Demographics
Age
#"How old are you?"
## Age Range, Descriptives, and Standard Deviation
range(PP$Dem_Age, na.rm = T)
## [1] 13 83
describe(PP$Dem_Age, na.rm = T)
## PP$Dem_Age
## n missing distinct Info Mean Gmd .05 .10
## 987 18 66 1 42.08 17.25 21 23
## .25 .50 .75 .90 .95
## 30 40 53 65 70
##
## lowest : 13 18 19 20 21, highest: 78 79 81 82 83
sd(PP$Dem_Age, na.rm = T)
## [1] 15.1872
## Histogram
hist(PP$Dem_Age)

Ethnicity
## Ethnicity: Which racial or ethnic group best describes you? (1 = Asian, Asian-American, 2 = Black, Black American, 3 = Hispanic/Latino-American, 4 = Native American, 5 = Native Pacific Islander, 6 = White/Caucasian-American, 7 = Other)
table(PP$Dem_Ethnicity)
##
## 1 2 3 4 5 6 7
## 44 178 66 11 5 680 19
PP$Ethnicity <- NA
PP$Ethnicity[PP$Dem_Ethnicity == 1] <- 'Asian'
PP$Ethnicity[PP$Dem_Ethnicity == 2] <- 'Black'
PP$Ethnicity[PP$Dem_Ethnicity == 3] <- 'Hispanic'
PP$Ethnicity[PP$Dem_Ethnicity == 4] <- 'Nat Amer'
PP$Ethnicity[PP$Dem_Ethnicity == 5] <- 'Nat Pac'
PP$Ethnicity[PP$Dem_Ethnicity == 6] <- 'White'
PP$Ethnicity[PP$Dem_Ethnicity == 7] <- 'Other'
describe(PP$Dem_Ethnicity)
## PP$Dem_Ethnicity
## n missing distinct Info Mean Gmd
## 1003 2 7 0.682 4.865 1.718
##
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##
## Value 1 2 3 4 5 6 7
## Frequency 44 178 66 11 5 680 19
## Proportion 0.044 0.177 0.066 0.011 0.005 0.678 0.019
histogram(PP$Dem_Ethnicity)

Education
# Education: Please indicate the highest level of education you have completed (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.).
PP$EdNum <- as.numeric(as.character(PP$Dem_Edu))
PP$EDU <- factor(PP$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Doctoral Degree (PhD)", "Other"))
table(PP$EDU)
##
## Elementary/Grammar School Middle School
## 3 13
## High School or Equivalent Vocational/Technical School (2 years)
## 310 82
## Some College College or University (4 years)
## 296 191
## Master's Degree (MS, MA, MBA, etc.) Doctoral Degree (PhD)
## 80 23
## Other
## 5
## Histogram
hist(PP$EdNum)

Income
# Please indicate your current household income in U.S. dollars. (Prefer Not to Say"; "Under $10,000"; "$10,000 - $19,999"; "$20,000 - $29,999"; "$30,000 - $39,999"; "$40,000 - $49,999"; "$50,000 - $74,999"; "$75,000 - $99,999"; "$100,000 - $149,999"; "$150,000 or More)
PP$SESNum <- as.numeric(as.character(PP$Dem_SES))
PP$SES <- factor(PP$SESNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
labels = c("Prefer Not to Say", "Under $10,000", "$10,000 - $19,999", "$20,000 - $29,999", "$30,000 - $39,999", "$40,000 - $49,999", "$50,000 - $74,999", "$75,000 - $99,999", "$100,000 - $149,999", "$150,000 or More"))
table(PP$SES)
##
## Prefer Not to Say Under $10,000 $10,000 - $19,999 $20,000 - $29,999
## 67 115 112 132
## $30,000 - $39,999 $40,000 - $49,999 $50,000 - $74,999 $75,000 - $99,999
## 135 101 156 83
## $100,000 - $149,999 $150,000 or More
## 65 37
## Histogram
hist(PP$SESNum)

Living Environment
# Type of Community/Living Environment: Which of the following best describes the area you live in? (1 = Urban, 2 = Suburban, 3 = Rural)
PP$LivNum <- as.numeric(as.character(PP$Dem_Living))
PP$LIVING <- factor(PP$LivNum, levels = c(1, 2, 3),
labels = c("Urban", "Suburban", "Rural"))
table(PP$LIVING)
##
## Urban Suburban Rural
## 316 425 262
## Histogram
hist(PP$LivNum)

Political Identity
# Political Identity: Which of the following describes your political orientation? (1 = Strongly Conservative, 2 = Moderately Conservative, 3 = Slightly Conservative, 4 = Neither Conservative Nor Liberal, 5 = Slightly Liberal, 6 = Moderately Liberal, 7 = Strongly Liberal)
PP$polOR <- factor(PP$PI_Orientation, levels = c(1, 2, 3, 4, 5, 6, 7),
labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(PP$polOR)
##
## Strongly Conservative Moderately Conservative
## 126 171
## Slightly Conservative Neither Conservative Nor Liberal
## 124 301
## Slightly Liberal Moderately Liberal
## 93 93
## Strongly Liberal
## 94
# Political Orientation: Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)
PP$Orientation = as.numeric(recode_factor(PP$PI_Orientation,'1'= "3",'2'= "2",'3'= "1",
'4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(PP$Orientation)
## PP$Orientation
## n missing distinct Info Mean Gmd
## 1002 3 7 0.962 3.718 2.003
##
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##
## Value 1 2 3 4 5 6 7
## Frequency 126 171 124 301 93 93 94
## Proportion 0.126 0.171 0.124 0.300 0.093 0.093 0.094
hist(PP$Orientation , main = 'Political Orientation (Liberal to Conservative)')

# Political Party
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)
describe(PP$Party)
##
## NULL
PP$Party <- PP$Party
PP$DemStrength <- PP$DStrength
PP$RepStrength <- PP$RStrength
PP$PartyClose <- PP$Closerto
# Recode Party
PP$PartyFull <- NA
PP$PartyFull[PP$DemStrength == 1] <- -3
PP$PartyFull[PP$DemStrength == 2] <- -2
PP$PartyFull[PP$PartyClose == 1] <- -1
PP$PartyFull[PP$PartyClose == 3] <- 0
PP$PartyFull[PP$PartyClose == 2] <- 1
PP$PartyFull[PP$RepStrength == 2] <- 2
PP$PartyFull[PP$RepStrength == 1] <- 3
describe(PP$PartyFull)
## PP$PartyFull
## n missing distinct Info Mean Gmd
## 996 9 7 0.967 -0.1797 2.495
##
## lowest : -3 -2 -1 0 1, highest: -1 0 1 2 3
##
## Value -3 -2 -1 0 1 2 3
## Frequency 227 136 66 212 65 95 195
## Proportion 0.228 0.137 0.066 0.213 0.065 0.095 0.196
hist(PP$PartyFull , main = 'Party Identification')

#New Variable: Ideology
PP$Ideology <- rowMeans(PP[, c('PartyFull', 'Orientation')], na.rm=T)
describe(PP$Ideology)
## PP$Ideology
## n missing distinct Info Mean Gmd .05 .10
## 1003 2 14 0.949 1.785 1.155 -0.5 0.5
## .25 .50 .75 .90 .95
## 1.5 2.0 2.5 3.0 3.5
##
## lowest : -1.0 -0.5 0.0 0.5 1.0, highest: 3.5 4.0 4.5 5.0 6.0
##
## Value -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
## Frequency 25 27 35 80 79 142 357 126 52 49 14
## Proportion 0.025 0.027 0.035 0.080 0.079 0.142 0.356 0.126 0.052 0.049 0.014
##
## Value 4.5 5.0 6.0
## Frequency 6 9 2
## Proportion 0.006 0.009 0.002
hist(PP$Ideology)

Sex
# Frequencies: Sex (1 = female, 2 = male, 3 = other)
PP$Dem_Sex <- factor(PP$Dem_Gen, levels = c(1, 2, 3),
labels = c("Female", "Male", "Other"))
table(PP$Dem_Sex)
##
## Female Male Other
## 614 384 5
PP$Dem_Sex <- as.numeric(as.character(PP$Dem_Gen))
describe(PP$Dem_Sex)
## PP$Dem_Sex
## n missing distinct Info Mean Gmd
## 1003 2 3 0.714 1.393 0.4852
##
## Value 1 2 3
## Frequency 614 384 5
## Proportion 0.612 0.383 0.005
## Histogram
hist(PP$Dem_Sex)

#Correlation political ideology and sex
PP$idsex <- data.frame(PP$Dem_Sex,PP$Ideology)
cor(PP$idsex, use= "complete.obs")
## PP.Dem_Sex PP.Ideology
## PP.Dem_Sex 1.00000000 -0.02515045
## PP.Ideology -0.02515045 1.00000000
Scales
Animal Welfare
# Animal Welfare: How much do you agree or disagree with the following statements?
## Item 1: It is important to me that my food is produced in a way that animals have not experienced pain.
## Item 2: It is important to me that my food is produced in a way that animals' rights have been respected.
#Descriptives
describe(PP$AW_1)
## PP$AW_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 99 0.99 69.77 30.34 16 28
## .25 .50 .75 .90 .95
## 52 75 96 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$AW_1, na.rm=TRUE)
## [1] 0 100
describe(PP$AW_2)
## PP$AW_2
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 95 0.991 71.28 28.84 19.9 34.0
## .25 .50 .75 .90 .95
## 53.0 75.0 95.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$AW_2, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$AW_1, main = 'Produced without animal pain')

hist(PP$AW_2, main = 'Produced with animal rights respected')

#Correlation
PP$AW_Score <- rowMeans(PP [, c("AW_1", "AW_2")], na.rm=TRUE)
describe(PP$AW_Score)
## PP$AW_Score
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 172 0.995 70.53 27.43 25.0 39.5
## .25 .50 .75 .90 .95
## 52.0 73.5 92.5 100.0 100.0
##
## lowest : 0.0 1.0 2.0 2.5 3.0, highest: 98.0 98.5 99.0 99.5 100.0
PP$AW_Scale <- data.frame(PP$AW_1, PP$AW_2)
describe(PP$AW_Scale)
## PP$AW_Scale
##
## 2 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.AW_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 99 0.99 69.77 30.34 16 28
## .25 .50 .75 .90 .95
## 52 75 96 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.AW_2
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 95 0.991 71.28 28.84 19.9 34.0
## .25 .50 .75 .90 .95
## 53.0 75.0 95.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
cor(PP$AW_Scale, use= "complete.obs")
## PP.AW_1 PP.AW_2
## PP.AW_1 1.0000000 0.6929324
## PP.AW_2 0.6929324 1.0000000
Aversion to Tampering with Nature
# Aversion to Tampering with Nature: How much do you agree or disagree with the following statements?
## Item 1: People who push for technological fixes to environmental problems are underestimating the risks.
## Item 2: People who say we shouldn’t tamper with nature are just being naïve.
## Item 3: Human beings have no right to meddle with the natural environment.
## Item 4: I would prefer to live in a world where humans leave nature alone.
## Item 5: Altering nature will be our downfall as a species.
# Item Definitions
PP$ATNS_1 <- as.numeric(as.character(PP$ATNS_36))
PP$ATNS_2 <- as.numeric(as.character(PP$ATNS_37))
PP$ATNS_3 <- as.numeric(as.character(PP$ATNS_38))
PP$ATNS_4 <- as.numeric(as.character(PP$ATNS_39))
PP$ATNS_5 <- as.numeric(as.character(PP$ATNS_40))
# Reverse Code Item 2
PP$ATNS_2R <- (100- PP$ATNS_2)
describe(PP$ATNS_2R)
## PP$ATNS_2R
## n missing distinct Info Mean Gmd .05 .10
## 999 6 101 0.999 48.8 35.98 0 8
## .25 .50 .75 .90 .95
## 24 47 75 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
# Descriptives
describe(PP$ATNS_1)
## PP$ATNS_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 98 0.998 63.65 29.45 15 26
## .25 .50 .75 .90 .95
## 50 66 83 100 100
##
## lowest : 0 1 3 5 7, highest: 96 97 98 99 100
range(PP$ATNS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_2)
## PP$ATNS_2
## n missing distinct Info Mean Gmd .05 .10
## 999 6 101 0.999 51.2 35.98 0 1
## .25 .50 .75 .90 .95
## 25 53 76 92 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$ATNS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_3)
## PP$ATNS_3
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 101 0.998 63.75 30.8 11.95 25.00
## .25 .50 .75 .90 .95
## 46.00 68.00 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$ATNS_3, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_4)
## PP$ATNS_4
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 98 0.995 67.9 29.41 17 30
## .25 .50 .75 .90 .95
## 52 72 88 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$ATNS_4, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_5)
## PP$ATNS_5
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 97 0.996 68.31 29.34 17 30
## .25 .50 .75 .90 .95
## 52 73 90 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$ATNS_5, na.rm=TRUE)
## [1] 0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(PP$ATNS_1, main = '#1: Underestimating risks')

hist(PP$ATNS_2R, main = '#2(R): Shouldn’t tamper = naïve')

hist(PP$ATNS_3, main = '#3: No right to meddle')

hist(PP$ATNS_4, main = '#4: Leave nature alone')

hist(PP$ATNS_5, main = '#5: Altering nature = species downfall')

#Cronbach's Alpha (Item 2 reverse coded)
PP$ATNS_Scale <- data.frame(PP$ATNS_1, PP$ATNS_2R, PP$ATNS_3, PP$ATNS_4, PP$ATNS_5)
PP$ATNS_Score <- rowMeans(PP [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(PP$ATNS_Scale)
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(PP$ATNS_Scale): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.ATNS_2R ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = PP$ATNS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.62 0.65 0.65 0.27 1.8 0.019 62 17 0.39
##
## lower alpha upper 95% confidence boundaries
## 0.58 0.62 0.66
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.ATNS_1 0.56 0.59 0.58 0.26 1.4 0.023 0.0722 0.25
## PP.ATNS_2R 0.77 0.77 0.72 0.46 3.3 0.012 0.0039 0.45
## PP.ATNS_3 0.47 0.50 0.50 0.20 1.0 0.028 0.0625 0.19
## PP.ATNS_4 0.49 0.52 0.53 0.22 1.1 0.027 0.0736 0.22
## PP.ATNS_5 0.48 0.51 0.52 0.21 1.0 0.027 0.0670 0.19
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.ATNS_1 1001 0.64 0.66 0.530 0.400 64 26
## PP.ATNS_2R 999 0.34 0.29 -0.014 -0.017 49 31
## PP.ATNS_3 1000 0.76 0.77 0.722 0.568 64 27
## PP.ATNS_4 1000 0.73 0.74 0.662 0.526 68 26
## PP.ATNS_5 1002 0.74 0.76 0.695 0.551 68 26
describe(PP$ATNS_Scale)
## PP$ATNS_Scale
##
## 5 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.ATNS_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 98 0.998 63.65 29.45 15 26
## .25 .50 .75 .90 .95
## 50 66 83 100 100
##
## lowest : 0 1 3 5 7, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_2R
## n missing distinct Info Mean Gmd .05 .10
## 999 6 101 0.999 48.8 35.98 0 8
## .25 .50 .75 .90 .95
## 24 47 75 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_3
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 101 0.998 63.75 30.8 11.95 25.00
## .25 .50 .75 .90 .95
## 46.00 68.00 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_4
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 98 0.995 67.9 29.41 17 30
## .25 .50 .75 .90 .95
## 52 72 88 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_5
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 97 0.996 68.31 29.34 17 30
## .25 .50 .75 .90 .95
## 52 73 90 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
Benefit
# Benefit perception was measured with 3 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Benefit score calculated by averaging these items.
### Item 1: This is beneficial to my health.
### Item 2: This is beneficial to society.
### Item 3: This is beneficial to the environment.
Grain-fed Feedlot Burger (GFFB)
#GFFB
PP$Benefit_1_GFFB <- PP$GFFB_Benefit_18
describe(PP$Benefit_1_GFFB)
## PP$Benefit_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 95 0.998 56.94 33.7 0 15
## .25 .50 .75 .90 .95
## 36 59 80 100 100
##
## lowest : 0 1 2 3 5, highest: 95 97 98 99 100
range(PP$Benefit_1_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_GFFB, main = 'GFFB - This is beneficial to my health.')

PP$Benefit_2_GFFB <- PP$GFFB_Benefit_40
describe(PP$Benefit_2_GFFB)
## PP$Benefit_2_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 97 0.999 56.99 33.41 0 12
## .25 .50 .75 .90 .95
## 37 60 80 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_2_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_GFFB, main = 'GFFB - This is beneficial to society.')

PP$Benefit_3_GFFB <- PP$GFFB_Benefit_41
describe(PP$Benefit_3_GFFB)
## PP$Benefit_3_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 495 510 101 0.999 54.58 33.36 0.0 11.4
## .25 .50 .75 .90 .95
## 33.0 55.0 76.5 96.6 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_3_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_GFFB, main = 'GFFB - This is beneficial to the environment.')

#GFFB Benefit Scale
PP$Ben_Score_GFFB <- rowMeans(PP [, c("Benefit_1_GFFB", "Benefit_2_GFFB", "Benefit_3_GFFB")], na.rm=TRUE)
describe(PP$Ben_Score_GFFB)
## PP$Ben_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 219 0.999 56.2 30.81 2.267 17.533
## .25 .50 .75 .90 .95
## 39.667 56.000 76.667 95.800 100.000
##
## lowest : 0.0000000 0.6666667 1.0000000 1.6666667 2.0000000
## highest: 98.3333333 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_GFFB, na.rm = TRUE)
## [1] 27.07308
PP$Ben_Scale_GFFB <- data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB)
#GFFB Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB,
## PP$Benefit_3_GFFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.88 0.78 11 0.0046 56 27 0.78
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.92 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_GFFB 0.89 0.89 0.79 0.79 7.7 0.0072 NA
## PP.Benefit_2_GFFB 0.87 0.87 0.78 0.78 7.0 0.0079 NA
## PP.Benefit_3_GFFB 0.88 0.88 0.78 0.78 7.1 0.0078 NA
## med.r
## PP.Benefit_1_GFFB 0.79
## PP.Benefit_2_GFFB 0.78
## PP.Benefit_3_GFFB 0.78
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_GFFB 497 0.92 0.92 0.86 0.82 57 29
## PP.Benefit_2_GFFB 497 0.93 0.93 0.87 0.83 57 29
## PP.Benefit_3_GFFB 495 0.93 0.93 0.87 0.83 55 29
hist(PP$Ben_Score_GFFB, main = 'GFFB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_GFFB, labels = c('1','2', '3'), main = "Correlation Between GFFB Benefit Items")

Grain-fed Pasture Raised Burger (GFPRB)
#GFPRB
PP$Benefit_1_GFPRB <- PP$GFPRB_Benefit_18
describe(PP$Benefit_1_GFPRB)
## PP$Benefit_1_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 89 0.996 68.8 29.34 19 31
## .25 .50 .75 .90 .95
## 52 72 91 100 100
##
## lowest : 0 1 4 7 10, highest: 96 97 98 99 100
range(PP$Benefit_1_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_GFPRB, main = 'GFPRB - This is beneficial to my health.')

PP$Benefit_2_GFPRB <- PP$GFPRB_Benefit_40
describe(PP$Benefit_2_GFPRB)
## PP$Benefit_2_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 88 0.995 68.27 28.95 22.0 31.0
## .25 .50 .75 .90 .95
## 52.0 71.5 90.0 100.0 100.0
##
## lowest : 0 2 3 5 7, highest: 96 97 98 99 100
range(PP$Benefit_2_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_GFPRB, main = 'GFPRB - This is beneficial to society.')

PP$Benefit_3_GFPRB <- PP$GFPRB_Benefit_41
describe(PP$Benefit_3_GFPRB)
## PP$Benefit_3_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 94 0.996 64.86 31.85 13.6 24.0
## .25 .50 .75 .90 .95
## 49.0 68.0 89.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_3_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_GFPRB, main = 'GFPRB - This is beneficial to the environment.')

#GFPRB Benefit Scale
PP$Ben_Score_GFPRB <- rowMeans(PP [, c("Benefit_1_GFPRB", "Benefit_2_GFPRB", "Benefit_3_GFPRB")], na.rm=TRUE)
describe(PP$Ben_Score_GFPRB)
## PP$Ben_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 193 0.998 67.33 27.03 25.87 33.43
## .25 .50 .75 .90 .95
## 52.42 67.00 87.25 100.00 100.00
##
## lowest : 0.0000000 0.3333333 1.3333333 2.3333333 4.0000000
## highest: 98.6666667 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_GFPRB, na.rm = TRUE)
## [1] 24.01472
PP$Ben_Scale_GFPRB <- data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB)
#GFPRB Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB,
## PP$Benefit_3_GFPRB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.88 0.88 0.83 0.71 7.5 0.0065 67 24 0.71
##
## lower alpha upper 95% confidence boundaries
## 0.87 0.88 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_GFPRB 0.83 0.83 0.71 0.71 4.9 0.0108 NA
## PP.Benefit_2_GFPRB 0.82 0.82 0.69 0.69 4.5 0.0115 NA
## PP.Benefit_3_GFPRB 0.85 0.85 0.74 0.74 5.7 0.0095 NA
## med.r
## PP.Benefit_1_GFPRB 0.71
## PP.Benefit_2_GFPRB 0.69
## PP.Benefit_3_GFPRB 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_GFPRB 514 0.9 0.90 0.83 0.77 69 26
## PP.Benefit_2_GFPRB 514 0.9 0.91 0.84 0.79 68 26
## PP.Benefit_3_GFPRB 513 0.9 0.89 0.80 0.75 65 28
hist(PP$Ben_Score_GFPRB, main = 'GFPRB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_GFPRB, labels = c('1','2', '3'), main = "Correlation Between GFPRB Benefit Items")

Cultured beef burgers (CBB)
#CBB
PP$Benefit_1_CBB <- PP$CBB_Benefit_18
describe(PP$Benefit_1_CBB)
## PP$Benefit_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 99 0.998 48.75 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 24.25 51.00 75.00 95.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_1_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_CBB, main = 'CBB - This is beneficial to my health.')

PP$Benefit_2_CBB <- PP$CBB_Benefit_40
describe(PP$Benefit_2_CBB)
## PP$Benefit_2_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 97 0.999 53.39 34.83 0.0 4.0
## .25 .50 .75 .90 .95
## 32.0 54.0 78.5 95.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_2_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_CBB, main = 'CBB - This is beneficial to society.')

PP$Benefit_3_CBB <- PP$CBB_Benefit_41
describe(PP$Benefit_3_CBB)
## PP$Benefit_3_CBB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 97 0.998 55.54 35.25 0.0 4.2
## .25 .50 .75 .90 .95
## 34.0 59.0 80.0 98.8 100.0
##
## lowest : 0 2 3 4 5, highest: 96 97 98 99 100
range(PP$Benefit_3_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_CBB, main = 'CBB - This is beneficial to the environment.')

#Benefit Scale
PP$Ben_Score_CBB <- rowMeans(PP [, c("Benefit_1_CBB", "Benefit_2_CBB", "Benefit_3_CBB")], na.rm=TRUE)
describe(PP$Ben_Score_CBB)
## PP$Ben_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 228 1 52.55 32.46 0.00 8.10
## .25 .50 .75 .90 .95
## 34.00 53.17 73.67 91.70 99.78
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
## highest: 98.3333333 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_CBB, na.rm = TRUE)
## [1] 28.37883
PP$Ben_Scale_CBB <- data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB,
## PP$Benefit_3_CBB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.87 0.77 9.9 0.005 53 28 0.76
##
## lower alpha upper 95% confidence boundaries
## 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Benefit_1_CBB 0.89 0.89 0.80 0.80 8.0 0.0070 NA 0.80
## PP.Benefit_2_CBB 0.86 0.86 0.75 0.75 6.0 0.0091 NA 0.75
## PP.Benefit_3_CBB 0.86 0.86 0.76 0.76 6.2 0.0088 NA 0.76
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_CBB 514 0.91 0.91 0.83 0.79 49 32
## PP.Benefit_2_CBB 514 0.92 0.93 0.87 0.83 53 30
## PP.Benefit_3_CBB 513 0.92 0.92 0.87 0.83 56 31
hist(PP$Ben_Score_CBB, main = 'CBB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_CBB, labels = c('1','2', '3'), main = "Correlation Between CBB Benefit Items")

Plant-based Protein Burger (PBPB)
#PBPB
PP$Benefit_1_PBPB <- PP$PBPB_Benefit_18
describe(PP$Benefit_1_PBPB)
## PP$Benefit_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 93 0.998 61.32 32.7 0 18
## .25 .50 .75 .90 .95
## 42 66 84 100 100
##
## lowest : 0 1 3 4 6, highest: 96 97 98 99 100
range(PP$Benefit_1_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_PBPB, main = 'PBPB - This is beneficial to my health.')

