 
               replace(., is.na(.), 0) 


head(data_stats2)
## Simple feature collection with 6 features and 13 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: -74.49146 ymin: 40.41582 xmax: -74.17981 ymax: 40.7721
## Geodetic CRS:  NAD83
##         GEOID hhincome population race.tot race.white race.black poverty.ratio
## 1 34023004700    67481       4202     4202       2815        566           167
## 2 34023006103    71106       5115     5115       2877        762            84
## 3 34023006500   119833       7116     7116       4701        196           252
## 4 34013000500    31761       1847     1847        663        223           250
## 5 34013002500    35208       3906     3906         64       3594           770
## 6 34013004300    26222       2624     2624         15       2548           379
##   unemployed disability.status.emp no.vehic real.est.taxes
## 1         55                    89      187           7000
## 2        222                   105       67           7146
## 3        273                   178        0          10001
## 4         71                    34      215           6207
## 5        243                    40       83           6542
## 6        197                    87      300           5168
##                         geometry pct_black  pct_white
## 1 MULTIPOLYGON (((-74.29005 4... 13.469776 66.9919086
## 2 MULTIPOLYGON (((-74.49146 4... 14.897361 56.2463343
## 3 MULTIPOLYGON (((-74.42388 4...  2.754356 66.0623946
## 4 MULTIPOLYGON (((-74.18703 4... 12.073633 35.8960476
## 5 MULTIPOLYGON (((-74.22563 4... 92.012289  1.6385049
## 6 MULTIPOLYGON (((-74.22347 4... 97.103659  0.5716463
tmap_mode("view")
## tmap mode set to interactive viewing
poverty <- tm_shape(data_stats2) +
  tm_polygons("poverty.ratio",alpha=0.5, palette="Reds") 

poverty
tmap_mode("view")
## tmap mode set to interactive viewing
NJ_2018_MAPS <- tm_shape(data_stats2) +
  tm_polygons(col = c("pct_black", "disability.status.emp"), alpha = 0.5, palette= "Reds") 
  

NJ_2018_MAPS

```