PP$Benefit_2_PBPB <- PP$PBPB_Benefit_40
describe(PP$Benefit_2_PBPB)
## PP$Benefit_2_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 97 0.998 60.76 32.99 0.00 17.90
## .25 .50 .75 .90 .95
## 40.75 66.00 83.25 100.00 100.00
##
## lowest : 0 1 3 4 6, highest: 96 97 98 99 100
range(PP$Benefit_2_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_PBPB, main = 'PBPB - This is beneficial to society.')

PP$Benefit_3_PBPB <- PP$PBPB_Benefit_41
describe(PP$Benefit_3_PBPB)
## PP$Benefit_3_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 92 0.998 62.35 31.35 0 23
## .25 .50 .75 .90 .95
## 46 67 83 100 100
##
## lowest : 0 2 3 6 8, highest: 96 97 98 99 100
range(PP$Benefit_3_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_PBPB, main = 'PBPB - This is beneficial to the environment.')

#Benefit Scale
PP$Ben_Score_PBPB <- rowMeans(PP [, c("Benefit_1_PBPB", "Benefit_2_PBPB", "Benefit_3_PBPB")], na.rm=TRUE)
describe(PP$Ben_Score_PBPB)
## PP$Ben_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 521 484 207 1 61.46 29.49 7.667 24.333
## .25 .50 .75 .90 .95
## 47.333 62.667 81.333 96.333 100.000
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 3.3333333
## highest: 97.3333333 98.6666667 99.0000000 99.3333333 100.0000000
sd(PP$Ben_Score_PBPB, na.rm = TRUE)
## [1] 26.1661
PP$Ben_Scale_PBPB <- data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB,
## PP$Benefit_3_PBPB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.86 0.76 9.3 0.0053 61 26 0.76
##
## lower alpha upper 95% confidence boundaries
## 0.89 0.9 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_PBPB 0.87 0.87 0.76 0.76 6.5 0.0085 NA
## PP.Benefit_2_PBPB 0.84 0.84 0.73 0.73 5.4 0.0098 NA
## PP.Benefit_3_PBPB 0.87 0.87 0.78 0.78 6.9 0.0080 NA
## med.r
## PP.Benefit_1_PBPB 0.76
## PP.Benefit_2_PBPB 0.73
## PP.Benefit_3_PBPB 0.78
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_PBPB 520 0.91 0.91 0.84 0.80 61 29
## PP.Benefit_2_PBPB 520 0.93 0.92 0.87 0.83 61 29
## PP.Benefit_3_PBPB 520 0.91 0.91 0.83 0.79 62 28
hist(PP$Ben_Score_PBPB, main = 'PBPB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_PBPB, labels = c('1','2', '3'), main = "Correlation Between PBPB Benefit Items")

Plant-based Fermentation Burger (PBFB)
#PBFB
PP$Benefit_1_PBFB <- PP$PBFB_Benefit_18
describe(PP$Benefit_1_PBFB)
## PP$Benefit_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 97 0.998 55.03 36.29 0 0
## .25 .50 .75 .90 .95
## 33 57 81 97 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_1_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_PBFB, main = 'PBFB - This is beneficial to my health.')

PP$Benefit_2_PBFB <- PP$PBFB_Benefit_40
describe(PP$Benefit_2_PBFB)
## PP$Benefit_2_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 97 0.998 57.11 34.94 0.0 2.8
## .25 .50 .75 .90 .95
## 36.0 61.0 82.0 97.0 100.0
##
## lowest : 0 1 2 3 5, highest: 95 96 97 99 100
range(PP$Benefit_2_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_PBFB, main = 'PBFB - This is beneficial to society.')

PP$Benefit_3_PBFB <- PP$PBFB_Benefit_41
describe(PP$Benefit_3_PBFB)
## PP$Benefit_3_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 93 0.998 59.31 33.82 0.0 4.8
## .25 .50 .75 .90 .95
## 39.0 64.0 82.5 99.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_3_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_PBFB, main = 'PBFB - This is beneficial to the environment.')

#Benefit Scale
PP$Ben_Score_PBFB <- rowMeans(PP [, c("Benefit_1_PBFB", "Benefit_2_PBFB", "Benefit_3_PBFB")], na.rm=TRUE)
describe(PP$Ben_Score_PBFB)
## PP$Ben_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 202 1 57.15 32.14 0.00 8.60
## .25 .50 .75 .90 .95
## 39.67 57.33 80.67 95.00 100.00
##
## lowest : 0.0000000 0.3333333 0.6666667 1.3333333 1.6666667
## highest: 98.0000000 98.3333333 99.0000000 99.6666667 100.0000000
sd(PP$Ben_Score_PBFB, na.rm = TRUE)
## [1] 28.36827
PP$Ben_Scale_PBFB <- data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB,
## PP$Benefit_3_PBFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.87 0.78 10 0.0048 57 28 0.76
##
## lower alpha upper 95% confidence boundaries
## 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_PBFB 0.86 0.86 0.76 0.76 6.3 0.0086 NA
## PP.Benefit_2_PBFB 0.86 0.86 0.76 0.76 6.3 0.0086 NA
## PP.Benefit_3_PBFB 0.89 0.89 0.80 0.80 8.2 0.0068 NA
## med.r
## PP.Benefit_1_PBFB 0.76
## PP.Benefit_2_PBFB 0.76
## PP.Benefit_3_PBFB 0.80
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_PBFB 479 0.93 0.93 0.88 0.83 55 32
## PP.Benefit_2_PBFB 479 0.93 0.93 0.88 0.83 57 31
## PP.Benefit_3_PBFB 479 0.91 0.91 0.84 0.80 59 30
hist(PP$Ben_Score_PBFB, main = 'PBFB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_PBFB, labels = c('1','2', '3'), main = "Correlation Between PBFB Benefit Items")

Veggie Burger (VB)
#VB
PP$Benefit_1_VB <- PP$VB_Benefit_18
describe(PP$Benefit_1_VB)
## PP$Benefit_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 89 0.995 67.68 30.84 15.5 27.0
## .25 .50 .75 .90 .95
## 52.0 71.0 91.0 100.0 100.0
##
## lowest : 0 4 5 6 9, highest: 96 97 98 99 100
range(PP$Benefit_1_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_VB, main = 'VB - This is beneficial to my health.')

PP$Benefit_2_VB <- PP$VB_Benefit_40
describe(PP$Benefit_2_VB)
## PP$Benefit_2_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 87 0.995 67.49 30.23 18.00 28.90
## .25 .50 .75 .90 .95
## 51.00 73.00 88.75 100.00 100.00
##
## lowest : 0 3 4 5 13, highest: 96 97 98 99 100
range(PP$Benefit_2_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_VB, main = 'VB - This is beneficial to society.')

PP$Benefit_3_VB <- PP$VB_Benefit_41
describe(PP$Benefit_3_VB)
## PP$Benefit_3_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 90 0.995 68.14 29.79 17.45 31.80
## .25 .50 .75 .90 .95
## 52.00 72.00 90.00 100.00 100.00
##
## lowest : 0 3 4 5 12, highest: 96 97 98 99 100
range(PP$Benefit_3_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_VB, main = 'VB - This is beneficial to the environment.')

#VB Benefit Scale
PP$Ben_Score_VB <- rowMeans(PP [, c("Benefit_1_VB", "Benefit_2_VB", "Benefit_3_VB")], na.rm=TRUE)
describe(PP$Ben_Score_VB)
## PP$Ben_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 189 0.999 67.74 27.66 23.83 35.33
## .25 .50 .75 .90 .95
## 52.00 70.00 87.00 100.00 100.00
##
## lowest : 0.000000 2.666667 11.000000 13.666667 19.000000
## highest: 98.333333 98.666667 99.333333 99.666667 100.000000
sd(PP$Ben_Score_VB, na.rm = TRUE)
## [1] 24.60428
PP$Ben_Scale_VB <- data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB,
## PP$Benefit_3_VB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.85 0.74 8.5 0.0058 68 25 0.74
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.89 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Benefit_1_VB 0.85 0.85 0.75 0.75 5.9 0.0092 NA 0.75
## PP.Benefit_2_VB 0.84 0.84 0.73 0.73 5.4 0.0098 NA 0.73
## PP.Benefit_3_VB 0.85 0.85 0.74 0.74 5.7 0.0095 NA 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_VB 471 0.91 0.91 0.83 0.79 68 28
## PP.Benefit_2_VB 470 0.91 0.91 0.84 0.80 67 27
## PP.Benefit_3_VB 470 0.91 0.91 0.84 0.79 68 27
hist(PP$Ben_Score_VB, main = 'VB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_VB, labels = c('1','2', '3'), main = "Correlation Between VB Benefit Items")

Climate Change Belief
# Climate Change Belief: How much do you agree or disagree with the following statements?
## Item #1: Climate change is happening.
## Item #2: Climate change poses a risk to human health, safety, and prosperity.
## Item #3: Human activity is largely responsible for recent climate change.
## Item #4: Reducing greenhouse gas emissions will reduce global warming and climate change.
## Item Definitions
PP$CCBelief_1 <- as.numeric(as.character(PP$CCB_48))
PP$CCBelief_2 <- as.numeric(as.character(PP$CCB_49))
PP$CCBelief_3 <- as.numeric(as.character(PP$CCB_50))
PP$CCBelief_4 <- as.numeric(as.character(PP$CCB_51))
#Climate Change Belief Descriptives
describe(PP$CCBelief_1)
## PP$CCBelief_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 94 0.98 75.62 27.18 22 38
## .25 .50 .75 .90 .95
## 63 82 100 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CCBelief_1, na.rm=TRUE)
## [1] 0 100
describe(PP$CCBelief_2)
## PP$CCBelief_2
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 94 0.985 72.26 29.56 20 33
## .25 .50 .75 .90 .95
## 55 78 99 100 100
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$CCBelief_2, na.rm=TRUE)
## [1] 0 100
describe(PP$CCBelief_3)
## PP$CCBelief_3
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 94 0.986 73 28.95 18 34
## .25 .50 .75 .90 .95
## 58 78 98 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$CCBelief_3, na.rm=TRUE)
## [1] 0 100
describe(PP$CCBelief_4)
## PP$CCBelief_4
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 97 0.994 69.18 29.37 19 32
## .25 .50 .75 .90 .95
## 52 73 93 100 100
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$CCBelief_4, na.rm=TRUE)
## [1] 0 100
#Climate Change Belief Histograms
hist(PP$CCBelief_1, main = '#1: Climate change is happening.')

hist(PP$CCBelief_2, main = '#2: Risk to human health, safety, and prosperity.')

hist(PP$CCBelief_3, main = '#3:Human activity is responsible')

hist(PP$CCBelief_4, main = '#4: Reduce greenhouse gas emissions')

PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
describe(PP$CCBelief_Score)
## PP$CCBelief_Score
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 275 0.997 72.51 25.73 31.75 44.75
## .25 .50 .75 .90 .95
## 56.00 75.25 93.25 100.00 100.00
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
#Cronbach's Alpha
PP$CCB_Scale <- data.frame(PP$CCB_48, PP$CCB_49, PP$CCB_50, PP$CCB_51)
psych::alpha(PP$CCB_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CCB_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.88 0.71 9.8 0.0048 73 23 0.7
##
## lower alpha upper 95% confidence boundaries
## 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CCB_48 0.87 0.87 0.82 0.69 6.5 0.0072 0.0011 0.70
## PP.CCB_49 0.87 0.87 0.82 0.69 6.7 0.0072 0.0035 0.66
## PP.CCB_50 0.88 0.88 0.84 0.71 7.5 0.0065 0.0037 0.70
## PP.CCB_51 0.90 0.90 0.86 0.75 9.0 0.0055 0.0013 0.76
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CCB_48 1001 0.90 0.91 0.87 0.83 76 25
## PP.CCB_49 1001 0.90 0.90 0.86 0.82 72 27
## PP.CCB_50 1001 0.88 0.88 0.82 0.78 73 27
## PP.CCB_51 1001 0.85 0.85 0.77 0.73 69 26
PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
#Correlation CCB
cor(PP$CCB_Scale, use= "complete.obs")
## PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.CCB_48 1.0000000 0.7821006 0.7572658 0.6629838
## PP.CCB_49 0.7821006 1.0000000 0.7100200 0.6986891
## PP.CCB_50 0.7572658 0.7100200 1.0000000 0.6478465
## PP.CCB_51 0.6629838 0.6986891 0.6478465 1.0000000
Connectedness to Nature
# Connectedness to Nature was measured with 5 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Connected to nature score was calculated by averaging these items.
## Item 1: I often feel a sense of oneness with the natural world around me.'
## Item 2: I think of the natural world as a community to which I belong.'
## Item 3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.
## Item 4: My personal welfare is independent of the welfare of the natural world.
## Item 5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.
#Connectedness to Nature Item Definitions
PP$CNS_1 <- as.numeric(as.character(PP$CNS_29))
PP$CNS_2 <- as.numeric(as.character(PP$CNS_30))
PP$CNS_3 <- as.numeric(as.character(PP$CNS_31))
PP$CNS_4 <- as.numeric(as.character(PP$CNS_32))
PP$CNS_5 <- as.numeric(as.character(PP$CNS_33))
#Descriptives
describe(PP$CNS_1)
## PP$CNS_1
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 96 0.997 66.57 28.06 22.0 31.0
## .25 .50 .75 .90 .95
## 52.0 69.5 86.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CNS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_2)
## PP$CNS_2
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 94 0.997 70.1 25.63 27.05 38.00
## .25 .50 .75 .90 .95
## 55.00 72.50 87.00 100.00 100.00
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$CNS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_3)
## PP$CNS_3
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 98 0.995 69.48 27.62 21 36
## .25 .50 .75 .90 .95
## 53 73 90 100 100
##
## lowest : 0 1 3 5 6, highest: 96 97 98 99 100
range(PP$CNS_3, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_4)
## PP$CNS_4
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 100 0.999 58.97 32.46 0 15
## .25 .50 .75 .90 .95
## 40 63 80 99 100
##
## lowest : 0 1 2 3 4, highest: 95 96 97 99 100
range(PP$CNS_4, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_5)
## PP$CNS_5
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 101 0.999 59.54 31.64 2.05 19.10
## .25 .50 .75 .90 .95
## 41.00 63.00 81.00 98.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CNS_5, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$CNS_1, main = '#1: Sense of oneness with the natural world')

hist(PP$CNS_2, main = '#2: the natural world = community')

hist(PP$CNS_3, main = '#3: Common ‘life force’.')

hist(PP$CNS_4, main = '#4(R): Personal welfare = independent')

hist(PP$CNS_5, main = '#5(R): Top of hierarchy')

#Recode items 4 and 5
PP$CNS_4R <- (100 - PP$CNS_4)
PP$CNS_5R <- (100 - PP$CNS_5)
PP$CNS_Scale2 <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3, PP$CNS_4R, PP$CNS_5R)
psych::alpha(PP$CNS_Scale2)
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(PP$CNS_Scale2): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.CNS_4R PP.CNS_5R ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = PP$CNS_Scale2)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.16 0.22 0.44 0.053 0.28 0.044 58 12 -0.2
##
## lower alpha upper 95% confidence boundaries
## 0.07 0.16 0.25
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1 -0.0065 0.004 0.27 0.001 0.004 0.054 0.14 -0.20
## PP.CNS_2 -0.0767 -0.070 0.21 -0.017 -0.065 0.058 0.14 -0.22
## PP.CNS_3 -0.1048 -0.094 0.21 -0.022 -0.086 0.060 0.15 -0.22
## PP.CNS_4R 0.3084 0.374 0.52 0.130 0.597 0.036 0.22 0.14
## PP.CNS_5R 0.3919 0.453 0.55 0.171 0.827 0.032 0.18 0.17
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 1002 0.57 0.62 0.561 0.194 67 25
## PP.CNS_2 1002 0.60 0.66 0.645 0.272 70 23
## PP.CNS_3 1002 0.62 0.67 0.652 0.276 69 25
## PP.CNS_4R 1001 0.38 0.30 -0.052 -0.083 41 29
## PP.CNS_5R 1002 0.28 0.20 -0.171 -0.174 40 28
#Drop reverse coded items
PP$CNS_Scale <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3)
psych::alpha(PP$CNS_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CNS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.79 0.79 0.71 0.55 3.7 0.012 69 20 0.55
##
## lower alpha upper 95% confidence boundaries
## 0.77 0.79 0.81
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1 0.73 0.73 0.58 0.58 2.8 0.017 NA 0.58
## PP.CNS_2 0.70 0.70 0.54 0.54 2.3 0.019 NA 0.54
## PP.CNS_3 0.71 0.71 0.55 0.55 2.4 0.018 NA 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 1002 0.83 0.83 0.69 0.61 67 25
## PP.CNS_2 1002 0.84 0.85 0.73 0.64 70 23
## PP.CNS_3 1002 0.84 0.84 0.71 0.63 69 25
PP$CNS_Score <- rowMeans(PP [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
#Correlation CCB
cor(PP$CNS_Scale, use= "complete.obs")
## PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.CNS_1 1.0000000 0.5501475 0.5350697
## PP.CNS_2 0.5501475 1.0000000 0.5794158
## PP.CNS_3 0.5350697 0.5794158 1.0000000
Control
# Control was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
## Item #1: We have control over the processes in this method.
#GFFB
PP$Control_GFFB <- PP$GFFB_Risk_34
length(PP$Control_GFFB)
## [1] 1005
describe(PP$Control_GFFB)
## PP$Control_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 95 0.997 65.44 30.6 3.75 25.00
## .25 .50 .75 .90 .95
## 51.75 69.00 86.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Control_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_GFFB, main = 'GFFB - We have control over the processes in this method.')

#GFPRB
PP$Control_GFPRB <- PP$GFPRB_Risk_34
length(PP$Control_GFPRB)
## [1] 1005
describe(PP$Control_GFPRB)
## PP$Control_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 90 0.996 67.08 30.19 13 26
## .25 .50 .75 .90 .95
## 51 72 88 100 100
##
## lowest : 0 1 8 9 11, highest: 96 97 98 99 100
range(PP$Control_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_GFPRB, main = 'GFPRB - We have control over the processes in this method.')

#CBB
PP$Control_CBB <- PP$CBB_Risk_34
length(PP$Control_CBB)
## [1] 1005
describe(PP$Control_CBB)
## PP$Control_CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 94 0.998 61.67 32.83 0.75 18.50
## .25 .50 .75 .90 .95
## 43.00 67.00 85.00 100.00 100.00
##
## lowest : 0 1 3 4 5, highest: 95 96 98 99 100
range(PP$Control_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_CBB, main = 'CBB - We have control over the processes in this method.')

#PBPB
PP$Control_PBPB <- PP$PBPB_Risk_34
length(PP$Control_PBPB)
## [1] 1005
describe(PP$Control_PBPB)
## PP$Control_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 523 482 91 0.997 65.41 29.39 15.1 28.0
## .25 .50 .75 .90 .95
## 52.0 69.0 85.0 100.0 100.0
##
## lowest : 0 2 3 6 10, highest: 96 97 98 99 100
range(PP$Control_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_PBPB, main = 'PBPB - We have control over the processes in this method.')

#PBFB
PP$Control_PBFB <- PP$PBFB_Risk_34
length(PP$Control_PBFB)
## [1] 1005
describe(PP$Control_PBFB)
## PP$Control_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 93 0.998 63.87 31.74 4 20
## .25 .50 .75 .90 .95
## 49 70 85 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Control_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_PBFB, main = 'PBFB - We have control over the processes in this method.')

#VB
PP$Control_VB <- PP$VB_Risk_34
length(PP$Control_VB)
## [1] 1005
describe(PP$Control_VB)
## PP$Control_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 93 0.996 65.91 30.96 13 25
## .25 .50 .75 .90 .95
## 51 70 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Control_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_VB, main = 'VB - We have control over the processes in this method.')

Disgust
# Disgust was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
## Item #1: This is disgusting.
#GFFB
PP$Disgust_GFFB <- PP$GFFB_Risk_37
length(PP$Disgust_GFFB)
## [1] 1005
describe(PP$Disgust_GFFB)
## PP$Disgust_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 98 0.997 49.5 38.87 0 0
## .25 .50 .75 .90 .95
## 20 51 79 100 100
##
## lowest : 0 1 2 3 4, highest: 95 97 98 99 100
range(PP$Disgust_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_GFFB, main = 'GFFB - This is disgusting.')

#GFPRB
PP$Disgust_GFPRB <- PP$GFPRB_Risk_37
length(PP$Disgust_GFPRB)
## [1] 1005
describe(PP$Disgust_GFPRB)
## PP$Disgust_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 97 0.988 35.25 37.16 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 27.00 62.25 87.90 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 97 98 100
range(PP$Disgust_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_GFPRB, main = 'GFPRB - This is disgusting.')

#CBB
PP$Disgust_CBB <- PP$CBB_Risk_37
length(PP$Disgust_CBB)
## [1] 1005
describe(PP$Disgust_CBB)
## PP$Disgust_CBB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 97 0.996 54.62 39.24 0.00 1.00
## .25 .50 .75 .90 .95
## 23.75 58.50 85.25 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Disgust_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_CBB, main = 'CBB - This is disgusting.')

#PBPB
PP$Disgust_PBPB <- PP$PBPB_Risk_37
length(PP$Disgust_PBPB)
## [1] 1005
describe(PP$Disgust_PBPB)
## PP$Disgust_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 525 480 98 0.998 48.87 38.39 0.0 0.0
## .25 .50 .75 .90 .95
## 20.0 50.0 77.0 99.6 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Disgust_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_PBPB, main = 'PBPB - This is disgusting.')

#PBFB
PP$Disgust_PBFB <- PP$PBFB_Risk_37
length(PP$Disgust_PBFB)
## [1] 1005
describe(PP$Disgust_PBFB)
## PP$Disgust_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 98 0.997 53.33 39.31 0 3
## .25 .50 .75 .90 .95
## 22 56 83 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$Disgust_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_PBFB, main = 'PBFB - This is disgusting.')

#VB
PP$Disgust_VB <- PP$VB_Risk_37
length(PP$Disgust_VB)
## [1] 1005
describe(PP$Disgust_VB)
## PP$Disgust_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 98 0.997 44.34 37.49 0.00 0.00
## .25 .50 .75 .90 .95
## 16.00 43.50 72.75 92.00 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
range(PP$Disgust_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_VB, main = 'VB - This is disgusting.')

Disgust Sensitivity Scale
#DS-R Disgust Scale (Olantunji et al., 2007)
##Assesses three disgust domains (core, animal reminder, contamination) on a 0-100 scale.
##Item 1: If I see someone vomit, it makes me sick to my stomach.
##Item 2: It would not upset me at all to watch a person with a glass eye take the eye out of the socket. (reverse coded)
##Item 3: I never let any part of my body touch the toilet seat in a public washroom.
#Define Variables
PP$DS_1D <- as.numeric(as.character(PP$DS_1))
PP$DS_2D <- as.numeric(as.character(PP$DS_8))
PP$DS_2R <- (100- PP$DS_2D)
PP$DS_3D <- as.numeric(as.character(PP$DS_2))
PP$DS_Score <- rowMeans(PP[, c('DS_1D', 'DS_2R', 'DS_3D')], na.rm=T)
#Descriptives
describe(PP$DS_1)
## PP$DS_1
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 99 0.994 65.68 33.9 2 18
## .25 .50 .75 .90 .95
## 44 72 92 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$DS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$DS_2)
## PP$DS_2
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 100 0.994 58.14 38.51 0 3
## .25 .50 .75 .90 .95
## 30 63 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$DS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$DS_3)
## PP$DS_3
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 100 0.994 58.14 38.51 0 3
## .25 .50 .75 .90 .95
## 30 63 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$DS_3, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$DS_1, main = '#1: Vomit')

hist(PP$DS_2, main = '#2(R): Glass eye out of socket')

hist(PP$DS_3, main = '#3: Public washroom')

PP$DS_Scale <- data.frame(PP$DS_1D, PP$DS_2R,PP$DS_3D)
psych::alpha(PP$DS_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$DS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.27 0.28 0.24 0.12 0.39 0.04 58 21 0.12
##
## lower alpha upper 95% confidence boundaries
## 0.19 0.27 0.35
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.DS_1D -0.10 -0.10 -0.05 -0.05 -0.094 0.070 NA -0.05
## PP.DS_2R 0.43 0.43 0.27 0.27 0.750 0.036 NA 0.27
## PP.DS_3D 0.22 0.22 0.12 0.12 0.281 0.049 NA 0.12
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.DS_1D 1000 0.70 0.73 0.52 0.29 66 30
## PP.DS_2R 1000 0.58 0.56 0.10 0.04 49 34
## PP.DS_3D 1001 0.65 0.64 0.32 0.14 58 34
PP$DS_Score <- rowMeans(PP [, c("DS_1D", "DS_2R", "DS_3D")], na.rm=TRUE)
#Correlation CCB
cor(PP$DS_Scale, use= "complete.obs")
## PP.DS_1D PP.DS_2R PP.DS_3D
## PP.DS_1D 1.0000000 0.1230523 0.2723974
## PP.DS_2R 0.1230523 1.0000000 -0.0495374
## PP.DS_3D 0.2723974 -0.0495374 1.0000000
Familiarity
# Familiarity was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
## Item #1: This is familiar.
Grain-fed Feedlot Burger (GFFB)
#GFFB
PP$Familiarity_GFFB <-PP$GFFB_Risk_31
length(PP$Familiarity_GFFB)
## [1] 1005
describe(PP$Familiarity_GFFB)
## PP$Familiarity_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 493 512 97 0.997 62.79 34.17 3 17
## .25 .50 .75 .90 .95
## 41 68 89 100 100
##
## lowest : 0 2 3 4 5, highest: 96 97 98 99 100
sd(PP$Familiarity_GFFB, na.rm = TRUE)
## [1] 30.18567
range(PP$Familiarity_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_GFFB, main = 'GFFB - This is familiar.')

Grain-fed Pasture Raised Burger (GFPRB)
#GFPRB
PP$Familiarity_GFPRB <-PP$GFPRB_Risk_31
length(PP$Familiarity_GFPRB)
## [1] 1005
describe(PP$Familiarity_GFPRB)
## PP$Familiarity_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 511 494 84 0.988 73.29 27.98 18.5 37.0
## .25 .50 .75 .90 .95
## 59.5 78.0 97.0 100.0 100.0
##
## lowest : 0 1 4 5 8, highest: 96 97 98 99 100
sd(PP$Familiarity_GFPRB, na.rm = TRUE)
## [1] 25.71012
range(PP$Familiarity_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_GFPRB, main = 'GFPRB - This is familiar.')

Cultured beef burgers (CBB)
#CBB
PP$Familiarity_CBB <-PP$CBB_Risk_31
length(PP$Familiarity_CBB)
## [1] 1005
describe(PP$Familiarity_CBB)
## PP$Familiarity_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 99 0.997 46.27 38.6 0.0 0.0
## .25 .50 .75 .90 .95
## 15.0 50.0 74.5 95.6 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_CBB, na.rm = TRUE)
## [1] 33.51951
range(PP$Familiarity_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_CBB, main = 'CBB - This is familiar.')

Plant-based Protein Burger (PBPB)
#PBPB
PP$Familiarity_PBPB <-PP$PBPB_Risk_31
length(PP$Familiarity_PBPB)
## [1] 1005
describe(PP$Familiarity_PBPB)
## PP$Familiarity_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 98 0.999 54.46 34.8 0 7
## .25 .50 .75 .90 .95
## 30 57 79 95 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_PBPB, na.rm = TRUE)
## [1] 30.2881
range(PP$Familiarity_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_PBPB, main = 'PBPB - This is familiar.')

Plant-based Fermentation Burger (PBFB)
#PBFB
PP$Familiarity_PBFB <-PP$PBFB_Risk_31
length(PP$Familiarity_PBFB)
## [1] 1005
describe(PP$Familiarity_PBFB)
## PP$Familiarity_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 99 0.998 48.06 37.95 0 0
## .25 .50 .75 .90 .95
## 18 51 76 93 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_PBFB, na.rm = TRUE)
## [1] 32.91287
range(PP$Familiarity_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_PBFB, main = 'PBFB - This is familiar.')

Veggie Burger (VB)
#VB
PP$Familiarity_VB <-PP$VB_Risk_31
length(PP$Familiarity_VB)
## [1] 1005
describe(PP$Familiarity_VB)
## PP$Familiarity_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 98 0.999 62.01 32.89 1.55 16.00
## .25 .50 .75 .90 .95
## 45.00 67.50 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_VB, na.rm = TRUE)
## [1] 29.15807
range(PP$Familiarity_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_VB, main = 'VB - This is familiar.')

Ideology
#Political Orientation
##Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)
PP$Orientation = as.numeric(recode_factor(PP$PI_Orientation,'1'= "3",'2'= "2",'3'= "1",
'4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(PP$Orientation)
## PP$Orientation
## n missing distinct Info Mean Gmd
## 1002 3 7 0.962 3.718 2.003
##
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##
## Value 1 2 3 4 5 6 7
## Frequency 126 171 124 301 93 93 94
## Proportion 0.126 0.171 0.124 0.300 0.093 0.093 0.094
hist(PP$Orientation , main = 'Political Orientation (Liberal to Conservative)')

#Political Party Identification
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)
describe(PP$Party)
##
## NULL
PP$Party <- PP$Party
PP$DemStrength <- PP$DStrength
PP$RepStrength <- PP$RStrength
PP$PartyClose <- PP$Closerto
# Recode Party
PP$PartyFull <- NA
PP$PartyFull[PP$DemStrength == 1] <- -3
PP$PartyFull[PP$DemStrength == 2] <- -2
PP$PartyFull[PP$PartyClose == 1] <- -1
PP$PartyFull[PP$PartyClose == 3] <- 0
PP$PartyFull[PP$PartyClose == 2] <- 1
PP$PartyFull[PP$RepStrength == 2] <- 2
PP$PartyFull[PP$RepStrength == 1] <- 3
describe(PP$PartyFull)
## PP$PartyFull
## n missing distinct Info Mean Gmd
## 996 9 7 0.967 -0.1797 2.495
##
## lowest : -3 -2 -1 0 1, highest: -1 0 1 2 3
##
## Value -3 -2 -1 0 1 2 3
## Frequency 227 136 66 212 65 95 195
## Proportion 0.228 0.137 0.066 0.213 0.065 0.095 0.196
hist(PP$PartyFull , main = 'Party Identification')

PP$PartyID <- NA
PP$PartyID[PP$PartyFull < 0] <- -0.5
PP$PartyID[PP$PartyFull == 0] <- 0
PP$PartyID[PP$PartyFull > 0] <- 0.5
#New Variable: Ideology
PP$Ideology <- rowMeans(PP[, c('PartyFull', 'Orientation')], na.rm=T)
describe(PP$Ideology)
## PP$Ideology
## n missing distinct Info Mean Gmd .05 .10
## 1003 2 14 0.949 1.785 1.155 -0.5 0.5
## .25 .50 .75 .90 .95
## 1.5 2.0 2.5 3.0 3.5
##
## lowest : -1.0 -0.5 0.0 0.5 1.0, highest: 3.5 4.0 4.5 5.0 6.0
##
## Value -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
## Frequency 25 27 35 80 79 142 357 126 52 49 14
## Proportion 0.025 0.027 0.035 0.080 0.079 0.142 0.356 0.126 0.052 0.049 0.014
##
## Value 4.5 5.0 6.0
## Frequency 6 9 2
## Proportion 0.006 0.009 0.002
hist(PP$Ideology)

Individualism/Collectivism
#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)
#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = 'Strongly disagree' to 100 = 'Strongly agree').
##Collectivism Items
### Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group.
### Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me.
### Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group.
### Item #8 (C): It is important to me to respect decisions made by my family.
##Individualism Items
### Item #1 (I): It is important to me to develop my own personal style.
### Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.
### Item #5 (I): I enjoy being unique and different from others in many respects.
###I Item #6 (I): My personal achievements and accomplishments are very important to who I am.
#Individualism (Items 1,2,5,6)
PP$Ind_1 <- as.numeric(as.character(PP$Individualism_19))
PP$Ind_2 <- as.numeric(as.character(PP$Individualism_20))
PP$Ind_5 <- as.numeric(as.character(PP$Individualism_23))
PP$Ind_6 <- as.numeric(as.character(PP$Individualism_24))
PP$Individualism_Score <- rowMeans(PP[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)
#Collectivism (Items 3,4,7,8)
PP$Ind_3 <- as.numeric(as.character(PP$Individualism_21))
PP$Ind_4 <- as.numeric(as.character(PP$Individualism_22))
PP$Ind_7 <- as.numeric(as.character(PP$Individualism_25))
PP$Ind_8 <- as.numeric(as.character(PP$Individualism_34))
PP$Collectivism_Score <- rowMeans(PP[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)
#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5, PP$Ind_6))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.8 0.8 0.75 0.5 3.9 0.01 74 18 0.49
##
## lower alpha upper 95% confidence boundaries
## 0.78 0.8 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_1 0.72 0.72 0.63 0.46 2.5 0.015 0.00254 0.43
## PP.Ind_2 0.74 0.74 0.67 0.49 2.9 0.014 0.00574 0.47
## PP.Ind_5 0.74 0.74 0.66 0.49 2.8 0.014 0.00397 0.47
## PP.Ind_6 0.79 0.79 0.71 0.55 3.7 0.012 0.00089 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 1000 0.82 0.82 0.75 0.67 75 23
## PP.Ind_2 1000 0.79 0.79 0.69 0.62 74 23
## PP.Ind_5 1000 0.80 0.80 0.70 0.63 74 23
## PP.Ind_6 1000 0.74 0.74 0.59 0.53 72 23
hist(PP$Individualism_Score , main = 'Individualism Score')

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.73 0.45 3.3 0.012 67 20 0.42
##
## lower alpha upper 95% confidence boundaries
## 0.74 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_3 0.69 0.69 0.61 0.43 2.2 0.017 0.0090 0.38
## PP.Ind_4 0.71 0.70 0.63 0.44 2.4 0.016 0.0138 0.38
## PP.Ind_7 0.70 0.72 0.64 0.46 2.5 0.016 0.0059 0.45
## PP.Ind_8 0.73 0.73 0.65 0.47 2.7 0.014 0.0102 0.45
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3 998 0.82 0.79 0.69 0.61 60 31
## PP.Ind_4 1000 0.75 0.77 0.66 0.57 72 24
## PP.Ind_7 1000 0.77 0.76 0.64 0.57 64 27
## PP.Ind_8 1001 0.72 0.75 0.62 0.52 70 24
hist(PP$Collectivism_Score , main = 'Collectivism Score')

#Cronbachs Alpha for Individualism and Collectivism scales
PP$IndScale <- data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6)
psych::alpha(PP$IndScale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$IndScale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.8 0.8 0.75 0.5 3.9 0.01 74 18 0.49
##
## lower alpha upper 95% confidence boundaries
## 0.78 0.8 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_1 0.72 0.72 0.63 0.46 2.5 0.015 0.00254 0.43
## PP.Ind_2 0.74 0.74 0.67 0.49 2.9 0.014 0.00574 0.47
## PP.Ind_5 0.74 0.74 0.66 0.49 2.8 0.014 0.00397 0.47
## PP.Ind_6 0.79 0.79 0.71 0.55 3.7 0.012 0.00089 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 1000 0.82 0.82 0.75 0.67 75 23
## PP.Ind_2 1000 0.79 0.79 0.69 0.62 74 23
## PP.Ind_5 1000 0.80 0.80 0.70 0.63 74 23
## PP.Ind_6 1000 0.74 0.74 0.59 0.53 72 23
PP$CollScale <- data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8)
psych::alpha(PP$CollScale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CollScale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.73 0.45 3.3 0.012 67 20 0.42
##
## lower alpha upper 95% confidence boundaries
## 0.74 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_3 0.69 0.69 0.61 0.43 2.2 0.017 0.0090 0.38
## PP.Ind_4 0.71 0.70 0.63 0.44 2.4 0.016 0.0138 0.38
## PP.Ind_7 0.70 0.72 0.64 0.46 2.5 0.016 0.0059 0.45
## PP.Ind_8 0.73 0.73 0.65 0.47 2.7 0.014 0.0102 0.45
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3 998 0.82 0.79 0.69 0.61 60 31
## PP.Ind_4 1000 0.75 0.77 0.66 0.57 72 24
## PP.Ind_7 1000 0.77 0.76 0.64 0.57 64 27
## PP.Ind_8 1001 0.72 0.75 0.62 0.52 70 24
Meat Consumption
# Beef Consumption Frequency measured with the question, "In the average week, how often do you eat beef?" (1 = Never, 2 = Less than once a week, 3 = 1-2 times a week, 4 = 3-4 times a week, 5 = 5+ times a week)
describe(PP$Beef_Frequency)
## PP$Beef_Frequency
## n missing distinct Info Mean Gmd
## 1005 0 5 0.902 3.046 1.091
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 60 219 430 207 89
## Proportion 0.060 0.218 0.428 0.206 0.089
histogram(PP$Beef_Frequency, main = 'Beef Consumption per Week')

# Non-Beef Consumption Frequency measured with the question, "In the average week, how often do you eat meat, not including beef? (i.e. poultry, fish, etc.)" (1 = Never, 2 = Less than once a week, 3 = 1-2 times a week, 4 = 3-4 times a week, 5 = 5+ times a week)
describe(PP$NonBeef_Frequency)
## PP$NonBeef_Frequency
## n missing distinct Info Mean Gmd
## 1005 0 5 0.924 3.369 1.161
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 43 156 351 297 158
## Proportion 0.043 0.155 0.349 0.296 0.157
histogram(PP$NonBeef_Frequency, main = 'Non-Beef Consumption per Week')

Naturalness
# Naturalness perception was measured with 4 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Naturalness score calculated by averaging these items.
### Item 1: This is natural.
### Item 2: This involves humans altering naturally occurring processes.
### Item 3: This relies on science-based technology.
### Item 4: This is artificial.
Grain-fed Feedlot Burger (GFFB)
# Defines variables in the naturalness scale and reverse codes items 2, 3, and 4.
PP$Nat_1_GFFB <- PP$GFFB_Naturalness_30
PP$Nat_2R_GFFB <- (100-PP$GFFB_Naturalness_31)
PP$Nat_3R_GFFB <- (100-PP$GFFB_Naturalness_35)
PP$Nat_4R_GFFB <- (100-PP$GFFB_Naturalness_36)
# Histograms
hist(PP$Nat_1_GFFB, main = '#1: This is natural')

hist(PP$Nat_2R_GFFB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_GFFB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_GFFB, main = '#4(R): This is artificial')

# Scales and Scores
PP$Naturalness_Score_GFFB_Tot <- rowMeans(PP [, c( "Nat_1_GFFB" , "Nat_2R_GFFB", "Nat_3R_GFFB", "Nat_4R_GFFB")], na.rm=TRUE)
describe(PP$Naturalness_Score_GFFB_Tot)
## PP$Naturalness_Score_GFFB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 499 506 219 1 49.53 23.65 21.38 25.20
## .25 .50 .75 .90 .95
## 34.75 48.00 62.12 79.30 93.35
##
## lowest : 0.00 0.25 1.00 6.25 7.00, highest: 98.25 98.50 99.25 99.50 100.00
sd(PP$Naturalness_Score_GFFB_Tot, na.rm = TRUE)
## [1] 21.26861
PP$Naturalness_Scale_GFFB_Tot <- data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB, PP$Nat_2R_GFFB , PP$Nat_3R_GFFB)
describe(PP$Naturalness_Scale_GFFB_Tot)
## PP$Naturalness_Scale_GFFB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 94 0.998 58.65 34.6 0 13
## .25 .50 .75 .90 .95
## 35 61 84 100 100
##
## lowest : 0 1 4 5 6, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 495 510 100 0.998 50.37 36.65 0 6
## .25 .50 .75 .90 .95
## 26 48 79 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 96 0.998 42.95 35 0.0 0.0
## .25 .50 .75 .90 .95
## 18.0 39.0 66.0 92.5 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 97 0.999 46.71 34.94 0.00 6.00
## .25 .50 .75 .90 .95
## 23.00 44.50 68.75 97.30 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
Grain-fed Pasture Raised Burger (GFPRB)
# Defines Naturalness variables and reverse coding items 2, 3, and 4.
PP$Nat_1_GFPRB <- PP$GFPRB_Naturalness_30
PP$Nat_2R_GFPRB <- (100-PP$GFPRB_Naturalness_31)
PP$Nat_3R_GFPRB <- (100-PP$GFPRB_Naturalness_35)
PP$Nat_4R_GFPRB <- (100-PP$GFPRB_Naturalness_36)
# Histograms
hist(PP$Nat_1_GFPRB, main = '#1: This is natural')

hist(PP$Nat_2R_GFPRB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_GFPRB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_GFPRB, main = '#4(R): This is artificial')

#### Score and Scale
PP$Naturalness_Score_GFPRB_Tot <- rowMeans(PP [, c( "Nat_1_GFPRB" , "Nat_4R_GFPRB", "Nat_2R_GFPRB" , "Nat_3R_GFPRB")], na.rm=TRUE)
describe(PP$Naturalness_Score_GFPRB_Tot)
## PP$Naturalness_Score_GFPRB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 514 491 240 0.999 62.49 27.37 25.00 32.08
## .25 .50 .75 .90 .95
## 44.81 59.12 81.44 98.75 100.00
##
## lowest : 0.00 1.75 7.00 10.75 11.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness_Score_GFPRB_Tot, na.rm = TRUE)
## [1] 23.85977
PP$Naturalness_Scale_GFPRB_Tot <- data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB)
Cultured beef burgers (CBB)
#Defines naturalness variables and reverse codes items 2, 3, and 4.
PP$Nat_1_CBB <- PP$CBB_Naturalness_30
PP$Nat_2R_CBB <- (100-PP$CBB_Naturalness_31)
PP$Nat_3R_CBB <- (100-PP$CBB_Naturalness_35)
PP$Nat_4R_CBB <- (100-PP$CBB_Naturalness_36)
# Histogram
hist(PP$Nat_1_CBB, main = '#1: This is natural')

hist(PP$Nat_2R_CBB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_CBB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_CBB, main = '#4(R): This is artificial')

#### Score and Scale
PP$Naturalness_Score_CBB_Tot <- rowMeans(PP [, c( "Nat_1_CBB" , "Nat_4R_CBB", "Nat_2R_CBB" , "Nat_3R_CBB")], na.rm=TRUE)
describe(PP$Naturalness_Score_CBB_Tot)
## PP$Naturalness_Score_CBB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 516 489 224 0.999 34.32 24.5 0.00 0.75
## .25 .50 .75 .90 .95
## 17.94 35.38 49.00 59.00 67.12
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 96.25 98.50 99.50 99.75 100.00
sd(PP$Naturalness_Score_CBB_Tot, na.rm = TRUE)
## [1] 21.71332
PP$Naturalness_Scale_CBB_Tot <- data.frame(PP$Nat_1_CBB , PP$Nat_4R_CBB, PP$Nat_2R_CBB , PP$Nat_3R_CBB)
describe(PP$Naturalness_Scale_CBB_Tot)
## PP$Naturalness_Scale_CBB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 96 0.996 45.56 39.24 0 0
## .25 .50 .75 .90 .95
## 13 47 75 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 93 0.991 32.77 33.56 0.00 0.00
## .25 .50 .75 .90 .95
## 5.25 25.00 49.00 81.70 98.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 88 0.987 29.75 30.74 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 25.00 47.00 73.00 85.35
##
## lowest : 0 1 2 3 4, highest: 91 94 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 89 0.987 29.07 30.45 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 24.00 47.00 69.70 84.35
##
## lowest : 0 1 2 3 4, highest: 94 95 96 99 100
## --------------------------------------------------------------------------------
Plant-based Protein Burger (PBPB)
#Defines naturalness variables and reverse codes items 2, 3 and 4.
PP$Nat_1_PBPB <- PP$PBPB_Naturalness_30
PP$Nat_2R_PBPB <- (100-PP$PBPB_Naturalness_31)
PP$Nat_3R_PBPB <- (100-PP$PBPB_Naturalness_35)
PP$Nat_4R_PBPB <- (100-PP$PBPB_Naturalness_36)
#Histograms
hist(PP$Nat_1_PBPB, main = '#1: This is natural')

hist(PP$Nat_2R_PBPB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_PBPB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_PBPB, main = '#4(R): This is artificial')

#### Score and Scale
PP$Naturalness_Score_PBPB_Tot <- rowMeans(PP [, c( "Nat_1_PBPB" , "Nat_4R_PBPB", "Nat_2R_PBPB" , "Nat_3R_PBPB")], na.rm=TRUE)
describe(PP$Naturalness_Score_PBPB_Tot)
## PP$Naturalness_Score_PBPB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 524 481 236 1 42.37 22.52 2.288 12.900
## .25 .50 .75 .90 .95
## 29.688 44.000 53.750 67.100 74.962
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 92.25 96.75 97.00 98.50 100.00
sd(PP$Naturalness_Score_PBPB_Tot, na.rm = TRUE)
## [1] 20.16823
PP$Naturalness_Scale_PBPB_Tot <- data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB)
describe(PP$Naturalness_Scale_PBPB_Tot)
## PP$Naturalness_Scale_PBPB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 99 0.998 53.99 36.26 0 3
## .25 .50 .75 .90 .95
## 29 58 79 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 97 0.998 43.33 34.89 0 0
## .25 .50 .75 .90 .95
## 20 39 68 87 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 96 0.998 39.82 33.02 0.0 0.0
## .25 .50 .75 .90 .95
## 18.0 35.0 61.0 83.9 97.0
##
## lowest : 0 1 2 3 4, highest: 95 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 88 0.996 32.13 28.98 0.0 0.0
## .25 .50 .75 .90 .95
## 11.0 29.0 48.0 70.9 82.0
##
## lowest : 0 1 2 3 4, highest: 94 97 98 99 100
## --------------------------------------------------------------------------------
Plant-based Fermentation Burger (PBFB)
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- (100-PP$PBFB_Naturalness_31)
PP$Nat_3R_PBFB <- (100-PP$PBFB_Naturalness_35)
PP$Nat_4R_PBFB <- (100-PP$PBFB_Naturalness_36)
#Define Variables
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- PP$PBFB_Naturalness_31
PP$Nat_3R_PBFB <- PP$PBFB_Naturalness_35
PP$Nat_4R_PBFB <- PP$PBFB_Naturalness_36
# Histograms
hist(PP$Nat_1_PBFB, main = '#1: This is natural')

hist(PP$Nat_2R_PBFB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_PBFB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_PBFB, main = '#4(R): This is artificial')

#### Scale and Score
PP$Naturalness_Score_PBFB_Tot <- rowMeans(PP [, c( "Nat_1_PBFB" , "Nat_4R_PBFB", "Nat_2R_PBFB" , "Nat_3R_PBFB")], na.rm=TRUE)
describe(PP$Naturalness_Score_PBFB_Tot)
## PP$Naturalness_Score_PBFB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 481 524 217 1 62.27 19.97 29.00 41.50
## .25 .50 .75 .90 .95
## 52.00 63.25 75.00 83.25 93.75
##
## lowest : 0.00 0.25 2.75 4.25 7.50, highest: 97.50 98.50 99.00 99.75 100.00
sd(PP$Naturalness_Score_PBFB_Tot, na.rm = TRUE)
## [1] 18.3293
PP$Naturalness_Scale_PBFB_Tot <- data.frame(PP$Nat_1_PBFB , PP$Nat_4R_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB)
describe(PP$Naturalness_Scale_PBFB_Tot)
## PP$Naturalness_Scale_PBFB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 97 0.998 51.85 38.41 0 0
## .25 .50 .75 .90 .95
## 23 53 81 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 95 0.996 61.33 35.17 0 14
## .25 .50 .75 .90 .95
## 37 66 88 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 95 0.996 65.55 32.51 6.95 24.00
## .25 .50 .75 .90 .95
## 46.50 71.50 90.00 100.00 100.00
##
## lowest : 0 1 2 3 6, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 478 527 86 0.994 70.53 29.62 8.40 29.00
## .25 .50 .75 .90 .95
## 54.25 75.50 93.75 100.00 100.00
##
## lowest : 0 1 3 4 5, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
Veggie Burger (VB)
#Define variables
PP$Nat_1_VB <- PP$VB_Naturalness_30
PP$Nat_2R_VB <- (100-PP$VB_Naturalness_31)
PP$Nat_3R_VB <- (100-PP$VB_Naturalness_35)
PP$Nat_4R_VB <- (100-PP$VB_Naturalness_36)
# Histograms
hist(PP$Nat_1_VB, main = '#1: This is natural')

hist(PP$Nat_2R_VB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_VB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_VB, main = '#4(R): This is artificial')

#### Scale and Score
PP$Naturalness_Score_VB_Tot <- rowMeans(PP [, c( "Nat_1_VB" , "Nat_4R_VB", "Nat_2R_VB" , "Nat_3R_VB")], na.rm=TRUE)
describe(PP$Naturalness_Score_VB_Tot)
## PP$Naturalness_Score_VB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 472 533 237 1 51.39 25.22 16.50 25.00
## .25 .50 .75 .90 .95
## 36.19 49.00 65.50 84.00 96.36
##
## lowest : 0.00 1.25 3.00 3.25 4.25, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness_Score_VB_Tot, na.rm = TRUE)
## [1] 22.39438
PP$Naturalness_Scale_VB_Tot <- data.frame(PP$Nat_1_VB , PP$Nat_4R_VB, PP$Nat_2R_VB , PP$Nat_3R_VB )
describe(PP$Naturalness_Scale_VB_Tot)
## PP$Naturalness_Scale_VB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 93 0.996 65.13 32.6 4.55 21.00
## .25 .50 .75 .90 .95
## 50.00 71.00 89.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 96 0.998 49.87 37.8 0 4
## .25 .50 .75 .90 .95
## 21 48 80 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 99 0.998 49.76 36.59 0 6
## .25 .50 .75 .90 .95
## 24 48 78 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 91 0.999 40.8 33.64 0.00 2.00
## .25 .50 .75 .90 .95
## 19.00 34.00 61.25 91.80 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
## --------------------------------------------------------------------------------
#Scale Alphas
##Nat Items (ALL) - Reasonable alphas
psych::alpha(data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB, PP$Nat_2R_GFFB , PP$Nat_3R_GFFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Nat_1_GFFB, PP$Nat_4R_GFFB, PP$Nat_2R_GFFB,
## PP$Nat_3R_GFFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.63 0.62 0.65 0.29 1.7 0.019 50 21 0.31
##
## lower alpha upper 95% confidence boundaries
## 0.59 0.63 0.67
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_GFFB 0.76 0.76 0.69 0.52 3.19 0.013 0.0073 0.50
## PP.Nat_4R_GFFB 0.36 0.36 0.39 0.16 0.56 0.035 0.0875 0.18
## PP.Nat_2R_GFFB 0.40 0.39 0.44 0.18 0.64 0.033 0.1042 0.18
## PP.Nat_3R_GFFB 0.59 0.59 0.55 0.32 1.43 0.023 0.0614 0.18
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_GFFB 497 0.44 0.44 0.15 0.088 59 30
## PP.Nat_4R_GFFB 495 0.84 0.83 0.79 0.647 50 32
## PP.Nat_2R_GFFB 496 0.81 0.81 0.75 0.615 43 31
## PP.Nat_3R_GFFB 498 0.66 0.65 0.51 0.361 47 30
psych::alpha(data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Nat_1_GFPRB, PP$Nat_4R_GFPRB,
## PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.75 0.74 0.72 0.41 2.8 0.012 62 24 0.45
##
## lower alpha upper 95% confidence boundaries
## 0.72 0.75 0.77
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_GFPRB 0.80 0.80 0.74 0.57 4.0 0.011 0.0088 0.52
## PP.Nat_4R_GFPRB 0.58 0.56 0.50 0.30 1.3 0.022 0.0351 0.25
## PP.Nat_2R_GFPRB 0.63 0.62 0.57 0.35 1.6 0.020 0.0368 0.38
## PP.Nat_3R_GFPRB 0.71 0.70 0.66 0.44 2.3 0.015 0.0470 0.38
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_GFPRB 513 0.55 0.59 0.37 0.31 74 27
## PP.Nat_4R_GFPRB 513 0.87 0.86 0.84 0.73 63 33
## PP.Nat_2R_GFPRB 514 0.83 0.81 0.76 0.65 59 33
## PP.Nat_3R_GFPRB 511 0.74 0.73 0.59 0.51 54 33
psych::alpha(data.frame(PP$Nat_1_CBB , PP$Nat_4R_CBB, PP$Nat_2R_CBB , PP$Nat_3R_CBB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Nat_1_CBB, PP$Nat_4R_CBB, PP$Nat_2R_CBB,
## PP$Nat_3R_CBB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.7 0.72 0.7 0.39 2.5 0.016 34 22 0.38
##
## lower alpha upper 95% confidence boundaries
## 0.67 0.7 0.73
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_CBB 0.80 0.81 0.74 0.58 4.1 0.011 0.005 0.62
## PP.Nat_4R_CBB 0.55 0.58 0.56 0.31 1.4 0.026 0.074 0.21
## PP.Nat_2R_CBB 0.53 0.55 0.49 0.29 1.2 0.026 0.040 0.26
## PP.Nat_3R_CBB 0.62 0.63 0.59 0.36 1.7 0.022 0.050 0.26
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_CBB 515 0.58 0.54 0.26 0.23 46 34
## PP.Nat_4R_CBB 514 0.81 0.81 0.73 0.61 33 30
## PP.Nat_2R_CBB 514 0.82 0.84 0.80 0.65 30 28
## PP.Nat_3R_CBB 514 0.73 0.76 0.66 0.51 29 28
psych::alpha(data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Nat_1_PBPB, PP$Nat_4R_PBPB, PP$Nat_2R_PBPB,
## PP$Nat_3R_PBPB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.63 0.63 0.61 0.3 1.7 0.019 42 20 0.34
##
## lower alpha upper 95% confidence boundaries
## 0.59 0.63 0.66
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_PBPB 0.71 0.71 0.62 0.44 2.40 0.016 0.0023 0.45
## PP.Nat_4R_PBPB 0.43 0.45 0.42 0.21 0.80 0.031 0.0554 0.21
## PP.Nat_2R_PBPB 0.45 0.45 0.42 0.22 0.83 0.030 0.0460 0.28
## PP.Nat_3R_PBPB 0.59 0.59 0.52 0.32 1.44 0.023 0.0219 0.28
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_PBPB 524 0.57 0.53 0.27 0.20 54 32
## PP.Nat_4R_PBPB 524 0.79 0.79 0.69 0.56 43 30
## PP.Nat_2R_PBPB 522 0.77 0.78 0.69 0.54 40 29
## PP.Nat_3R_PBPB 522 0.63 0.66 0.51 0.36 32 26
psych::alpha(data.frame(PP$Nat_1_PBFB , PP$Nat_4R_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB))
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_PBFB, PP$Nat_4R_PBFB, PP$Nat_2R_PBFB, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_PBFB ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Nat_1_PBFB, PP$Nat_4R_PBFB, PP$Nat_2R_PBFB,
## PP$Nat_3R_PBFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.43 0.48 0.54 0.19 0.91 0.03 62 18 0.22
##
## lower alpha upper 95% confidence boundaries
## 0.37 0.43 0.49
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Nat_1_PBFB 0.742 0.74 0.66 0.493 2.91 0.014 0.0019
## PP.Nat_4R_PBFB 0.290 0.34 0.38 0.144 0.51 0.041 0.1167
## PP.Nat_2R_PBFB 0.102 0.16 0.28 0.061 0.19 0.051 0.1294
## PP.Nat_3R_PBFB 0.077 0.12 0.27 0.045 0.14 0.052 0.1581
## med.r
## PP.Nat_1_PBFB 0.495
## PP.Nat_4R_PBFB -0.005
## PP.Nat_2R_PBFB -0.005
## PP.Nat_3R_PBFB -0.098
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_PBFB 481 0.30 0.25 -0.15 -0.16 52 33
## PP.Nat_4R_PBFB 480 0.66 0.67 0.56 0.31 61 31
## PP.Nat_2R_PBFB 480 0.76 0.77 0.71 0.48 66 29
## PP.Nat_3R_PBFB 478 0.77 0.79 0.72 0.53 71 27
psych::alpha(data.frame(PP$Nat_1_VB , PP$Nat_4R_VB, PP$Nat_2R_VB , PP$Nat_3R_VB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Nat_1_VB, PP$Nat_4R_VB, PP$Nat_2R_VB,
## PP$Nat_3R_VB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.7 0.69 0.67 0.36 2.2 0.015 51 22 0.37
##
## lower alpha upper 95% confidence boundaries
## 0.67 0.7 0.73
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_VB 0.75 0.75 0.68 0.50 3.0 0.014 0.010 0.48
## PP.Nat_4R_VB 0.53 0.53 0.47 0.27 1.1 0.025 0.036 0.23
## PP.Nat_2R_VB 0.55 0.54 0.47 0.28 1.2 0.024 0.024 0.33
## PP.Nat_3R_VB 0.66 0.66 0.60 0.39 1.9 0.018 0.037 0.33
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_VB 472 0.56 0.58 0.33 0.28 65 29
## PP.Nat_4R_VB 472 0.82 0.81 0.75 0.63 50 33
## PP.Nat_2R_VB 472 0.81 0.80 0.74 0.62 50 32
## PP.Nat_3R_VB 472 0.69 0.69 0.53 0.44 41 30
Risk Perceptions
# Risk perception was measured with 2 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Risk score calculated by averaging these items.
### Item 1: This is risky to eat.
### Item 2: Producing this is risky for society.
### Item 3: Producing this is risky for the environment.
### Item 4: This is frightening.
Grain-fed Feedlot Burger (GFFB)
#GFFB
PP$Risk_1_GFFB <- PP$GFFB_Risk_32
describe(PP$Risk_1_GFFB)
## PP$Risk_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 95 0.998 46.96 36.42 0 0
## .25 .50 .75 .90 .95
## 19 51 74 90 100
##
## lowest : 0 1 2 3 4, highest: 94 95 96 99 100
range(PP$Risk_1_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_GFFB, main = 'GFFB - This is risky to eat.')

PP$Risk_2_GFFB <- PP$GFFB_Risk_35
describe(PP$Risk_2_GFFB)
## PP$Risk_2_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 94 0.998 46.85 36.51 0.0 0.0
## .25 .50 .75 .90 .95
## 20.0 50.0 72.0 89.5 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_GFFB, main = 'GFFB - Producing this is risky for society.')

PP$Risk_3_GFFB <- PP$GFFB_Risk_36
describe(PP$Risk_3_GFFB)
## PP$Risk_3_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 99 0.999 49.89 36.57 0.0 1.6
## .25 .50 .75 .90 .95
## 24.0 52.0 76.0 94.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_3_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_GFFB, main = 'GFFB - Producing this is risky for the environment.')

PP$Risk_4_GFFB <- PP$GFFB_Risk_33
describe(PP$Risk_4_GFFB)
## PP$Risk_4_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 495 510 95 0.997 51.28 38.74 0.0 0.0
## .25 .50 .75 .90 .95
## 22.5 53.0 81.0 99.0 100.0
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
range(PP$Risk_4_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_GFFB, main = 'GFFB - This is frightening.')

#GFFB Risk Scale
PP$Risk_Score_GFFB <- rowMeans(PP [, c("Risk_1_GFFB", "Risk_2_GFFB", "Risk_3_GFFB", "Risk_4_GFFB")], na.rm=TRUE)
PP$Risk_Scale_GFFB <- data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB)
describe(PP$Risk_Score_GFFB)
## PP$Risk_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 499 506 264 1 48.87 31.98 0.00 5.40
## .25 .50 .75 .90 .95
## 28.00 51.75 68.38 86.05 95.52
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 97.00 98.75 99.00 99.50 100.00
sd(PP$Risk_Score_GFFB, na.rm = TRUE)
## [1] 27.89227
#GFFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB,
## PP$Risk_4_GFFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.86 0.67 8 0.0059 49 28 0.66
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.89 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_GFFB 0.85 0.86 0.81 0.67 6.0 0.0080 0.0050 0.64
## PP.Risk_2_GFFB 0.83 0.83 0.77 0.63 5.1 0.0091 0.0024 0.61
## PP.Risk_3_GFFB 0.85 0.85 0.80 0.65 5.6 0.0085 0.0052 0.64
## PP.Risk_4_GFFB 0.88 0.88 0.84 0.72 7.7 0.0063 0.0011 0.73
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFFB 498 0.86 0.87 0.80 0.75 47 32
## PP.Risk_2_GFFB 496 0.90 0.90 0.87 0.81 47 32
## PP.Risk_3_GFFB 497 0.88 0.88 0.83 0.78 50 32
## PP.Risk_4_GFFB 495 0.83 0.82 0.72 0.68 51 34
hist(PP$Risk_Score_GFFB, main = 'GFFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_GFFB, labels = c('1','2', '3', '4'), main = "Correlation Between GFFB Risk Items")

Grain-fed Pasture Raised Burger (GFPRB)
#GFPRB
PP$Risk_1_GFPRB <- PP$GFPRB_Risk_32
describe(PP$Risk_1_GFPRB)
## PP$Risk_1_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 99 0.991 36.75 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 5.00 30.00 63.25 84.00 97.45
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_1_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_GFPRB, main = 'GFPRB - This is risky to eat.')

PP$Risk_2_GFPRB <- PP$GFPRB_Risk_35
describe(PP$Risk_2_GFPRB)
## PP$Risk_2_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 511 494 97 0.996 39.91 36.48 0.0 0.0
## .25 .50 .75 .90 .95
## 10.0 36.0 66.5 88.0 99.0
##
## lowest : 0 1 2 3 4, highest: 94 97 98 99 100
range(PP$Risk_2_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_GFPRB, main = 'GFPRB - Producing this is risky for society.')

PP$Risk_3_GFPRB <- PP$GFPRB_Risk_36
describe(PP$Risk_3_GFPRB)
## PP$Risk_3_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 510 495 100 0.995 41.19 36.4 0 0
## .25 .50 .75 .90 .95
## 12 38 67 87 97
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_3_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_GFPRB, main = 'GFPRB - Producing this is risky for the environment.')

PP$Risk_4_GFPRB <- PP$GFPRB_Risk_33
describe(PP$Risk_4_GFPRB)
## PP$Risk_4_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 511 494 99 0.992 37 37.4 0.0 0.0
## .25 .50 .75 .90 .95
## 4.0 29.0 63.5 88.0 98.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_4_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_GFPRB, main = 'GFPRB - This is frightening.')

#GFPRB Risk Scale
PP$Risk_Score_GFPRB <- rowMeans(PP [, c("Risk_1_GFPRB", "Risk_2_GFPRB", "Risk_3_GFPRB", "Risk_4_GFPRB")], na.rm=TRUE)
PP$Risk_Scale_GFPRB <- data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB)
describe(PP$Risk_Score_GFPRB)
## PP$Risk_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 256 0.999 38.72 31.88 0.00 0.25
## .25 .50 .75 .90 .95
## 14.00 38.50 57.50 77.70 88.55
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 97.00 97.50 98.50 99.75 100.00
sd(PP$Risk_Score_GFPRB, na.rm = TRUE)
## [1] 27.86542
#GFPRB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB,
## PP$Risk_3_GFPRB, PP$Risk_4_GFPRB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.86 0.67 8 0.0058 39 28 0.67
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.89 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_GFPRB 0.85 0.85 0.80 0.66 5.9 0.0081 0.0049 0.63
## PP.Risk_2_GFPRB 0.85 0.85 0.79 0.65 5.6 0.0083 0.0012 0.66
## PP.Risk_3_GFPRB 0.85 0.85 0.80 0.66 5.9 0.0080 0.0007 0.68
## PP.Risk_4_GFPRB 0.87 0.87 0.82 0.69 6.8 0.0071 0.0018 0.68
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFPRB 512 0.87 0.87 0.81 0.76 37 32
## PP.Risk_2_GFPRB 511 0.88 0.88 0.83 0.78 40 32
## PP.Risk_3_GFPRB 510 0.87 0.87 0.81 0.76 41 32
## PP.Risk_4_GFPRB 511 0.85 0.84 0.76 0.72 37 33
hist(PP$Risk_Score_GFPRB, main = 'GFPRB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_GFPRB, labels = c('1','2', '3', '4'), main = "Correlation Between GFPRB Risk Items")

Cultured Beef Burgers (CBB)
#CBB
PP$Risk_1_CBB <- PP$CBB_Risk_32
describe(PP$Risk_1_CBB)
## PP$Risk_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 98 0.998 54.69 37.24 0 6
## .25 .50 .75 .90 .95
## 27 57 82 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_1_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_CBB, main = 'CBB - This is risky to eat.')

PP$Risk_2_CBB <- PP$CBB_Risk_35
describe(PP$Risk_2_CBB)
## PP$Risk_2_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 96 0.998 55.18 36.39 0.0 5.8
## .25 .50 .75 .90 .95
## 30.0 59.0 81.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_CBB, main = 'CBB - Producing this is risky for society.')

PP$Risk_3_CBB <- PP$CBB_Risk_36
describe(PP$Risk_3_CBB)
## PP$Risk_3_CBB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 97 0.999 50.98 36.4 0 5
## .25 .50 .75 .90 .95
## 26 51 77 97 100
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$Risk_3_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_CBB, main = 'CBB - Producing this is risky for the environment.')

PP$Risk_4_CBB <- PP$CBB_Risk_33
describe(PP$Risk_4_CBB)
## PP$Risk_4_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 97 0.996 55.98 38.42 0 3
## .25 .50 .75 .90 .95
## 27 60 86 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_4_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_CBB, main = 'CBB - This is frightening.')

#CBB Risk Scale
PP$Risk_Score_CBB <- rowMeans(PP [, c("Risk_1_CBB", "Risk_2_CBB", "Risk_3_CBB", "Risk_4_CBB")], na.rm=TRUE)
PP$Risk_Scale_CBB <- data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB)
describe(PP$Risk_Score_CBB)
## PP$Risk_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 517 488 267 1 54.2 32.1 2.20 12.65
## .25 .50 .75 .90 .95
## 36.50 53.50 75.00 93.30 100.00
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Risk_Score_CBB, na.rm = TRUE)
## [1] 28.05343
#CBB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB,
## PP$Risk_4_CBB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.87 0.68 8.5 0.0055 54 28 0.69
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.89 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_CBB 0.85 0.85 0.80 0.66 5.8 0.0081 0.00312 0.67
## PP.Risk_2_CBB 0.86 0.86 0.80 0.66 5.9 0.0079 0.00449 0.66
## PP.Risk_3_CBB 0.88 0.88 0.83 0.71 7.2 0.0067 0.00081 0.71
## PP.Risk_4_CBB 0.87 0.87 0.82 0.69 6.8 0.0071 0.00068 0.71
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_CBB 515 0.89 0.89 0.84 0.80 55 32
## PP.Risk_2_CBB 515 0.88 0.89 0.84 0.79 55 32
## PP.Risk_3_CBB 513 0.85 0.85 0.77 0.73 51 32
## PP.Risk_4_CBB 514 0.86 0.86 0.80 0.75 56 33
hist(PP$Risk_Score_CBB, main = 'CBB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_CBB, labels = c('1','2', '3', '4'), main = "Correlation Between CBB Risk Items")

Plant-based Protein Burger (PBPB)
#PBPB
PP$Risk_1_PBPB <- PP$PBPB_Risk_32
describe(PP$Risk_1_PBPB)
## PP$Risk_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 523 482 96 0.998 43.28 36.03 0 0
## .25 .50 .75 .90 .95
## 15 43 68 88 100
##
## lowest : 0 1 2 3 4, highest: 94 95 97 99 100
range(PP$Risk_1_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_PBPB, main = 'PBPB - This is risky to eat.')

PP$Risk_2_PBPB <- PP$PBPB_Risk_35
describe(PP$Risk_2_PBPB)
## PP$Risk_2_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 100 0.998 43.06 35.68 0.00 0.00
## .25 .50 .75 .90 .95
## 15.00 41.00 68.00 86.00 98.85
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_PBPB, main = 'PBPB - Producing this is risky for society.')

PP$Risk_3_PBPB <- PP$PBPB_Risk_36
describe(PP$Risk_3_PBPB)
## PP$Risk_3_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 98 0.998 40.95 34.56 0.00 0.00
## .25 .50 .75 .90 .95
## 16.00 38.00 64.00 85.00 96.85
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$Risk_3_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_PBPB, main = 'PBPB - Producing this is risky for the environment.')

PP$Risk_4_PBPB <- PP$PBPB_Risk_33
describe(PP$Risk_4_PBPB)
## PP$Risk_4_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 98 0.996 42.61 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 14.25 39.00 68.00 87.90 100.00
##
## lowest : 0 1 2 3 4, highest: 94 95 98 99 100
range(PP$Risk_4_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_PBPB, main = 'PBPB - This is frightening.')

#PBPB Risk Scale
PP$Risk_Score_PBPB <- rowMeans(PP [, c("Risk_1_PBPB", "Risk_2_PBPB", "Risk_3_PBPB", "Risk_4_PBPB")], na.rm=TRUE)
PP$Risk_Scale_PBPB <- data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB)
describe(PP$Risk_Score_PBPB)
## PP$Risk_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 258 1 42.48 31.14 0.000 2.325
## .25 .50 .75 .90 .95
## 20.188 44.250 60.250 79.600 90.962
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.00 98.25 98.50 99.75 100.00
sd(PP$Risk_Score_PBPB, na.rm = TRUE)
## [1] 27.19177
#PBPB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB,
## PP$Risk_4_PBPB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.87 0.69 8.9 0.0052 42 27 0.7
##
## lower alpha upper 95% confidence boundaries
## 0.89 0.9 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_PBPB 0.87 0.87 0.82 0.68 6.5 0.0073 0.00180 0.69
## PP.Risk_2_PBPB 0.86 0.86 0.81 0.67 6.1 0.0077 0.00306 0.64
## PP.Risk_3_PBPB 0.88 0.88 0.83 0.71 7.4 0.0065 0.00046 0.71
## PP.Risk_4_PBPB 0.87 0.87 0.82 0.69 6.7 0.0071 0.00191 0.71
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBPB 523 0.88 0.88 0.83 0.78 43 31
## PP.Risk_2_PBPB 524 0.89 0.89 0.85 0.80 43 31
## PP.Risk_3_PBPB 524 0.85 0.86 0.78 0.74 41 30
## PP.Risk_4_PBPB 522 0.88 0.88 0.82 0.77 43 32
hist(PP$Risk_Score_PBPB, main = 'PBPB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_PBPB, labels = c('1','2', '3', '4'), main = "Correlation Between PBPB Risk Items")

Plant-based Fermentation Burger (PBFB)
#PBFB
PP$Risk_1_PBFB <- PP$PBFB_Risk_32
describe(PP$Risk_1_PBFB)
## PP$Risk_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 100 0.999 49.52 37.36 0.00 2.00
## .25 .50 .75 .90 .95
## 21.75 51.00 76.00 97.00 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 97 98 100
range(PP$Risk_1_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_PBFB, main = 'PBFB - This is risky to eat.')

PP$Risk_2_PBFB <- PP$PBPB_Risk_35
describe(PP$Risk_2_PBFB)
## PP$Risk_2_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 100 0.998 43.06 35.68 0.00 0.00
## .25 .50 .75 .90 .95
## 15.00 41.00 68.00 86.00 98.85
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_PBFB, main = 'PBFB - Producing this is risky for society.')

PP$Risk_3_PBFB <- PP$PBPB_Risk_36
describe(PP$Risk_3_PBFB)
## PP$Risk_3_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 98 0.998 40.95 34.56 0.00 0.00
## .25 .50 .75 .90 .95
## 16.00 38.00 64.00 85.00 96.85
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$Risk_3_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_PBFB, main = 'PBFB - Producing this is risky for the environment.')

PP$Risk_4_PBFB <- PP$PBPB_Risk_33
describe(PP$Risk_4_PBFB)
## PP$Risk_4_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 98 0.996 42.61 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 14.25 39.00 68.00 87.90 100.00
##
## lowest : 0 1 2 3 4, highest: 94 95 98 99 100
range(PP$Risk_4_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_PBFB, main = 'PBFB - This is frightening.')

#PBFB Risk Scale
PP$Risk_Score_PBFB <- rowMeans(PP [, c("Risk_1_PBFB", "Risk_2_PBFB", "Risk_3_PBFB", "Risk_4_PBFB")], na.rm=TRUE)
PP$Risk_Scale_PBFB <- data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB)
describe(PP$Risk_Score_PBFB)
## PP$Risk_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 795 210 317 1 45.56 33.89 0.000 3.133
## .25 .50 .75 .90 .95
## 21.833 47.250 67.000 87.733 100.000
##
## lowest : 0.0000000 0.2500000 0.3333333 0.5000000 1.0000000
## highest: 97.0000000 97.6666667 98.0000000 99.6666667 100.0000000
sd(PP$Risk_Score_PBFB, na.rm = TRUE)
## [1] 29.45914
#PBFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB,
## PP$Risk_4_PBFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.84 0.85 0.82 0.58 5.5 0.0081 46 29 0.57
##
## lower alpha upper 95% confidence boundaries
## 0.83 0.84 0.86
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_PBFB 0.87 0.87 0.82 0.68 6.5 0.0073 0.0018 0.69
## PP.Risk_2_PBFB 0.77 0.77 0.70 0.52 3.3 0.0129 0.0107 0.49
## PP.Risk_3_PBFB 0.79 0.79 0.73 0.56 3.8 0.0116 0.0133 0.49
## PP.Risk_4_PBFB 0.78 0.79 0.74 0.55 3.7 0.0121 0.0227 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBFB 480 0.91 0.73 0.57 0.53 50 32
## PP.Risk_2_PBFB 524 0.90 0.88 0.84 0.77 43 31
## PP.Risk_3_PBFB 524 0.87 0.85 0.79 0.71 41 30
## PP.Risk_4_PBFB 522 0.87 0.85 0.79 0.73 43 32
hist(PP$Risk_Score_PBFB, main = 'PBFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_PBFB, labels = c('1','2', '3', '4'), main = "Correlation Between PBFB Risk Items")

Veggie Burger (VB)
#VB
PP$Risk_1_VB <- PP$VB_Risk_32
describe(PP$Risk_1_VB)
## PP$Risk_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 92 0.997 35.1 33.26 0.0 0.0
## .25 .50 .75 .90 .95
## 9.0 29.0 56.5 79.0 88.0
##
## lowest : 0 1 2 3 4, highest: 91 92 96 99 100
range(PP$Risk_1_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_VB, main = 'VB - This is risky to eat.')

PP$Risk_2_VB <- PP$VB_Risk_35
describe(PP$Risk_2_VB)
## PP$Risk_2_VB
## n missing distinct Info Mean Gmd .05 .10
## 469 536 91 0.996 37.72 35.36 0.0 0.0
## .25 .50 .75 .90 .95
## 10.0 33.0 60.0 86.2 100.0
##
## lowest : 0 1 2 3 4, highest: 94 95 96 98 100
range(PP$Risk_2_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_VB, main = 'VB - Producing this is risky for society.')

PP$Risk_3_VB <- PP$VB_Risk_36
describe(PP$Risk_3_VB)
## PP$Risk_3_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 96 0.997 36.56 34.05 0.0 0.0
## .25 .50 .75 .90 .95
## 10.0 31.0 58.0 82.0 93.5
##
## lowest : 0 1 2 3 4, highest: 94 95 97 98 100
range(PP$Risk_3_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_VB, main = 'VB - Producing this is risky for the environment.')

PP$Risk_4_VB <- PP$VB_Risk_33
describe(PP$Risk_4_VB)
## PP$Risk_4_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 95 0.996 36.27 35.59 0.0 0.0
## .25 .50 .75 .90 .95
## 8.0 28.5 62.0 82.1 95.1
##
## lowest : 0 1 2 3 4, highest: 94 96 98 99 100
range(PP$Risk_4_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_VB, main = 'VB - This is frightening.')

#VB Risk Scale
PP$Risk_Score_VB <- rowMeans(PP [, c("Risk_1_VB", "Risk_2_VB", "Risk_3_VB", "Risk_4_VB")], na.rm=TRUE)
PP$Risk_Scale_VB <- data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB)
describe(PP$Risk_Score_VB)
## PP$Risk_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 247 1 36.41 30.29 0.00 1.25
## .25 .50 .75 .90 .95
## 13.62 32.75 55.00 73.00 84.88
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 95.00 96.50 97.25 99.00 100.00
sd(PP$Risk_Score_VB, na.rm = TRUE)
## [1] 26.56997
#VB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB,
## PP$Risk_4_VB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.87 0.68 8.5 0.0055 36 27 0.68
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.89 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_VB 0.86 0.86 0.81 0.67 6.1 0.0078 0.00301 0.65
## PP.Risk_2_VB 0.86 0.86 0.81 0.67 6.2 0.0077 0.00198 0.69
## PP.Risk_3_VB 0.86 0.86 0.81 0.68 6.4 0.0075 0.00072 0.68
## PP.Risk_4_VB 0.87 0.87 0.82 0.70 6.9 0.0069 0.00076 0.69
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_VB 471 0.88 0.88 0.83 0.78 35 29
## PP.Risk_2_VB 469 0.88 0.88 0.82 0.78 38 31
## PP.Risk_3_VB 471 0.87 0.87 0.81 0.77 37 30
## PP.Risk_4_VB 470 0.86 0.86 0.78 0.74 36 31
hist(PP$Risk_Score_VB, main = 'VB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_VB, labels = c('1','2', '3', '4'), main = "Correlation Between VB Risk Items")

Support
# Willingness to support was measured with 4 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Support score calculated by averaging these items.
### Item 1: I support this.
### Item 2: I would purchase this product.
### Item 3: Society should support this.
### Item 4: Society should purchase this product.
Grain-fed Feedlot Burger (GFFB)
# Behavioral Intent (SUPPORT) Scales and Scores
### Rename Variables
PP$BehavInt1_GFFB <- PP$GFFB_BehavIntent_29
PP$BehavInt2_GFFB <- PP$GFFB_BehavIntent_28
PP$BehavInt3_GFFB <- PP$GFFB_BehavIntent_27
PP$BehavInt4_GFFB <- PP$GFFB_BehavIntent_26
#Describe Items
describe(PP$BehavInt1_GFFB)
## PP$BehavInt1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 96 0.997 57.55 36.1 0.0 3.0
## .25 .50 .75 .90 .95
## 35.0 62.5 83.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
describe(PP$BehavInt2_GFFB)
## PP$BehavInt2_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 96 0.996 60 35.91 0 7
## .25 .50 .75 .90 .95
## 37 65 87 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
describe(PP$BehavInt3_GFFB)
## PP$BehavInt3_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 96 0.998 56.74 35.16 0 5
## .25 .50 .75 .90 .95
## 35 60 81 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
describe(PP$BehavInt4_GFFB)
## PP$BehavInt4_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 96 0.998 57.3 35.04 0 5
## .25 .50 .75 .90 .95
## 36 61 83 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$BehavInt1_GFFB, na.rm= TRUE)
## [1] 31.63923
sd(PP$BehavInt2_GFFB, na.rm= TRUE)
## [1] 31.60034
sd(PP$BehavInt3_GFFB, na.rm= TRUE)
## [1] 30.78336
sd(PP$BehavInt4_GFFB, na.rm= TRUE)
## [1] 30.71115
#Histograms
hist(PP$BehavInt1_GFFB, main = '#1: I support this')

hist(PP$BehavInt2_GFFB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_GFFB, main = '#3: Society should support this')

hist(PP$BehavInt4_GFFB, main = '#4: Society should purchase this product')

#Support Score
PP$Behav_Score_GFFB <- rowMeans(PP [, c("BehavInt1_GFFB", "BehavInt2_GFFB", "BehavInt3_GFFB", "BehavInt4_GFFB")], na.rm=TRUE)
PP$Behav_Scale_GFFB <- data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, PP$BehavInt3_GFFB, PP$BehavInt4_GFFB)
describe(PP$Behav_Score_GFFB)
## PP$Behav_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 242 0.999 57.91 33.2 0.425 11.425
## .25 .50 .75 .90 .95
## 41.500 59.250 80.750 99.250 100.000
##
## lowest : 0.00 0.50 0.75 1.25 1.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Behav_Score_GFFB, na.rm= TRUE)
## [1] 29.21738
Grain-fed Pasture Raised Burger (GFPRB)
##GFPRB
PP$BehavInt1_GFPRB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_GFPRB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_GFPRB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_GFPRB <- PP$PBPB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_GFPRB, main = '#1: I support this')

hist(PP$BehavInt2_GFPRB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_GFPRB, main = '#3: Society should support this')

hist(PP$BehavInt4_GFPRB, main = '#4: Society should purchase this product')

#Scales and Scores
PP$Behav_Score_GFPRB <- rowMeans(PP [, c("BehavInt1_GFPRB", "BehavInt2_GFPRB", "BehavInt3_GFPRB", "BehavInt4_GFPRB")], na.rm=TRUE)
PP$Behav_Scale_GFPRB <- data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB)
describe(PP$Behav_Score_GFPRB)
## PP$Behav_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 252 0.999 57.53 33.44 0.5125 9.8000
## .25 .50 .75 .90 .95
## 37.8750 60.0000 80.5000 97.1250 100.0000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.50 98.75 99.25 99.75 100.00
sd(PP$Behav_Score_GFPRB, na.rm= TRUE)
## [1] 29.36235
Cultured Beef Burgers (CBB)
##CBB
PP$BehavInt1_CBB <- PP$CBB_BehavIntent_29
PP$BehavInt2_CBB <- PP$CBB_BehavIntent_28
PP$BehavInt3_CBB <- PP$CBB_BehavIntent_27
PP$BehavInt4_CBB <- PP$CBB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_CBB, main = '#1: I support this')

hist(PP$BehavInt2_CBB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_CBB, main = '#3: Society should support this')

hist(PP$BehavInt4_CBB, main = '#4: Society should purchase this product')

# Scales
PP$Behav_Score_CBB <- rowMeans(PP [, c("BehavInt1_CBB", "BehavInt2_CBB", "BehavInt3_CBB", "BehavInt4_CBB")], na.rm=TRUE)
PP$Behav_Scale_CBB <- data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB, PP$BehavInt3_CBB, PP$BehavInt4_CBB)
describe(PP$Behav_Score_CBB)
## PP$Behav_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 249 0.999 49.36 36.5 0.00 0.25
## .25 .50 .75 .90 .95
## 21.44 52.50 74.81 94.25 100.00
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Behav_Score_CBB, na.rm= TRUE)
## [1] 31.7638
Plant-based Protein Burger (PBPB)
##PBPB
PP$BehavInt1_PBPB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_PBPB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_PBPB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_PBPB <- PP$PBPB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_PBPB, main = '#1: I support this')

hist(PP$BehavInt2_PBPB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_PBPB, main = '#3: Society should support this')

hist(PP$BehavInt4_PBPB, main = '#4: Society should purchase this product')

PP$Behav_Score_PBPB <- rowMeans(PP [, c("BehavInt1_PBPB", "BehavInt2_PBPB", "BehavInt3_PBPB", "BehavInt4_PBPB")], na.rm=TRUE)
PP$Behav_Scale_PBPB <- data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, PP$BehavInt3_PBPB, PP$BehavInt4_PBPB)
describe(PP$Behav_Score_PBPB)
## PP$Behav_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 252 0.999 57.53 33.44 0.5125 9.8000
## .25 .50 .75 .90 .95
## 37.8750 60.0000 80.5000 97.1250 100.0000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.50 98.75 99.25 99.75 100.00
sd(PP$Behav_Score_PBPB, na.rm= TRUE)
## [1] 29.36235
Plant-based Fermentation Burger (PBFB)
##PBFB
PP$BehavInt1_PBFB <- PP$PBFB_BehavIntent_29
PP$BehavInt2_PBFB <- PP$PBFB_BehavIntent_28
PP$BehavInt3_PBFB <- PP$PBFB_BehavIntent_27
PP$BehavInt4_PBFB <- PP$PBFB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_PBFB, main = '#1: I support this')

hist(PP$BehavInt2_PBFB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_PBFB, main = '#3: Society should support this')

hist(PP$BehavInt4_PBFB, main = '#4: Society should purchase this product')

PP$Behav_Score_PBFB <- rowMeans(PP [, c("BehavInt1_PBFB", "BehavInt2_PBFB", "BehavInt3_PBFB", "BehavInt4_PBFB")], na.rm=TRUE)
PP$Behav_Scale_PBFB <- data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB)
describe(PP$Behav_Score_PBFB)
## PP$Behav_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 257 1 52.69 35.61 0.00 1.95
## .25 .50 .75 .90 .95
## 29.88 54.25 77.62 93.65 99.75
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.25 99.00 99.25 99.75 100.00
sd(PP$Behav_Score_PBFB, na.rm= TRUE)
## [1] 31.0349
Veggie Burger (VB)
##VB
PP$BehavInt1_VB <- PP$VB_BehavIntent_29
PP$BehavInt2_VB <- PP$VB_BehavIntent_28
PP$BehavInt3_VB <- PP$VB_BehavIntent_27
PP$BehavInt4_VB <- PP$VB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_VB, main = '#1: I support this')

hist(PP$BehavInt2_VB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_VB, main = '#3: Society should support this')

hist(PP$BehavInt4_VB, main = '#4: Society should purchase this product')

PP$Behav_Score_VB <- rowMeans(PP [, c("BehavInt1_VB", "BehavInt2_VB", "BehavInt3_VB", "BehavInt4_VB")], na.rm=TRUE)
PP$Behav_Scale_VB <- data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB, PP$BehavInt3_VB, PP$BehavInt4_VB)
describe(PP$Behav_Score_VB)
## PP$Behav_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 238 0.999 62.93 30.95 8.375 22.250
## .25 .50 .75 .90 .95
## 47.750 66.000 84.500 99.000 100.000
##
## lowest : 0.00 0.25 0.75 1.25 1.50, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Behav_Score_VB, na.rm= TRUE)
## [1] 27.38456
#Scale Alphas
##Behav Items (ALL) - Very good alphas!
psych::alpha(data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, PP$BehavInt3_GFFB, PP$BehavInt4_GFFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB,
## PP$BehavInt3_GFFB, PP$BehavInt4_GFFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.94 0.84 21 0.0024 58 29 0.85
##
## lower alpha upper 95% confidence boundaries
## 0.95 0.95 0.96
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.BehavInt1_GFFB 0.93 0.93 0.91 0.82 14 0.0038 2.7e-03
## PP.BehavInt2_GFFB 0.95 0.95 0.93 0.87 21 0.0025 4.3e-05
## PP.BehavInt3_GFFB 0.93 0.93 0.91 0.83 14 0.0036 1.8e-03
## PP.BehavInt4_GFFB 0.94 0.94 0.91 0.83 15 0.0034 1.3e-03
## med.r
## PP.BehavInt1_GFFB 0.80
## PP.BehavInt2_GFFB 0.87
## PP.BehavInt3_GFFB 0.83
## PP.BehavInt4_GFFB 0.83
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_GFFB 498 0.95 0.95 0.93 0.91 58 32
## PP.BehavInt2_GFFB 498 0.91 0.91 0.86 0.84 60 32
## PP.BehavInt3_GFFB 497 0.95 0.95 0.93 0.90 57 31
## PP.BehavInt4_GFFB 497 0.94 0.94 0.92 0.89 57 31
psych::alpha(data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB,
## PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.94 0.83 20 0.0025 58 29 0.84
##
## lower alpha upper 95% confidence boundaries
## 0.95 0.95 0.96
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.BehavInt1_GFPRB 0.93 0.93 0.91 0.83 14 0.0038 0.00231
## PP.BehavInt2_GFPRB 0.95 0.95 0.93 0.86 19 0.0028 0.00032
## PP.BehavInt3_GFPRB 0.93 0.93 0.91 0.83 14 0.0036 0.00039
## PP.BehavInt4_GFPRB 0.93 0.93 0.91 0.83 14 0.0037 0.00124
## med.r
## PP.BehavInt1_GFPRB 0.81
## PP.BehavInt2_GFPRB 0.86
## PP.BehavInt3_GFPRB 0.83
## PP.BehavInt4_GFPRB 0.83
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_GFPRB 522 0.94 0.94 0.92 0.90 57 32
## PP.BehavInt2_GFPRB 521 0.92 0.91 0.87 0.85 54 34
## PP.BehavInt3_GFPRB 521 0.94 0.94 0.92 0.90 60 29
## PP.BehavInt4_GFPRB 521 0.94 0.94 0.92 0.89 59 30
psych::alpha(data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB, PP$BehavInt3_CBB, PP$BehavInt4_CBB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB,
## PP$BehavInt3_CBB, PP$BehavInt4_CBB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.96 0.96 0.95 0.86 25 0.002 49 32 0.87
##
## lower alpha upper 95% confidence boundaries
## 0.96 0.96 0.97
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.BehavInt1_CBB 0.94 0.94 0.92 0.85 17 0.0031 0.00040
## PP.BehavInt2_CBB 0.95 0.95 0.93 0.87 21 0.0025 0.00017
## PP.BehavInt3_CBB 0.95 0.95 0.93 0.86 19 0.0028 0.00077
## PP.BehavInt4_CBB 0.95 0.95 0.93 0.87 21 0.0026 0.00066
## med.r
## PP.BehavInt1_CBB 0.84
## PP.BehavInt2_CBB 0.87
## PP.BehavInt3_CBB 0.86
## PP.BehavInt4_CBB 0.89
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_CBB 516 0.96 0.96 0.95 0.93 49 34
## PP.BehavInt2_CBB 515 0.94 0.94 0.91 0.89 47 35
## PP.BehavInt3_CBB 515 0.95 0.95 0.93 0.91 51 33
## PP.BehavInt4_CBB 516 0.94 0.94 0.91 0.89 50 32
psych::alpha(data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, PP$BehavInt3_PBPB, PP$BehavInt4_PBPB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB,
## PP$BehavInt3_PBPB, PP$BehavInt4_PBPB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.94 0.83 20 0.0025 58 29 0.84
##
## lower alpha upper 95% confidence boundaries
## 0.95 0.95 0.96
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.BehavInt1_PBPB 0.93 0.93 0.91 0.83 14 0.0038 0.00231
## PP.BehavInt2_PBPB 0.95 0.95 0.93 0.86 19 0.0028 0.00032
## PP.BehavInt3_PBPB 0.93 0.93 0.91 0.83 14 0.0036 0.00039
## PP.BehavInt4_PBPB 0.93 0.93 0.91 0.83 14 0.0037 0.00124
## med.r
## PP.BehavInt1_PBPB 0.81
## PP.BehavInt2_PBPB 0.86
## PP.BehavInt3_PBPB 0.83
## PP.BehavInt4_PBPB 0.83
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_PBPB 522 0.94 0.94 0.92 0.90 57 32
## PP.BehavInt2_PBPB 521 0.92 0.91 0.87 0.85 54 34
## PP.BehavInt3_PBPB 521 0.94 0.94 0.92 0.90 60 29
## PP.BehavInt4_PBPB 521 0.94 0.94 0.92 0.89 59 30
psych::alpha(data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB,
## PP$BehavInt3_PBFB, PP$BehavInt4_PBFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.94 0.83 20 0.0026 53 31 0.82
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.95 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.BehavInt1_PBFB 0.93 0.94 0.91 0.83 14 0.0038 3.7e-03
## PP.BehavInt2_PBFB 0.95 0.95 0.93 0.86 18 0.0029 1.2e-03
## PP.BehavInt3_PBFB 0.93 0.93 0.90 0.82 13 0.0038 7.1e-05
## PP.BehavInt4_PBFB 0.93 0.93 0.90 0.82 13 0.0039 1.4e-03
## med.r
## PP.BehavInt1_PBFB 0.81
## PP.BehavInt2_PBFB 0.85
## PP.BehavInt3_PBFB 0.82
## PP.BehavInt4_PBFB 0.82
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_PBFB 479 0.94 0.94 0.91 0.88 53 34
## PP.BehavInt2_PBFB 478 0.92 0.91 0.86 0.84 48 36
## PP.BehavInt3_PBFB 478 0.94 0.94 0.93 0.90 56 32
## PP.BehavInt4_PBFB 479 0.94 0.94 0.93 0.90 54 32
psych::alpha(data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB, PP$BehavInt3_VB, PP$BehavInt4_VB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB,
## PP$BehavInt3_VB, PP$BehavInt4_VB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.93 0.93 0.92 0.77 13 0.0038 63 27 0.77
##
## lower alpha upper 95% confidence boundaries
## 0.92 0.93 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.BehavInt1_VB 0.89 0.90 0.87 0.74 8.6 0.0062 0.00841
## PP.BehavInt2_VB 0.94 0.94 0.91 0.83 14.7 0.0035 0.00089
## PP.BehavInt3_VB 0.90 0.91 0.88 0.77 9.8 0.0053 0.00554
## PP.BehavInt4_VB 0.89 0.90 0.86 0.74 8.5 0.0059 0.00360
## med.r
## PP.BehavInt1_VB 0.70
## PP.BehavInt2_VB 0.85
## PP.BehavInt3_VB 0.75
## PP.BehavInt4_VB 0.75
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_VB 470 0.93 0.93 0.91 0.87 64 30
## PP.BehavInt2_VB 471 0.87 0.86 0.78 0.75 59 33
## PP.BehavInt3_VB 471 0.91 0.91 0.88 0.84 65 29
## PP.BehavInt4_VB 471 0.93 0.93 0.92 0.88 64 28
Understanding
# Understanding was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
### Item 1: I understand how this works.
Grain-fed Feedlot Burger (GFFB)
PP$Understanding_GFFB <- PP$GFFB_Risk_30
length(PP$Understanding_GFFB)
## [1] 1005
describe(PP$Understanding_GFFB)
## PP$Understanding_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 94 0.994 69.54 29.72 16 29
## .25 .50 .75 .90 .95
## 53 74 93 100 100
##
## lowest : 0 1 2 4 6, highest: 96 97 98 99 100
sd(PP$Understanding_GFFB, na.rm=TRUE)
## [1] 26.81107
range(PP$Understanding_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_GFFB, main = 'GFFB - I understand how this works.')

Grain-fed Pasture Raised Burger (GFPRB)
PP$Understanding_GFPRB <- PP$GFPRB_Risk_30
length(PP$Understanding_GFPRB)
## [1] 1005
describe(PP$Understanding_GFPRB)
## PP$Understanding_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 89 0.987 72.88 29.17 19.0 32.1
## .25 .50 .75 .90 .95
## 56.0 79.0 98.0 100.0 100.0
##
## lowest : 0 1 2 5 8, highest: 96 97 98 99 100
sd(PP$Understanding_GFPRB, na.rm=TRUE)
## [1] 26.7755
range(PP$Understanding_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_GFPRB, main = 'GFPRB - I understand how this works.')

Cultured Beef Burgers (CBB)
PP$Understanding_CBB <- PP$CBB_Risk_30
length(PP$Understanding_CBB)
## [1] 1005
describe(PP$Understanding_CBB)
## PP$Understanding_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 99 0.998 57.91 35.57 0 10
## .25 .50 .75 .90 .95
## 33 62 84 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Understanding_CBB, na.rm=TRUE)
## [1] 31.06378
range(PP$Understanding_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_CBB, main = 'CBB - I understand how this works.')

Plant-based Protein Burger (PBPB)
PP$Understanding_PBPB <- PP$PBPB_Risk_30
length(PP$Understanding_PBPB)
## [1] 1005
describe(PP$Understanding_PBPB)
## PP$Understanding_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 90 0.997 63.28 31.66 10.00 24.00
## .25 .50 .75 .90 .95
## 44.75 67.00 86.00 100.00 100.00
##
## lowest : 0 1 3 4 5, highest: 95 97 98 99 100
sd(PP$Understanding_PBPB, na.rm=TRUE)
## [1] 27.92296
range(PP$Understanding_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_PBPB, main = 'PBPB - I understand how this works.')

Plant-based Fermentation Burger (PBFB)
PP$Understanding_PBFB <- PP$PBFB_Risk_30
length(PP$Understanding_PBFB)
## [1] 1005
describe(PP$Understanding_PBFB)
## PP$Understanding_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 97 0.998 57.91 35.23 0.00 10.00
## .25 .50 .75 .90 .95
## 33.75 64.00 82.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Understanding_PBFB, na.rm=TRUE)
## [1] 30.87369
range(PP$Understanding_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_PBFB, main = 'PBFB - I understand how this works.')

#VB
PP$Understanding_VB <- PP$VB_Risk_30
length(PP$Understanding_VB)
## [1] 1005
describe(PP$Understanding_VB)
## PP$Understanding_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 90 0.993 68.59 30.32 17 27
## .25 .50 .75 .90 .95
## 52 75 90 100 100
##
## lowest : 0 1 3 5 8, highest: 96 97 98 99 100
sd(PP$Understanding_VB, na.rm=TRUE)
## [1] 27.18276
range(PP$Understanding_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_VB, main = 'VB - I understand how this works.')

write.csv(PP, "PP_Ag.csv")
Difference Benefit/Risk Scores
#Difference Score
PP$BRDiff.GFFB <- (PP$Ben_Score_GFFB - PP$Risk_Score_GFFB)
PP$BRDiff.GFPRB <- (PP$Ben_Score_GFPRB - PP$Risk_Score_GFPRB)
PP$BRDiff.CBB <- (PP$Ben_Score_CBB - PP$Risk_Score_CBB)
PP$BRDiff.PBPB <- (PP$Ben_Score_PBPB - PP$Risk_Score_PBPB)
PP$BRDiff.PBFB <- (PP$Ben_Score_PBFB - PP$Risk_Score_PBFB)
PP$BRDiff.VB <- (PP$Ben_Score_VB - PP$Risk_Score_VB)
#Descriptives
describe(PP$BRDiff.GFFB)
## PP$BRDiff.GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 408 1 7.513 45.2 -73.467 -41.500
## .25 .50 .75 .90 .95
## -9.167 3.417 26.667 66.017 91.367
##
## lowest : -100.00000 -99.33333 -94.50000 -94.08333 -92.25000
## highest: 97.50000 98.75000 99.50000 99.75000 100.00000
describe(PP$BRDiff.GFPRB)
## PP$BRDiff.GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 419 1 28.56 45.18 -25.0333 -11.9000
## .25 .50 .75 .90 .95
## 0.1667 18.0833 62.0833 92.8000 99.8500
##
## lowest : -100.00000 -97.66667 -97.16667 -95.75000 -82.25000
## highest: 99.25000 99.33333 99.50000 99.75000 100.00000
describe(PP$BRDiff.CBB)
## PP$BRDiff.CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 430 1 -1.617 47.28 -81.7792 -68.8583
## .25 .50 .75 .90 .95
## -19.6667 -0.3333 17.4167 56.9333 77.4042
##
## lowest : -100.00000 -99.33333 -99.00000 -97.00000 -96.00000
## highest: 97.75000 98.00000 99.50000 99.75000 100.00000
describe(PP$BRDiff.PBPB)
## PP$BRDiff.PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 434 1 19.09 47.23 -57.13 -25.43
## .25 .50 .75 .90 .95
## -4.25 10.21 47.23 80.68 95.00
##
## lowest : -100.00000 -99.75000 -98.00000 -95.00000 -92.33333
## highest: 99.00000 99.25000 99.50000 99.75000 100.00000
describe(PP$BRDiff.PBFB)
## PP$BRDiff.PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 382 1 9.299 53.27 -83.367 -48.867
## .25 .50 .75 .90 .95
## -12.083 4.333 42.875 76.467 91.467
##
## lowest : -100.00000 -99.66667 -99.33333 -98.66667 -98.33333
## highest: 98.75000 99.00000 99.16667 99.75000 100.00000
describe(PP$BRDiff.VB)
## PP$BRDiff.VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 385 1 31.52 44.86 -21.758 -8.508
## .25 .50 .75 .90 .95
## 0.000 24.875 63.250 91.050 99.500
##
## lowest : -100.00000 -75.25000 -75.00000 -73.00000 -60.08333
## highest: 98.83333 99.25000 99.50000 99.66667 100.00000
#Histograms
hist(PP$BRDiff.GFFB)

hist(PP$BRDiff.GFPRB)

hist(PP$BRDiff.CBB)

hist(PP$BRDiff.PBPB)

hist(PP$BRDiff.PBFB)

hist(PP$BRDiff.VB)

#SD
sd(PP$BRDiff.GFFB, na.rm = TRUE)
## [1] 41.7335
sd(PP$BRDiff.GFPRB, na.rm = TRUE)
## [1] 40.47018
sd(PP$BRDiff.CBB, na.rm = TRUE)
## [1] 43.23648
sd(PP$BRDiff.PBPB, na.rm = TRUE)
## [1] 42.67171
sd(PP$BRDiff.PBFB, na.rm = TRUE)
## [1] 47.76765
sd(PP$BRDiff.VB, na.rm = TRUE)
## [1] 39.7248
Combo Fam/Risk Mean Scores
#Combo Mean Score
PP$FR.GFFB <- rowMeans(PP [, c("Familiarity_GFFB", "Understanding_GFFB")], na.rm=TRUE)
PP$FR.GFPRB <- rowMeans(PP [, c("Familiarity_GFPRB", "Understanding_GFPRB")], na.rm=TRUE)
PP$FR.CBB <- rowMeans(PP [, c("Familiarity_CBB", "Understanding_CBB")], na.rm=TRUE)
PP$FR.PBPB <- rowMeans(PP [, c("Familiarity_PBPB", "Understanding_PBPB")], na.rm=TRUE)
PP$FR.PBFB <- rowMeans(PP [, c("Familiarity_PBFB", "Understanding_PBFB")], na.rm=TRUE)
PP$FR.VB <- rowMeans(PP [, c("Familiarity_VB", "Understanding_VB")], na.rm=TRUE)
#Descriptives
describe(PP$FR.GFFB)
## PP$FR.GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 156 0.998 66.18 28.02 18.85 33.35
## .25 .50 .75 .90 .95
## 50.00 67.25 86.50 100.00 100.00
##
## lowest : 0.0 1.5 7.0 8.0 10.0, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.GFPRB)
## PP$FR.GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 141 0.996 73.05 26.21 31.3 44.6
## .25 .50 .75 .90 .95
## 54.0 77.5 93.5 100.0 100.0
##
## lowest : 0.0 4.5 9.0 13.0 14.0, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.CBB)
## PP$FR.CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 175 1 52.09 32.26 1.375 11.500
## .25 .50 .75 .90 .95
## 33.875 51.750 73.125 93.500 100.000
##
## lowest : 0.0 0.5 1.0 1.5 2.5, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.PBPB)
## PP$FR.PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 160 1 58.87 27.62 17.65 25.50
## .25 .50 .75 .90 .95
## 45.88 57.50 77.62 91.85 100.00
##
## lowest : 0.0 0.5 1.5 2.5 3.5, highest: 96.0 96.5 98.0 99.5 100.0
describe(PP$FR.PBFB)
## PP$FR.PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 165 1 52.95 32.09 0.5 10.5
## .25 .50 .75 .90 .95
## 33.5 53.0 76.0 90.0 95.5
##
## lowest : 0.0 0.5 1.0 1.5 3.0, highest: 95.0 95.5 96.5 99.0 100.0
describe(PP$FR.VB)
## PP$FR.VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 155 0.999 65.33 26.92 22.05 36.50
## .25 .50 .75 .90 .95
## 50.00 66.50 84.12 99.00 100.00
##
## lowest : 0.0 1.0 2.5 6.0 7.5, highest: 98.0 98.5 99.0 99.5 100.0
#SD
sd(PP$FR.GFFB, na.rm = TRUE)
## [1] 24.79544
sd(PP$FR.GFPRB, na.rm = TRUE)
## [1] 23.67885
sd(PP$FR.CBB, na.rm = TRUE)
## [1] 28.1976
sd(PP$FR.PBPB, na.rm = TRUE)
## [1] 24.35105
sd(PP$FR.PBFB, na.rm = TRUE)
## [1] 28.00067
sd(PP$FR.VB, na.rm = TRUE)
## [1] 23.84396
#Histograms
hist(PP$FR.GFFB)

hist(PP$FR.GFPRB)

hist(PP$FR.CBB)

hist(PP$FR.PBPB)

hist(PP$FR.PBFB)

hist(PP$FR.VB)

#Scales
PP$FR_Scale_GFFB <- data.frame(PP$Familiarity_GFFB, PP$Understanding_GFFB)
PP$FR_Scale_GFPRB <- data.frame(PP$Familiarity_GFPRB, PP$Understanding_GFPRB)
PP$FR_Scale_CBB <- data.frame(PP$Familiarity_CBB, PP$Understanding_CBB)
PP$FR_Scale_PBPB <- data.frame(PP$Familiarity_PBPB, PP$Understanding_PBPB)
PP$FR_Scale_PBFB <- data.frame(PP$Familiarity_PBFB, PP$Understanding_PBFB)
PP$FR_Scale_VB <- data.frame(PP$Familiarity_VB, PP$Understanding_VB)
#Alphas
psych::alpha(PP$FR_Scale_GFFB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_GFFB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.66 0.66 0.5 0.5 2 0.021 66 25 0.5
##
## lower alpha upper 95% confidence boundaries
## 0.62 0.66 0.7
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_GFFB 0.56 0.5 0.25 0.5 0.98 NA 0
## PP.Understanding_GFFB 0.44 0.5 0.25 0.5 0.98 NA 0
## med.r
## PP.Familiarity_GFFB 0.5
## PP.Understanding_GFFB 0.5
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_GFFB 493 0.88 0.86 0.61 0.5 63 30
## PP.Understanding_GFFB 497 0.85 0.86 0.61 0.5 70 27
psych::alpha(PP$FR_Scale_GFPRB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_GFPRB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.76 0.62 0.62 3.2 0.015 73 24 0.62
##
## lower alpha upper 95% confidence boundaries
## 0.73 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_GFPRB 0.59 0.62 0.38 0.62 1.6 NA 0
## PP.Understanding_GFPRB 0.64 0.62 0.38 0.62 1.6 NA 0
## med.r
## PP.Familiarity_GFPRB 0.62
## PP.Understanding_GFPRB 0.62
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_GFPRB 511 0.9 0.9 0.71 0.62 73 26
## PP.Understanding_GFPRB 512 0.9 0.9 0.71 0.62 73 27
psych::alpha(PP$FR_Scale_CBB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_CBB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.69 0.69 0.53 0.53 2.2 0.019 52 28 0.53
##
## lower alpha upper 95% confidence boundaries
## 0.65 0.69 0.73
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_CBB 0.57 0.53 0.28 0.53 1.1 NA 0
## PP.Understanding_CBB 0.49 0.53 0.28 0.53 1.1 NA 0
## med.r
## PP.Familiarity_CBB 0.53
## PP.Understanding_CBB 0.53
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_CBB 515 0.88 0.87 0.64 0.53 46 34
## PP.Understanding_CBB 515 0.86 0.87 0.64 0.53 58 31
psych::alpha(PP$FR_Scale_PBPB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_PBPB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.57 0.57 0.4 0.4 1.3 0.027 59 24 0.4
##
## lower alpha upper 95% confidence boundaries
## 0.52 0.57 0.62
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_PBPB 0.43 0.4 0.16 0.4 0.66 NA 0
## PP.Understanding_PBPB 0.37 0.4 0.16 0.4 0.66 NA 0
## med.r
## PP.Familiarity_PBPB 0.4
## PP.Understanding_PBPB 0.4
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_PBPB 524 0.85 0.84 0.53 0.4 54 30
## PP.Understanding_PBPB 524 0.82 0.84 0.53 0.4 63 28
psych::alpha(PP$FR_Scale_PBFB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_PBFB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.7 0.7 0.54 0.54 2.3 0.019 53 28 0.54
##
## lower alpha upper 95% confidence boundaries
## 0.66 0.7 0.74
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_PBFB 0.58 0.54 0.29 0.54 1.2 NA 0
## PP.Understanding_PBFB 0.51 0.54 0.29 0.54 1.2 NA 0
## med.r
## PP.Familiarity_PBFB 0.54
## PP.Understanding_PBFB 0.54
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_PBFB 481 0.89 0.88 0.64 0.54 48 33
## PP.Understanding_PBFB 480 0.87 0.88 0.64 0.54 58 31
psych::alpha(PP$FR_Scale_VB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_VB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.6 0.6 0.43 0.43 1.5 0.025 65 24 0.43
##
## lower alpha upper 95% confidence boundaries
## 0.55 0.6 0.65
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_VB 0.46 0.43 0.18 0.43 0.75 NA 0
## PP.Understanding_VB 0.40 0.43 0.18 0.43 0.75 NA 0
## med.r
## PP.Familiarity_VB 0.43
## PP.Understanding_VB 0.43
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_VB 472 0.86 0.85 0.55 0.43 62 29
## PP.Understanding_VB 471 0.83 0.85 0.55 0.43 69 27
Correlations
Scale Correlations
#Individual Differences
PP$corID <- data.frame(PP$AW_Scale, PP$ATNS_Scale,PP$CCB_Scale, PP$CNS_Scale, PP$DS_Scale, PP$IndScale, PP$CollScale, PP$PI_Orientation, PP$PP_Party)
mydata.cor9 = cor(PP$corID, use = "pairwise.complete.obs")
head(round(mydata.cor9,2))
## PP.AW_1 PP.AW_2 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4 PP.ATNS_5
## PP.AW_1 1.00 0.69 0.14 0.00 0.19 0.33 0.21
## PP.AW_2 0.69 1.00 0.18 -0.02 0.26 0.33 0.21
## PP.ATNS_1 0.14 0.18 1.00 -0.10 0.43 0.36 0.43
## PP.ATNS_2R 0.00 -0.02 -0.10 1.00 0.01 0.02 0.01
## PP.ATNS_3 0.19 0.26 0.43 0.01 1.00 0.52 0.52
## PP.ATNS_4 0.33 0.33 0.36 0.02 0.52 1.00 0.48
## PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.AW_1 0.32 0.33 0.33 0.35 0.33 0.38 0.37
## PP.AW_2 0.38 0.38 0.39 0.41 0.38 0.42 0.42
## PP.ATNS_1 0.10 0.12 0.11 0.09 0.31 0.30 0.26
## PP.ATNS_2R 0.03 0.03 0.00 -0.03 -0.06 -0.01 0.01
## PP.ATNS_3 0.13 0.17 0.18 0.15 0.33 0.30 0.24
## PP.ATNS_4 0.28 0.26 0.31 0.24 0.35 0.37 0.35
## PP.DS_1D PP.DS_2R PP.DS_3D PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.AW_1 0.11 -0.12 0.14 0.30 0.26 0.27 0.23
## PP.AW_2 0.12 -0.08 0.13 0.34 0.29 0.33 0.27
## PP.ATNS_1 0.11 -0.12 0.19 0.18 0.17 0.18 0.22
## PP.ATNS_2R -0.05 0.21 -0.13 0.07 0.07 0.02 0.03
## PP.ATNS_3 0.16 -0.06 0.24 0.20 0.22 0.21 0.23
## PP.ATNS_4 0.17 -0.08 0.16 0.25 0.21 0.24 0.20
## PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8 PP.PI_Orientation PP.PP_Party
## PP.AW_1 0.14 0.26 0.20 0.22 0.07 0.03
## PP.AW_2 0.13 0.20 0.17 0.22 0.15 0.08
## PP.ATNS_1 0.22 0.23 0.23 0.21 -0.08 -0.07
## PP.ATNS_2R -0.13 0.00 -0.14 -0.03 0.00 0.03
## PP.ATNS_3 0.24 0.23 0.22 0.23 -0.01 -0.06
## PP.ATNS_4 0.15 0.21 0.20 0.18 0.07 0.00
library("Hmisc")
mydata.rcorr9 = rcorr(as.matrix(mydata.cor9))
mydata.rcorr9
## PP.AW_1 PP.AW_2 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4
## PP.AW_1 1.00 0.91 0.13 -0.26 0.18 0.42
## PP.AW_2 0.91 1.00 0.14 -0.29 0.19 0.42
## PP.ATNS_1 0.13 0.14 1.00 -0.40 0.70 0.57
## PP.ATNS_2R -0.26 -0.29 -0.40 1.00 -0.28 -0.26
## PP.ATNS_3 0.18 0.19 0.70 -0.28 1.00 0.73
## PP.ATNS_4 0.42 0.42 0.57 -0.26 0.73 1.00
## PP.ATNS_5 0.20 0.18 0.69 -0.27 0.78 0.71
## PP.CCB_48 0.43 0.51 -0.13 -0.15 -0.10 0.20
## PP.CCB_49 0.44 0.53 -0.09 -0.15 -0.06 0.21
## PP.CCB_50 0.46 0.55 -0.08 -0.19 -0.03 0.27
## PP.CCB_51 0.50 0.59 -0.08 -0.23 -0.04 0.23
## PP.CNS_1 0.53 0.56 0.47 -0.37 0.45 0.53
## PP.CNS_2 0.58 0.61 0.42 -0.31 0.37 0.52
## PP.CNS_3 0.59 0.63 0.32 -0.28 0.27 0.47
## PP.DS_1D -0.09 -0.13 0.05 -0.26 0.08 0.02
## PP.DS_2R -0.50 -0.49 -0.44 0.41 -0.40 -0.48
## PP.DS_3D 0.02 -0.02 0.30 -0.46 0.31 0.13
## PP.Ind_1 0.39 0.41 0.16 -0.14 0.13 0.20
## PP.Ind_2 0.35 0.36 0.19 -0.12 0.18 0.20
## PP.Ind_5 0.37 0.40 0.19 -0.23 0.16 0.21
## PP.Ind_6 0.26 0.27 0.27 -0.22 0.21 0.16
## PP.Ind_3 0.04 -0.03 0.38 -0.46 0.31 0.11
## PP.Ind_4 0.23 0.13 0.35 -0.28 0.28 0.17
## PP.Ind_7 0.16 0.08 0.39 -0.50 0.31 0.19
## PP.Ind_8 0.21 0.15 0.32 -0.32 0.26 0.14
## PP.PI_Orientation 0.04 0.16 -0.41 -0.02 -0.34 -0.11
## PP.PP_Party -0.14 -0.07 -0.41 0.05 -0.41 -0.27
## PP.ATNS_5 PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1
## PP.AW_1 0.20 0.43 0.44 0.46 0.50 0.53
## PP.AW_2 0.18 0.51 0.53 0.55 0.59 0.56
## PP.ATNS_1 0.69 -0.13 -0.09 -0.08 -0.08 0.47
## PP.ATNS_2R -0.27 -0.15 -0.15 -0.19 -0.23 -0.37
## PP.ATNS_3 0.78 -0.10 -0.06 -0.03 -0.04 0.45
## PP.ATNS_4 0.71 0.20 0.21 0.27 0.23 0.53
## PP.ATNS_5 1.00 0.02 0.06 0.07 0.07 0.44
## PP.CCB_48 0.02 1.00 0.97 0.96 0.91 0.30
## PP.CCB_49 0.06 0.97 1.00 0.94 0.93 0.33
## PP.CCB_50 0.07 0.96 0.94 1.00 0.91 0.37
## PP.CCB_51 0.07 0.91 0.93 0.91 1.00 0.38
## PP.CNS_1 0.44 0.30 0.33 0.37 0.38 1.00
## PP.CNS_2 0.40 0.40 0.44 0.43 0.46 0.83
## PP.CNS_3 0.32 0.49 0.52 0.54 0.55 0.80
## PP.DS_1D 0.03 -0.23 -0.27 -0.24 -0.22 -0.19
## PP.DS_2R -0.42 -0.34 -0.37 -0.40 -0.39 -0.64
## PP.DS_3D 0.22 -0.23 -0.23 -0.22 -0.15 0.12
## PP.Ind_1 0.16 0.26 0.28 0.27 0.26 0.49
## PP.Ind_2 0.17 0.17 0.20 0.18 0.16 0.48
## PP.Ind_5 0.16 0.23 0.25 0.26 0.23 0.49
## PP.Ind_6 0.20 0.09 0.10 0.09 0.09 0.41
## PP.Ind_3 0.27 -0.32 -0.31 -0.27 -0.24 0.28
## PP.Ind_4 0.31 -0.08 -0.07 -0.06 -0.04 0.43
## PP.Ind_7 0.33 -0.16 -0.15 -0.12 -0.10 0.31
## PP.Ind_8 0.25 -0.05 -0.04 -0.02 -0.03 0.35
## PP.PI_Orientation -0.33 0.53 0.52 0.51 0.48 -0.11
## PP.PP_Party -0.38 0.20 0.18 0.17 0.12 -0.34
## PP.CNS_2 PP.CNS_3 PP.DS_1D PP.DS_2R PP.DS_3D PP.Ind_1
## PP.AW_1 0.58 0.59 -0.09 -0.50 0.02 0.39
## PP.AW_2 0.61 0.63 -0.13 -0.49 -0.02 0.41
## PP.ATNS_1 0.42 0.32 0.05 -0.44 0.30 0.16
## PP.ATNS_2R -0.31 -0.28 -0.26 0.41 -0.46 -0.14
## PP.ATNS_3 0.37 0.27 0.08 -0.40 0.31 0.13
## PP.ATNS_4 0.52 0.47 0.02 -0.48 0.13 0.20
## PP.ATNS_5 0.40 0.32 0.03 -0.42 0.22 0.16
## PP.CCB_48 0.40 0.49 -0.23 -0.34 -0.23 0.26
## PP.CCB_49 0.44 0.52 -0.27 -0.37 -0.23 0.28
## PP.CCB_50 0.43 0.54 -0.24 -0.40 -0.22 0.27
## PP.CCB_51 0.46 0.55 -0.22 -0.39 -0.15 0.26
## PP.CNS_1 0.83 0.80 -0.19 -0.64 0.12 0.49
## PP.CNS_2 1.00 0.84 -0.19 -0.59 0.01 0.49
## PP.CNS_3 0.84 1.00 -0.20 -0.57 0.02 0.56
## PP.DS_1D -0.19 -0.20 1.00 0.10 0.39 -0.06
## PP.DS_2R -0.59 -0.57 0.10 1.00 -0.25 -0.36
## PP.DS_3D 0.01 0.02 0.39 -0.25 1.00 -0.03
## PP.Ind_1 0.49 0.56 -0.06 -0.36 -0.03 1.00
## PP.Ind_2 0.47 0.51 -0.10 -0.39 0.03 0.81
## PP.Ind_5 0.50 0.51 -0.07 -0.40 0.04 0.83
## PP.Ind_6 0.42 0.42 0.05 -0.32 0.13 0.70
## PP.Ind_3 0.18 0.12 0.23 -0.30 0.47 0.21
## PP.Ind_4 0.41 0.36 0.08 -0.26 0.21 0.55
## PP.Ind_7 0.29 0.21 0.18 -0.40 0.37 0.32
## PP.Ind_8 0.38 0.34 0.10 -0.32 0.24 0.53
## PP.PI_Orientation -0.03 0.05 -0.23 -0.11 -0.37 -0.16
## PP.PP_Party -0.32 -0.28 -0.27 0.02 -0.32 -0.32
## PP.Ind_2 PP.Ind_5 PP.Ind_6 PP.Ind_3 PP.Ind_4 PP.Ind_7
## PP.AW_1 0.35 0.37 0.26 0.04 0.23 0.16
## PP.AW_2 0.36 0.40 0.27 -0.03 0.13 0.08
## PP.ATNS_1 0.19 0.19 0.27 0.38 0.35 0.39
## PP.ATNS_2R -0.12 -0.23 -0.22 -0.46 -0.28 -0.50
## PP.ATNS_3 0.18 0.16 0.21 0.31 0.28 0.31
## PP.ATNS_4 0.20 0.21 0.16 0.11 0.17 0.19
## PP.ATNS_5 0.17 0.16 0.20 0.27 0.31 0.33
## PP.CCB_48 0.17 0.23 0.09 -0.32 -0.08 -0.16
## PP.CCB_49 0.20 0.25 0.10 -0.31 -0.07 -0.15
## PP.CCB_50 0.18 0.26 0.09 -0.27 -0.06 -0.12
## PP.CCB_51 0.16 0.23 0.09 -0.24 -0.04 -0.10
## PP.CNS_1 0.48 0.49 0.41 0.28 0.43 0.31
## PP.CNS_2 0.47 0.50 0.42 0.18 0.41 0.29
## PP.CNS_3 0.51 0.51 0.42 0.12 0.36 0.21
## PP.DS_1D -0.10 -0.07 0.05 0.23 0.08 0.18
## PP.DS_2R -0.39 -0.40 -0.32 -0.30 -0.26 -0.40
## PP.DS_3D 0.03 0.04 0.13 0.47 0.21 0.37
## PP.Ind_1 0.81 0.83 0.70 0.21 0.55 0.32
## PP.Ind_2 1.00 0.78 0.66 0.16 0.45 0.28
## PP.Ind_5 0.78 1.00 0.66 0.23 0.49 0.34
## PP.Ind_6 0.66 0.66 1.00 0.38 0.60 0.46
## PP.Ind_3 0.16 0.23 0.38 1.00 0.68 0.84
## PP.Ind_4 0.45 0.49 0.60 0.68 1.00 0.63
## PP.Ind_7 0.28 0.34 0.46 0.84 0.63 1.00
## PP.Ind_8 0.47 0.53 0.62 0.62 0.81 0.62
## PP.PI_Orientation -0.14 -0.12 -0.28 -0.56 -0.52 -0.47
## PP.PP_Party -0.36 -0.30 -0.42 -0.48 -0.57 -0.44
## PP.Ind_8 PP.PI_Orientation PP.PP_Party
## PP.AW_1 0.21 0.04 -0.14
## PP.AW_2 0.15 0.16 -0.07
## PP.ATNS_1 0.32 -0.41 -0.41
## PP.ATNS_2R -0.32 -0.02 0.05
## PP.ATNS_3 0.26 -0.34 -0.41
## PP.ATNS_4 0.14 -0.11 -0.27
## PP.ATNS_5 0.25 -0.33 -0.38
## PP.CCB_48 -0.05 0.53 0.20
## PP.CCB_49 -0.04 0.52 0.18
## PP.CCB_50 -0.02 0.51 0.17
## PP.CCB_51 -0.03 0.48 0.12
## PP.CNS_1 0.35 -0.11 -0.34
## PP.CNS_2 0.38 -0.03 -0.32
## PP.CNS_3 0.34 0.05 -0.28
## PP.DS_1D 0.10 -0.23 -0.27
## PP.DS_2R -0.32 -0.11 0.02
## PP.DS_3D 0.24 -0.37 -0.32
## PP.Ind_1 0.53 -0.16 -0.32
## PP.Ind_2 0.47 -0.14 -0.36
## PP.Ind_5 0.53 -0.12 -0.30
## PP.Ind_6 0.62 -0.28 -0.42
## PP.Ind_3 0.62 -0.56 -0.48
## PP.Ind_4 0.81 -0.52 -0.57
## PP.Ind_7 0.62 -0.47 -0.44
## PP.Ind_8 1.00 -0.45 -0.49
## PP.PI_Orientation -0.45 1.00 0.42
## PP.PP_Party -0.49 0.42 1.00
##
## n= 27
##
##
## P
## PP.AW_1 PP.AW_2 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4
## PP.AW_1 0.0000 0.5131 0.1849 0.3807 0.0284
## PP.AW_2 0.0000 0.4969 0.1382 0.3392 0.0300
## PP.ATNS_1 0.5131 0.4969 0.0381 0.0000 0.0020
## PP.ATNS_2R 0.1849 0.1382 0.0381 0.1635 0.1928
## PP.ATNS_3 0.3807 0.3392 0.0000 0.1635 0.0000
## PP.ATNS_4 0.0284 0.0300 0.0020 0.1928 0.0000
## PP.ATNS_5 0.3082 0.3646 0.0000 0.1769 0.0000 0.0000
## PP.CCB_48 0.0267 0.0061 0.5160 0.4619 0.6069 0.3128
## PP.CCB_49 0.0206 0.0046 0.6450 0.4409 0.7698 0.2843
## PP.CCB_50 0.0159 0.0030 0.6814 0.3398 0.8772 0.1801
## PP.CCB_51 0.0076 0.0013 0.6881 0.2482 0.8549 0.2551
## PP.CNS_1 0.0042 0.0022 0.0125 0.0604 0.0183 0.0044
## PP.CNS_2 0.0014 0.0007 0.0300 0.1162 0.0553 0.0050
## PP.CNS_3 0.0013 0.0004 0.0983 0.1549 0.1694 0.0130
## PP.DS_1D 0.6389 0.5143 0.7897 0.1867 0.6796 0.9138
## PP.DS_2R 0.0084 0.0092 0.0203 0.0345 0.0413 0.0119
## PP.DS_3D 0.9101 0.9098 0.1309 0.0156 0.1117 0.5103
## PP.Ind_1 0.0437 0.0328 0.4128 0.4778 0.5090 0.3086
## PP.Ind_2 0.0767 0.0639 0.3332 0.5541 0.3569 0.3209
## PP.Ind_5 0.0606 0.0387 0.3480 0.2582 0.4179 0.2982
## PP.Ind_6 0.1842 0.1763 0.1776 0.2602 0.2851 0.4354
## PP.Ind_3 0.8304 0.8689 0.0528 0.0154 0.1115 0.5838
## PP.Ind_4 0.2427 0.5037 0.0729 0.1524 0.1631 0.3917
## PP.Ind_7 0.4324 0.7079 0.0440 0.0083 0.1179 0.3483
## PP.Ind_8 0.2856 0.4434 0.1065 0.1016 0.1898 0.4813
## PP.PI_Orientation 0.8438 0.4395 0.0347 0.9090 0.0810 0.5794
## PP.PP_Party 0.5007 0.7390 0.0326 0.7909 0.0333 0.1690
## PP.ATNS_5 PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1
## PP.AW_1 0.3082 0.0267 0.0206 0.0159 0.0076 0.0042
## PP.AW_2 0.3646 0.0061 0.0046 0.0030 0.0013 0.0022
## PP.ATNS_1 0.0000 0.5160 0.6450 0.6814 0.6881 0.0125
## PP.ATNS_2R 0.1769 0.4619 0.4409 0.3398 0.2482 0.0604
## PP.ATNS_3 0.0000 0.6069 0.7698 0.8772 0.8549 0.0183
## PP.ATNS_4 0.0000 0.3128 0.2843 0.1801 0.2551 0.0044
## PP.ATNS_5 0.9318 0.7807 0.7446 0.7166 0.0228
## PP.CCB_48 0.9318 0.0000 0.0000 0.0000 0.1295
## PP.CCB_49 0.7807 0.0000 0.0000 0.0000 0.0898
## PP.CCB_50 0.7446 0.0000 0.0000 0.0000 0.0590
## PP.CCB_51 0.7166 0.0000 0.0000 0.0000 0.0515
## PP.CNS_1 0.0228 0.1295 0.0898 0.0590 0.0515
## PP.CNS_2 0.0406 0.0381 0.0229 0.0237 0.0169 0.0000
## PP.CNS_3 0.1006 0.0094 0.0051 0.0035 0.0031 0.0000
## PP.DS_1D 0.8976 0.2530 0.1749 0.2344 0.2685 0.3497
## PP.DS_2R 0.0280 0.0786 0.0586 0.0394 0.0423 0.0003
## PP.DS_3D 0.2654 0.2397 0.2397 0.2687 0.4427 0.5641
## PP.Ind_1 0.4221 0.1922 0.1586 0.1696 0.1925 0.0092
## PP.Ind_2 0.4031 0.3901 0.3213 0.3618 0.4210 0.0107
## PP.Ind_5 0.4147 0.2435 0.2152 0.1950 0.2509 0.0092
## PP.Ind_6 0.3167 0.6701 0.6064 0.6384 0.6404 0.0348
## PP.Ind_3 0.1682 0.0986 0.1097 0.1726 0.2312 0.1564
## PP.Ind_4 0.1181 0.6857 0.7109 0.7772 0.8251 0.0244
## PP.Ind_7 0.0887 0.4209 0.4462 0.5376 0.6156 0.1210
## PP.Ind_8 0.2156 0.8023 0.8246 0.9121 0.8801 0.0728
## PP.PI_Orientation 0.0963 0.0044 0.0058 0.0060 0.0113 0.5736
## PP.PP_Party 0.0533 0.3110 0.3598 0.3860 0.5554 0.0862
## PP.CNS_2 PP.CNS_3 PP.DS_1D PP.DS_2R PP.DS_3D PP.Ind_1
## PP.AW_1 0.0014 0.0013 0.6389 0.0084 0.9101 0.0437
## PP.AW_2 0.0007 0.0004 0.5143 0.0092 0.9098 0.0328
## PP.ATNS_1 0.0300 0.0983 0.7897 0.0203 0.1309 0.4128
## PP.ATNS_2R 0.1162 0.1549 0.1867 0.0345 0.0156 0.4778
## PP.ATNS_3 0.0553 0.1694 0.6796 0.0413 0.1117 0.5090
## PP.ATNS_4 0.0050 0.0130 0.9138 0.0119 0.5103 0.3086
## PP.ATNS_5 0.0406 0.1006 0.8976 0.0280 0.2654 0.4221
## PP.CCB_48 0.0381 0.0094 0.2530 0.0786 0.2397 0.1922
## PP.CCB_49 0.0229 0.0051 0.1749 0.0586 0.2397 0.1586
## PP.CCB_50 0.0237 0.0035 0.2344 0.0394 0.2687 0.1696
## PP.CCB_51 0.0169 0.0031 0.2685 0.0423 0.4427 0.1925
## PP.CNS_1 0.0000 0.0000 0.3497 0.0003 0.5641 0.0092
## PP.CNS_2 0.0000 0.3359 0.0011 0.9684 0.0096
## PP.CNS_3 0.0000 0.3206 0.0018 0.9232 0.0024
## PP.DS_1D 0.3359 0.3206 0.6111 0.0452 0.7833
## PP.DS_2R 0.0011 0.0018 0.6111 0.2126 0.0673
## PP.DS_3D 0.9684 0.9232 0.0452 0.2126 0.8926
## PP.Ind_1 0.0096 0.0024 0.7833 0.0673 0.8926
## PP.Ind_2 0.0136 0.0070 0.6214 0.0455 0.8713 0.0000
## PP.Ind_5 0.0076 0.0060 0.7164 0.0406 0.8499 0.0000
## PP.Ind_6 0.0282 0.0303 0.7967 0.0982 0.5121 0.0000
## PP.Ind_3 0.3618 0.5460 0.2552 0.1245 0.0133 0.2871
## PP.Ind_4 0.0347 0.0652 0.7005 0.1933 0.2890 0.0032
## PP.Ind_7 0.1443 0.2970 0.3760 0.0394 0.0584 0.1018
## PP.Ind_8 0.0531 0.0848 0.6372 0.1005 0.2258 0.0046
## PP.PI_Orientation 0.8902 0.8181 0.2410 0.5687 0.0546 0.4148
## PP.PP_Party 0.0987 0.1520 0.1753 0.9202 0.1088 0.0990
## PP.Ind_2 PP.Ind_5 PP.Ind_6 PP.Ind_3 PP.Ind_4 PP.Ind_7
## PP.AW_1 0.0767 0.0606 0.1842 0.8304 0.2427 0.4324
## PP.AW_2 0.0639 0.0387 0.1763 0.8689 0.5037 0.7079
## PP.ATNS_1 0.3332 0.3480 0.1776 0.0528 0.0729 0.0440
## PP.ATNS_2R 0.5541 0.2582 0.2602 0.0154 0.1524 0.0083
## PP.ATNS_3 0.3569 0.4179 0.2851 0.1115 0.1631 0.1179
## PP.ATNS_4 0.3209 0.2982 0.4354 0.5838 0.3917 0.3483
## PP.ATNS_5 0.4031 0.4147 0.3167 0.1682 0.1181 0.0887
## PP.CCB_48 0.3901 0.2435 0.6701 0.0986 0.6857 0.4209
## PP.CCB_49 0.3213 0.2152 0.6064 0.1097 0.7109 0.4462
## PP.CCB_50 0.3618 0.1950 0.6384 0.1726 0.7772 0.5376
## PP.CCB_51 0.4210 0.2509 0.6404 0.2312 0.8251 0.6156
## PP.CNS_1 0.0107 0.0092 0.0348 0.1564 0.0244 0.1210
## PP.CNS_2 0.0136 0.0076 0.0282 0.3618 0.0347 0.1443
## PP.CNS_3 0.0070 0.0060 0.0303 0.5460 0.0652 0.2970
## PP.DS_1D 0.6214 0.7164 0.7967 0.2552 0.7005 0.3760
## PP.DS_2R 0.0455 0.0406 0.0982 0.1245 0.1933 0.0394
## PP.DS_3D 0.8713 0.8499 0.5121 0.0133 0.2890 0.0584
## PP.Ind_1 0.0000 0.0000 0.0000 0.2871 0.0032 0.1018
## PP.Ind_2 0.0000 0.0002 0.4251 0.0196 0.1552
## PP.Ind_5 0.0000 0.0002 0.2383 0.0095 0.0817
## PP.Ind_6 0.0002 0.0002 0.0537 0.0008 0.0162
## PP.Ind_3 0.4251 0.2383 0.0537 0.0000 0.0000
## PP.Ind_4 0.0196 0.0095 0.0008 0.0000 0.0004
## PP.Ind_7 0.1552 0.0817 0.0162 0.0000 0.0004
## PP.Ind_8 0.0144 0.0047 0.0006 0.0005 0.0000 0.0006
## PP.PI_Orientation 0.4796 0.5375 0.1616 0.0023 0.0058 0.0128
## PP.PP_Party 0.0681 0.1344 0.0287 0.0114 0.0019 0.0204
## PP.Ind_8 PP.PI_Orientation PP.PP_Party
## PP.AW_1 0.2856 0.8438 0.5007
## PP.AW_2 0.4434 0.4395 0.7390
## PP.ATNS_1 0.1065 0.0347 0.0326
## PP.ATNS_2R 0.1016 0.9090 0.7909
## PP.ATNS_3 0.1898 0.0810 0.0333
## PP.ATNS_4 0.4813 0.5794 0.1690
## PP.ATNS_5 0.2156 0.0963 0.0533
## PP.CCB_48 0.8023 0.0044 0.3110
## PP.CCB_49 0.8246 0.0058 0.3598
## PP.CCB_50 0.9121 0.0060 0.3860
## PP.CCB_51 0.8801 0.0113 0.5554
## PP.CNS_1 0.0728 0.5736 0.0862
## PP.CNS_2 0.0531 0.8902 0.0987
## PP.CNS_3 0.0848 0.8181 0.1520
## PP.DS_1D 0.6372 0.2410 0.1753
## PP.DS_2R 0.1005 0.5687 0.9202
## PP.DS_3D 0.2258 0.0546 0.1088
## PP.Ind_1 0.0046 0.4148 0.0990
## PP.Ind_2 0.0144 0.4796 0.0681
## PP.Ind_5 0.0047 0.5375 0.1344
## PP.Ind_6 0.0006 0.1616 0.0287
## PP.Ind_3 0.0005 0.0023 0.0114
## PP.Ind_4 0.0000 0.0058 0.0019
## PP.Ind_7 0.0006 0.0128 0.0204
## PP.Ind_8 0.0190 0.0092
## PP.PI_Orientation 0.0190 0.0302
## PP.PP_Party 0.0092 0.0302
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor9, method="color")

corrplot(mydata.cor9, addCoef.col = 1, number.cex = 0.3, method = 'number')

#Environmental Measures
PP$corID <- data.frame(PP$AW_Score, PP$ATNS_Score, PP$CCBelief_Score, PP$CNS_Score, PP$Ideology)
mydata.corID = cor(PP$corID, use = "pairwise.complete.obs")
head(round(mydata.corID,2))
## PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score 1.00 0.30 0.44 0.31
## PP.ATNS_Score 0.30 1.00 0.26 0.29
## PP.CCBelief_Score 0.44 0.26 1.00 0.38
## PP.CNS_Score 0.31 0.29 0.38 1.00
## PP.Ideology 0.00 0.03 -0.04 0.05
## PP.Ideology
## PP.AW_Score 0.00
## PP.ATNS_Score 0.03
## PP.CCBelief_Score -0.04
## PP.CNS_Score 0.05
## PP.Ideology 1.00
library("Hmisc")
mydata.rcorrID = rcorr(as.matrix(mydata.corID))
mydata.rcorrID
## PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score 1.00 0.06 0.44 0.07
## PP.ATNS_Score 0.06 1.00 -0.02 0.01
## PP.CCBelief_Score 0.44 -0.02 1.00 0.26
## PP.CNS_Score 0.07 0.01 0.26 1.00
## PP.Ideology -0.65 -0.50 -0.71 -0.52
## PP.Ideology
## PP.AW_Score -0.65
## PP.ATNS_Score -0.50
## PP.CCBelief_Score -0.71
## PP.CNS_Score -0.52
## PP.Ideology 1.00
##
## n= 5
##
##
## P
## PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score 0.9214 0.4595 0.9075
## PP.ATNS_Score 0.9214 0.9780 0.9871
## PP.CCBelief_Score 0.4595 0.9780 0.6785
## PP.CNS_Score 0.9075 0.9871 0.6785
## PP.Ideology 0.2382 0.3930 0.1820 0.3726
## PP.Ideology
## PP.AW_Score 0.2382
## PP.ATNS_Score 0.3930
## PP.CCBelief_Score 0.1820
## PP.CNS_Score 0.3726
## PP.Ideology
library(corrplot)
corrplot(mydata.corID, method="color")

corrplot(mydata.corID, addCoef.col = 1, number.cex = 0.3, method = 'number')

#Naturalness Scales (TOTAL SCALE)
PP$corNScales <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot)
mydata.cor5 = cor(PP$corNScales, use = "pairwise.complete.obs")
head(round(mydata.cor5,2))
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 0.18 -0.15
## PP.Nat_4R_GFFB 0.18 1.00 0.61 0.50
## PP.Nat_2R_GFFB 0.18 0.61 1.00 0.44
## PP.Nat_3R_GFFB -0.15 0.50 0.44 1.00
## PP.Nat_1_GFPRB 0.42 0.15 0.07 0.01
## PP.Nat_4R_GFPRB 0.04 0.47 0.21 0.33
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.42 0.04 -0.03 -0.04
## PP.Nat_4R_GFFB 0.15 0.47 0.49 0.38
## PP.Nat_2R_GFFB 0.07 0.21 0.29 0.17
## PP.Nat_3R_GFFB 0.01 0.33 0.34 0.49
## PP.Nat_1_GFPRB 1.00 0.38 0.25 0.14
## PP.Nat_4R_GFPRB 0.38 1.00 0.68 0.52
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.35 -0.01 0.04 0.00
## PP.Nat_4R_GFFB -0.36 0.20 0.14 0.05
## PP.Nat_2R_GFFB -0.32 0.13 0.22 0.21
## PP.Nat_3R_GFFB -0.41 0.08 0.07 0.01
## PP.Nat_1_GFPRB -0.10 -0.05 -0.13 -0.13
## PP.Nat_4R_GFPRB -0.34 0.11 -0.06 -0.06
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.14 -0.21 -0.26 -0.17
## PP.Nat_4R_GFFB -0.23 0.08 0.00 -0.04
## PP.Nat_2R_GFFB -0.27 0.15 0.04 0.06
## PP.Nat_3R_GFFB -0.36 0.09 0.14 0.10
## PP.Nat_1_GFPRB -0.04 0.03 0.05 -0.33
## PP.Nat_4R_GFPRB -0.23 0.20 0.11 -0.12
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.17 0.24 0.28 0.29
## PP.Nat_4R_GFFB -0.35 -0.07 0.03 0.05
## PP.Nat_2R_GFFB -0.33 0.05 -0.11 -0.07
## PP.Nat_3R_GFFB -0.37 -0.11 -0.11 -0.15
## PP.Nat_1_GFPRB -0.06 0.23 0.20 0.28
## PP.Nat_4R_GFPRB -0.35 -0.01 -0.04 0.05
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.09 -0.21 -0.22 -0.24
## PP.Nat_4R_GFFB -0.13 0.25 0.13 0.05
## PP.Nat_2R_GFFB -0.09 0.15 0.12 0.12
## PP.Nat_3R_GFFB -0.04 0.27 0.22 0.20
## PP.Nat_1_GFPRB 0.09 0.02 0.07 0.06
## PP.Nat_4R_GFPRB -0.11 0.32 0.39 0.25
library("Hmisc")
mydata.rcorr5 = rcorr(as.matrix(mydata.cor5))
mydata.rcorr5
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 -0.08 -0.10 -0.45
## PP.Nat_4R_GFFB -0.08 1.00 0.86 0.81
## PP.Nat_2R_GFFB -0.10 0.86 1.00 0.76
## PP.Nat_3R_GFFB -0.45 0.81 0.76 1.00
## PP.Nat_1_GFPRB 0.50 0.24 0.08 0.02
## PP.Nat_4R_GFPRB -0.24 0.76 0.54 0.70
## PP.Nat_2R_GFPRB -0.21 0.79 0.58 0.72
## PP.Nat_3R_GFPRB -0.30 0.74 0.55 0.81
## PP.Nat_1_CBB 0.47 -0.71 -0.64 -0.81
## PP.Nat_4R_CBB -0.21 0.08 0.15 0.03
## PP.Nat_2R_CBB -0.17 0.03 0.21 0.03
## PP.Nat_3R_CBB -0.18 0.01 0.21 0.02
## PP.Nat_1_PBPB 0.14 -0.70 -0.69 -0.72
## PP.Nat_4R_PBPB -0.65 0.01 0.08 0.17
## PP.Nat_2R_PBPB -0.69 -0.05 0.07 0.20
## PP.Nat_3R_PBPB -0.63 -0.05 0.14 0.23
## PP.Nat_1_PBFB 0.21 -0.78 -0.72 -0.77
## PP.Nat_4R_PBFB 0.51 0.03 0.01 -0.14
## PP.Nat_2R_PBFB 0.61 -0.06 -0.22 -0.29
## PP.Nat_3R_PBFB 0.63 -0.03 -0.20 -0.32
## PP.Nat_1_VB 0.03 -0.50 -0.49 -0.39
## PP.Nat_4R_VB -0.68 0.30 0.24 0.50
## PP.Nat_2R_VB -0.68 0.33 0.28 0.55
## PP.Nat_3R_VB -0.66 0.27 0.29 0.54
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.50 -0.24 -0.21 -0.30
## PP.Nat_4R_GFFB 0.24 0.76 0.79 0.74
## PP.Nat_2R_GFFB 0.08 0.54 0.58 0.55
## PP.Nat_3R_GFFB 0.02 0.70 0.72 0.81
## PP.Nat_1_GFPRB 1.00 0.47 0.42 0.25
## PP.Nat_4R_GFPRB 0.47 1.00 0.94 0.85
## PP.Nat_2R_GFPRB 0.42 0.94 1.00 0.86
## PP.Nat_3R_GFPRB 0.25 0.85 0.86 1.00
## PP.Nat_1_CBB -0.23 -0.77 -0.78 -0.81
## PP.Nat_4R_CBB -0.41 -0.10 -0.18 -0.16
## PP.Nat_2R_CBB -0.49 -0.23 -0.27 -0.20
## PP.Nat_3R_CBB -0.48 -0.22 -0.26 -0.14
## PP.Nat_1_PBPB -0.24 -0.66 -0.72 -0.74
## PP.Nat_4R_PBPB -0.32 0.12 -0.04 -0.05
## PP.Nat_2R_PBPB -0.37 0.05 -0.09 -0.03
## PP.Nat_3R_PBPB -0.62 -0.09 -0.18 0.02
## PP.Nat_1_PBFB -0.28 -0.76 -0.81 -0.78
## PP.Nat_4R_PBFB 0.52 0.04 0.16 0.07
## PP.Nat_2R_PBFB 0.50 -0.07 0.05 -0.06
## PP.Nat_3R_PBFB 0.57 -0.02 0.07 -0.09
## PP.Nat_1_VB -0.04 -0.38 -0.43 -0.47
## PP.Nat_4R_VB -0.13 0.48 0.38 0.40
## PP.Nat_2R_VB -0.03 0.60 0.53 0.54
## PP.Nat_3R_VB -0.09 0.50 0.47 0.51
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.47 -0.21 -0.17 -0.18
## PP.Nat_4R_GFFB -0.71 0.08 0.03 0.01
## PP.Nat_2R_GFFB -0.64 0.15 0.21 0.21
## PP.Nat_3R_GFFB -0.81 0.03 0.03 0.02
## PP.Nat_1_GFPRB -0.23 -0.41 -0.49 -0.48
## PP.Nat_4R_GFPRB -0.77 -0.10 -0.23 -0.22
## PP.Nat_2R_GFPRB -0.78 -0.18 -0.27 -0.26
## PP.Nat_3R_GFPRB -0.81 -0.16 -0.20 -0.14
## PP.Nat_1_CBB 1.00 0.29 0.28 0.22
## PP.Nat_4R_CBB 0.29 1.00 0.89 0.81
## PP.Nat_2R_CBB 0.28 0.89 1.00 0.92
## PP.Nat_3R_CBB 0.22 0.81 0.92 1.00
## PP.Nat_1_PBPB 0.71 0.08 0.03 -0.02
## PP.Nat_4R_PBPB -0.18 0.30 0.21 0.14
## PP.Nat_2R_PBPB -0.19 0.39 0.45 0.41
## PP.Nat_3R_PBPB -0.17 0.30 0.41 0.41
## PP.Nat_1_PBFB 0.83 0.19 0.16 0.14
## PP.Nat_4R_PBFB -0.13 -0.58 -0.50 -0.44
## PP.Nat_2R_PBFB 0.08 -0.64 -0.65 -0.63
## PP.Nat_3R_PBFB 0.09 -0.49 -0.56 -0.53
## PP.Nat_1_VB 0.34 -0.24 -0.31 -0.34
## PP.Nat_4R_VB -0.54 0.03 -0.11 -0.13
## PP.Nat_2R_VB -0.68 -0.04 -0.12 -0.13
## PP.Nat_3R_VB -0.61 -0.08 -0.12 -0.13
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.14 -0.65 -0.69 -0.63
## PP.Nat_4R_GFFB -0.70 0.01 -0.05 -0.05
## PP.Nat_2R_GFFB -0.69 0.08 0.07 0.14
## PP.Nat_3R_GFFB -0.72 0.17 0.20 0.23
## PP.Nat_1_GFPRB -0.24 -0.32 -0.37 -0.62
## PP.Nat_4R_GFPRB -0.66 0.12 0.05 -0.09
## PP.Nat_2R_GFPRB -0.72 -0.04 -0.09 -0.18
## PP.Nat_3R_GFPRB -0.74 -0.05 -0.03 0.02
## PP.Nat_1_CBB 0.71 -0.18 -0.19 -0.17
## PP.Nat_4R_CBB 0.08 0.30 0.39 0.30
## PP.Nat_2R_CBB 0.03 0.21 0.45 0.41
## PP.Nat_3R_CBB -0.02 0.14 0.41 0.41
## PP.Nat_1_PBPB 1.00 0.25 0.14 -0.02
## PP.Nat_4R_PBPB 0.25 1.00 0.79 0.66
## PP.Nat_2R_PBPB 0.14 0.79 1.00 0.77
## PP.Nat_3R_PBPB -0.02 0.66 0.77 1.00
## PP.Nat_1_PBFB 0.91 0.06 0.05 -0.04
## PP.Nat_4R_PBFB -0.38 -0.67 -0.63 -0.58
## PP.Nat_2R_PBFB -0.04 -0.63 -0.80 -0.76
## PP.Nat_3R_PBFB -0.01 -0.59 -0.74 -0.86
## PP.Nat_1_VB 0.74 0.21 0.03 -0.12
## PP.Nat_4R_VB -0.04 0.70 0.56 0.46
## PP.Nat_2R_VB -0.29 0.48 0.49 0.40
## PP.Nat_3R_VB -0.39 0.44 0.43 0.56
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.21 0.51 0.61 0.63
## PP.Nat_4R_GFFB -0.78 0.03 -0.06 -0.03
## PP.Nat_2R_GFFB -0.72 0.01 -0.22 -0.20
## PP.Nat_3R_GFFB -0.77 -0.14 -0.29 -0.32
## PP.Nat_1_GFPRB -0.28 0.52 0.50 0.57
## PP.Nat_4R_GFPRB -0.76 0.04 -0.07 -0.02
## PP.Nat_2R_GFPRB -0.81 0.16 0.05 0.07
## PP.Nat_3R_GFPRB -0.78 0.07 -0.06 -0.09
## PP.Nat_1_CBB 0.83 -0.13 0.08 0.09
## PP.Nat_4R_CBB 0.19 -0.58 -0.64 -0.49
## PP.Nat_2R_CBB 0.16 -0.50 -0.65 -0.56
## PP.Nat_3R_CBB 0.14 -0.44 -0.63 -0.53
## PP.Nat_1_PBPB 0.91 -0.38 -0.04 -0.01
## PP.Nat_4R_PBPB 0.06 -0.67 -0.63 -0.59
## PP.Nat_2R_PBPB 0.05 -0.63 -0.80 -0.74
## PP.Nat_3R_PBPB -0.04 -0.58 -0.76 -0.86
## PP.Nat_1_PBFB 1.00 -0.36 -0.09 -0.04
## PP.Nat_4R_PBFB -0.36 1.00 0.81 0.77
## PP.Nat_2R_PBFB -0.09 0.81 1.00 0.89
## PP.Nat_3R_PBFB -0.04 0.77 0.89 1.00
## PP.Nat_1_VB 0.67 -0.31 0.02 0.02
## PP.Nat_4R_VB -0.20 -0.58 -0.57 -0.52
## PP.Nat_2R_VB -0.35 -0.39 -0.51 -0.48
## PP.Nat_3R_VB -0.41 -0.36 -0.50 -0.59
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.03 -0.68 -0.68 -0.66
## PP.Nat_4R_GFFB -0.50 0.30 0.33 0.27
## PP.Nat_2R_GFFB -0.49 0.24 0.28 0.29
## PP.Nat_3R_GFFB -0.39 0.50 0.55 0.54
## PP.Nat_1_GFPRB -0.04 -0.13 -0.03 -0.09
## PP.Nat_4R_GFPRB -0.38 0.48 0.60 0.50
## PP.Nat_2R_GFPRB -0.43 0.38 0.53 0.47
## PP.Nat_3R_GFPRB -0.47 0.40 0.54 0.51
## PP.Nat_1_CBB 0.34 -0.54 -0.68 -0.61
## PP.Nat_4R_CBB -0.24 0.03 -0.04 -0.08
## PP.Nat_2R_CBB -0.31 -0.11 -0.12 -0.12
## PP.Nat_3R_CBB -0.34 -0.13 -0.13 -0.13
## PP.Nat_1_PBPB 0.74 -0.04 -0.29 -0.39
## PP.Nat_4R_PBPB 0.21 0.70 0.48 0.44
## PP.Nat_2R_PBPB 0.03 0.56 0.49 0.43
## PP.Nat_3R_PBPB -0.12 0.46 0.40 0.56
## PP.Nat_1_PBFB 0.67 -0.20 -0.35 -0.41
## PP.Nat_4R_PBFB -0.31 -0.58 -0.39 -0.36
## PP.Nat_2R_PBFB 0.02 -0.57 -0.51 -0.50
## PP.Nat_3R_PBFB 0.02 -0.52 -0.48 -0.59
## PP.Nat_1_VB 1.00 0.27 0.11 -0.02
## PP.Nat_4R_VB 0.27 1.00 0.88 0.74
## PP.Nat_2R_VB 0.11 0.88 1.00 0.83
## PP.Nat_3R_VB -0.02 0.74 0.83 1.00
##
## n= 24
##
##
## P
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 0.7143 0.6268 0.0272
## PP.Nat_4R_GFFB 0.7143 0.0000 0.0000
## PP.Nat_2R_GFFB 0.6268 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0272 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0123 0.2510 0.7250 0.9127
## PP.Nat_4R_GFPRB 0.2573 0.0000 0.0064 0.0001
## PP.Nat_2R_GFPRB 0.3209 0.0000 0.0029 0.0000
## PP.Nat_3R_GFPRB 0.1555 0.0000 0.0056 0.0000
## PP.Nat_1_CBB 0.0212 0.0001 0.0008 0.0000
## PP.Nat_4R_CBB 0.3174 0.7213 0.4809 0.8717
## PP.Nat_2R_CBB 0.4345 0.8920 0.3142 0.8936
## PP.Nat_3R_CBB 0.4118 0.9786 0.3193 0.9251
## PP.Nat_1_PBPB 0.5045 0.0002 0.0002 0.0000
## PP.Nat_4R_PBPB 0.0006 0.9735 0.7138 0.4183
## PP.Nat_2R_PBPB 0.0002 0.8025 0.7423 0.3375
## PP.Nat_3R_PBPB 0.0009 0.8024 0.5044 0.2765
## PP.Nat_1_PBFB 0.3200 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0104 0.9044 0.9695 0.5111
## PP.Nat_2R_PBFB 0.0015 0.7727 0.3059 0.1745
## PP.Nat_3R_PBFB 0.0010 0.8836 0.3478 0.1321
## PP.Nat_1_VB 0.9003 0.0131 0.0140 0.0564
## PP.Nat_4R_VB 0.0003 0.1478 0.2496 0.0129
## PP.Nat_2R_VB 0.0003 0.1127 0.1771 0.0051
## PP.Nat_3R_VB 0.0004 0.2013 0.1629 0.0064
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.0123 0.2573 0.3209 0.1555
## PP.Nat_4R_GFFB 0.2510 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.7250 0.0064 0.0029 0.0056
## PP.Nat_3R_GFFB 0.9127 0.0001 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0220 0.0400 0.2314
## PP.Nat_4R_GFPRB 0.0220 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0400 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.2314 0.0000 0.0000
## PP.Nat_1_CBB 0.2716 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0464 0.6545 0.3930 0.4410
## PP.Nat_2R_CBB 0.0156 0.2854 0.1986 0.3388
## PP.Nat_3R_CBB 0.0180 0.3051 0.2256 0.5111
## PP.Nat_1_PBPB 0.2618 0.0005 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1301 0.5838 0.8461 0.8048
## PP.Nat_2R_PBPB 0.0781 0.8204 0.6922 0.8861
## PP.Nat_3R_PBPB 0.0011 0.6804 0.3948 0.9416
## PP.Nat_1_PBFB 0.1809 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0092 0.8393 0.4665 0.7390
## PP.Nat_2R_PBFB 0.0120 0.7449 0.8058 0.7634
## PP.Nat_3R_PBFB 0.0033 0.9304 0.7524 0.6762
## PP.Nat_1_VB 0.8623 0.0670 0.0359 0.0201
## PP.Nat_4R_VB 0.5410 0.0179 0.0686 0.0557
## PP.Nat_2R_VB 0.9038 0.0018 0.0074 0.0069
## PP.Nat_3R_VB 0.6801 0.0121 0.0220 0.0106
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.0212 0.3174 0.4345 0.4118
## PP.Nat_4R_GFFB 0.0001 0.7213 0.8920 0.9786
## PP.Nat_2R_GFFB 0.0008 0.4809 0.3142 0.3193
## PP.Nat_3R_GFFB 0.0000 0.8717 0.8936 0.9251
## PP.Nat_1_GFPRB 0.2716 0.0464 0.0156 0.0180
## PP.Nat_4R_GFPRB 0.0000 0.6545 0.2854 0.3051
## PP.Nat_2R_GFPRB 0.0000 0.3930 0.1986 0.2256
## PP.Nat_3R_GFPRB 0.0000 0.4410 0.3388 0.5111
## PP.Nat_1_CBB 0.1712 0.1817 0.2925
## PP.Nat_4R_CBB 0.1712 0.0000 0.0000
## PP.Nat_2R_CBB 0.1817 0.0000 0.0000
## PP.Nat_3R_CBB 0.2925 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.7181 0.9029 0.9195
## PP.Nat_4R_PBPB 0.3959 0.1535 0.3356 0.5218
## PP.Nat_2R_PBPB 0.3627 0.0599 0.0281 0.0445
## PP.Nat_3R_PBPB 0.4294 0.1611 0.0465 0.0493
## PP.Nat_1_PBFB 0.0000 0.3778 0.4682 0.5058
## PP.Nat_4R_PBFB 0.5297 0.0029 0.0135 0.0297
## PP.Nat_2R_PBFB 0.7010 0.0008 0.0006 0.0010
## PP.Nat_3R_PBFB 0.6696 0.0147 0.0044 0.0075
## PP.Nat_1_VB 0.1041 0.2611 0.1418 0.1023
## PP.Nat_4R_VB 0.0059 0.8914 0.6126 0.5513
## PP.Nat_2R_VB 0.0003 0.8406 0.5631 0.5376
## PP.Nat_3R_VB 0.0014 0.7138 0.5793 0.5443
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.5045 0.0006 0.0002 0.0009
## PP.Nat_4R_GFFB 0.0002 0.9735 0.8025 0.8024
## PP.Nat_2R_GFFB 0.0002 0.7138 0.7423 0.5044
## PP.Nat_3R_GFFB 0.0000 0.4183 0.3375 0.2765
## PP.Nat_1_GFPRB 0.2618 0.1301 0.0781 0.0011
## PP.Nat_4R_GFPRB 0.0005 0.5838 0.8204 0.6804
## PP.Nat_2R_GFPRB 0.0000 0.8461 0.6922 0.3948
## PP.Nat_3R_GFPRB 0.0000 0.8048 0.8861 0.9416
## PP.Nat_1_CBB 0.0000 0.3959 0.3627 0.4294
## PP.Nat_4R_CBB 0.7181 0.1535 0.0599 0.1611
## PP.Nat_2R_CBB 0.9029 0.3356 0.0281 0.0465
## PP.Nat_3R_CBB 0.9195 0.5218 0.0445 0.0493
## PP.Nat_1_PBPB 0.2340 0.5054 0.9323
## PP.Nat_4R_PBPB 0.2340 0.0000 0.0004
## PP.Nat_2R_PBPB 0.5054 0.0000 0.0000
## PP.Nat_3R_PBPB 0.9323 0.0004 0.0000
## PP.Nat_1_PBFB 0.0000 0.7858 0.8112 0.8419
## PP.Nat_4R_PBFB 0.0705 0.0003 0.0010 0.0033
## PP.Nat_2R_PBFB 0.8426 0.0009 0.0000 0.0000
## PP.Nat_3R_PBFB 0.9692 0.0024 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.3339 0.8868 0.5869
## PP.Nat_4R_VB 0.8526 0.0001 0.0046 0.0248
## PP.Nat_2R_VB 0.1736 0.0164 0.0143 0.0554
## PP.Nat_3R_VB 0.0603 0.0319 0.0380 0.0045
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.3200 0.0104 0.0015 0.0010
## PP.Nat_4R_GFFB 0.0000 0.9044 0.7727 0.8836
## PP.Nat_2R_GFFB 0.0000 0.9695 0.3059 0.3478
## PP.Nat_3R_GFFB 0.0000 0.5111 0.1745 0.1321
## PP.Nat_1_GFPRB 0.1809 0.0092 0.0120 0.0033
## PP.Nat_4R_GFPRB 0.0000 0.8393 0.7449 0.9304
## PP.Nat_2R_GFPRB 0.0000 0.4665 0.8058 0.7524
## PP.Nat_3R_GFPRB 0.0000 0.7390 0.7634 0.6762
## PP.Nat_1_CBB 0.0000 0.5297 0.7010 0.6696
## PP.Nat_4R_CBB 0.3778 0.0029 0.0008 0.0147
## PP.Nat_2R_CBB 0.4682 0.0135 0.0006 0.0044
## PP.Nat_3R_CBB 0.5058 0.0297 0.0010 0.0075
## PP.Nat_1_PBPB 0.0000 0.0705 0.8426 0.9692
## PP.Nat_4R_PBPB 0.7858 0.0003 0.0009 0.0024
## PP.Nat_2R_PBPB 0.8112 0.0010 0.0000 0.0000
## PP.Nat_3R_PBPB 0.8419 0.0033 0.0000 0.0000
## PP.Nat_1_PBFB 0.0878 0.6673 0.8615
## PP.Nat_4R_PBFB 0.0878 0.0000 0.0000
## PP.Nat_2R_PBFB 0.6673 0.0000 0.0000
## PP.Nat_3R_PBFB 0.8615 0.0000 0.0000
## PP.Nat_1_VB 0.0004 0.1462 0.9201 0.9170
## PP.Nat_4R_VB 0.3540 0.0027 0.0035 0.0092
## PP.Nat_2R_VB 0.0897 0.0594 0.0113 0.0184
## PP.Nat_3R_VB 0.0438 0.0848 0.0136 0.0023
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.9003 0.0003 0.0003 0.0004
## PP.Nat_4R_GFFB 0.0131 0.1478 0.1127 0.2013
## PP.Nat_2R_GFFB 0.0140 0.2496 0.1771 0.1629
## PP.Nat_3R_GFFB 0.0564 0.0129 0.0051 0.0064
## PP.Nat_1_GFPRB 0.8623 0.5410 0.9038 0.6801
## PP.Nat_4R_GFPRB 0.0670 0.0179 0.0018 0.0121
## PP.Nat_2R_GFPRB 0.0359 0.0686 0.0074 0.0220
## PP.Nat_3R_GFPRB 0.0201 0.0557 0.0069 0.0106
## PP.Nat_1_CBB 0.1041 0.0059 0.0003 0.0014
## PP.Nat_4R_CBB 0.2611 0.8914 0.8406 0.7138
## PP.Nat_2R_CBB 0.1418 0.6126 0.5631 0.5793
## PP.Nat_3R_CBB 0.1023 0.5513 0.5376 0.5443
## PP.Nat_1_PBPB 0.0000 0.8526 0.1736 0.0603
## PP.Nat_4R_PBPB 0.3339 0.0001 0.0164 0.0319
## PP.Nat_2R_PBPB 0.8868 0.0046 0.0143 0.0380
## PP.Nat_3R_PBPB 0.5869 0.0248 0.0554 0.0045
## PP.Nat_1_PBFB 0.0004 0.3540 0.0897 0.0438
## PP.Nat_4R_PBFB 0.1462 0.0027 0.0594 0.0848
## PP.Nat_2R_PBFB 0.9201 0.0035 0.0113 0.0136
## PP.Nat_3R_PBFB 0.9170 0.0092 0.0184 0.0023
## PP.Nat_1_VB 0.1949 0.6137 0.9263
## PP.Nat_4R_VB 0.1949 0.0000 0.0000
## PP.Nat_2R_VB 0.6137 0.0000 0.0000
## PP.Nat_3R_VB 0.9263 0.0000 0.0000
library(corrplot)
corrplot(mydata.cor5, method="color")

corrplot(mydata.cor5, addCoef.col = 1, number.cex = 0.3, method = 'number')

#Naturalness (TOTAL SCALE) and Support Scales
PP$corNSScales <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB)
mydata.cor4 = cor(PP$corNSScales, use = "pairwise.complete.obs")
head(round(mydata.cor4,2))
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 0.18 -0.15
## PP.Nat_4R_GFFB 0.18 1.00 0.61 0.50
## PP.Nat_2R_GFFB 0.18 0.61 1.00 0.44
## PP.Nat_3R_GFFB -0.15 0.50 0.44 1.00
## PP.Nat_1_GFPRB 0.42 0.15 0.07 0.01
## PP.Nat_4R_GFPRB 0.04 0.47 0.21 0.33
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.42 0.04 -0.03 -0.04
## PP.Nat_4R_GFFB 0.15 0.47 0.49 0.38
## PP.Nat_2R_GFFB 0.07 0.21 0.29 0.17
## PP.Nat_3R_GFFB 0.01 0.33 0.34 0.49
## PP.Nat_1_GFPRB 1.00 0.38 0.25 0.14
## PP.Nat_4R_GFPRB 0.38 1.00 0.68 0.52
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.35 -0.01 0.04 0.00
## PP.Nat_4R_GFFB -0.36 0.20 0.14 0.05
## PP.Nat_2R_GFFB -0.32 0.13 0.22 0.21
## PP.Nat_3R_GFFB -0.41 0.08 0.07 0.01
## PP.Nat_1_GFPRB -0.10 -0.05 -0.13 -0.13
## PP.Nat_4R_GFPRB -0.34 0.11 -0.06 -0.06
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.14 -0.21 -0.26 -0.17
## PP.Nat_4R_GFFB -0.23 0.08 0.00 -0.04
## PP.Nat_2R_GFFB -0.27 0.15 0.04 0.06
## PP.Nat_3R_GFFB -0.36 0.09 0.14 0.10
## PP.Nat_1_GFPRB -0.04 0.03 0.05 -0.33
## PP.Nat_4R_GFPRB -0.23 0.20 0.11 -0.12
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.17 0.24 0.28 0.29
## PP.Nat_4R_GFFB -0.35 -0.07 0.03 0.05
## PP.Nat_2R_GFFB -0.33 0.05 -0.11 -0.07
## PP.Nat_3R_GFFB -0.37 -0.11 -0.11 -0.15
## PP.Nat_1_GFPRB -0.06 0.23 0.20 0.28
## PP.Nat_4R_GFPRB -0.35 -0.01 -0.04 0.05
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.09 -0.21 -0.22 -0.24
## PP.Nat_4R_GFFB -0.13 0.25 0.13 0.05
## PP.Nat_2R_GFFB -0.09 0.15 0.12 0.12
## PP.Nat_3R_GFFB -0.04 0.27 0.22 0.20
## PP.Nat_1_GFPRB 0.09 0.02 0.07 0.06
## PP.Nat_4R_GFPRB -0.11 0.32 0.39 0.25
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Nat_1_GFFB 0.59 0.52 0.58
## PP.Nat_4R_GFFB 0.13 0.18 0.10
## PP.Nat_2R_GFFB 0.16 0.16 0.12
## PP.Nat_3R_GFFB -0.19 -0.09 -0.21
## PP.Nat_1_GFPRB 0.27 0.31 0.24
## PP.Nat_4R_GFPRB -0.04 0.05 -0.03
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Nat_1_GFFB 0.59 0.08 0.03
## PP.Nat_4R_GFFB 0.15 -0.19 -0.24
## PP.Nat_2R_GFFB 0.14 -0.29 -0.31
## PP.Nat_3R_GFFB -0.17 -0.20 -0.23
## PP.Nat_1_GFPRB 0.26 0.15 0.04
## PP.Nat_4R_GFPRB -0.05 -0.04 -0.13
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Nat_1_GFFB 0.02 0.02 0.26
## PP.Nat_4R_GFFB -0.22 -0.29 -0.26
## PP.Nat_2R_GFFB -0.34 -0.33 -0.27
## PP.Nat_3R_GFFB -0.22 -0.22 -0.29
## PP.Nat_1_GFPRB 0.08 0.07 -0.02
## PP.Nat_4R_GFPRB -0.10 -0.05 -0.27
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Nat_1_GFFB 0.35 0.29 0.31
## PP.Nat_4R_GFFB -0.29 -0.29 -0.26
## PP.Nat_2R_GFFB -0.25 -0.28 -0.28
## PP.Nat_3R_GFFB -0.29 -0.32 -0.33
## PP.Nat_1_GFPRB -0.03 -0.06 -0.03
## PP.Nat_4R_GFPRB -0.34 -0.33 -0.30
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Nat_1_GFFB 0.08 0.03 0.02
## PP.Nat_4R_GFFB -0.19 -0.24 -0.22
## PP.Nat_2R_GFFB -0.29 -0.31 -0.34
## PP.Nat_3R_GFFB -0.20 -0.23 -0.22
## PP.Nat_1_GFPRB 0.15 0.04 0.08
## PP.Nat_4R_GFPRB -0.04 -0.13 -0.10
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Nat_1_GFFB 0.02 0.03 0.16
## PP.Nat_4R_GFFB -0.29 -0.38 -0.38
## PP.Nat_2R_GFFB -0.33 -0.37 -0.29
## PP.Nat_3R_GFFB -0.22 -0.34 -0.39
## PP.Nat_1_GFPRB 0.07 -0.10 -0.04
## PP.Nat_4R_GFPRB -0.05 -0.27 -0.28
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Nat_1_GFFB 0.08 0.12 0.05
## PP.Nat_4R_GFFB -0.37 -0.35 -0.14
## PP.Nat_2R_GFFB -0.36 -0.31 -0.17
## PP.Nat_3R_GFFB -0.38 -0.41 -0.11
## PP.Nat_1_GFPRB -0.01 0.05 0.10
## PP.Nat_4R_GFPRB -0.22 -0.20 -0.08
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Nat_1_GFFB 0.04 0.05 0.05
## PP.Nat_4R_GFFB -0.17 -0.17 -0.15
## PP.Nat_2R_GFFB -0.12 -0.18 -0.18
## PP.Nat_3R_GFFB -0.09 -0.10 -0.09
## PP.Nat_1_GFPRB 0.03 0.17 0.13
## PP.Nat_4R_GFPRB -0.21 -0.03 -0.12
library("Hmisc")
mydata.rcorr4 = rcorr(as.matrix(mydata.cor4))
mydata.rcorr4
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.00 0.02 -0.39
## PP.Nat_4R_GFFB 0.00 1.00 0.92 0.85
## PP.Nat_2R_GFFB 0.02 0.92 1.00 0.81
## PP.Nat_3R_GFFB -0.39 0.85 0.81 1.00
## PP.Nat_1_GFPRB 0.46 0.34 0.22 0.12
## PP.Nat_4R_GFPRB -0.25 0.82 0.67 0.80
## PP.Nat_2R_GFPRB -0.20 0.83 0.68 0.78
## PP.Nat_3R_GFPRB -0.29 0.81 0.69 0.87
## PP.Nat_1_CBB 0.48 -0.74 -0.69 -0.86
## PP.Nat_4R_CBB -0.26 0.04 0.07 0.07
## PP.Nat_2R_CBB -0.11 0.12 0.24 0.10
## PP.Nat_3R_CBB -0.14 0.17 0.31 0.16
## PP.Nat_1_PBPB 0.00 -0.82 -0.83 -0.76
## PP.Nat_4R_PBPB -0.72 -0.02 -0.01 0.22
## PP.Nat_2R_PBPB -0.79 -0.03 0.01 0.27
## PP.Nat_3R_PBPB -0.59 0.19 0.32 0.42
## PP.Nat_1_PBFB 0.12 -0.88 -0.85 -0.84
## PP.Nat_4R_PBFB 0.55 0.26 0.27 0.03
## PP.Nat_2R_PBFB 0.61 -0.02 -0.11 -0.26
## PP.Nat_3R_PBFB 0.57 -0.07 -0.18 -0.32
## PP.Nat_1_VB -0.12 -0.63 -0.66 -0.50
## PP.Nat_4R_VB -0.73 0.26 0.19 0.50
## PP.Nat_2R_VB -0.71 0.39 0.33 0.62
## PP.Nat_3R_VB -0.67 0.39 0.39 0.64
## PP.BehavInt1_GFFB 0.92 -0.03 0.00 -0.41
## PP.BehavInt2_GFFB 0.89 0.05 0.06 -0.32
## PP.BehavInt3_GFFB 0.91 -0.08 -0.04 -0.45
## PP.BehavInt4_GFFB 0.91 0.00 0.03 -0.38
## PP.BehavInt1_GFPRB -0.12 -0.76 -0.84 -0.65
## PP.BehavInt2_GFPRB -0.12 -0.81 -0.86 -0.69
## PP.BehavInt3_GFPRB -0.10 -0.79 -0.86 -0.68
## PP.BehavInt4_GFPRB -0.11 -0.79 -0.86 -0.67
## PP.BehavInt1_CBB 0.37 -0.77 -0.75 -0.83
## PP.BehavInt2_CBB 0.43 -0.75 -0.72 -0.84
## PP.BehavInt3_CBB 0.39 -0.77 -0.74 -0.84
## PP.BehavInt4_CBB 0.40 -0.75 -0.74 -0.84
## PP.BehavInt1_PBPB -0.12 -0.76 -0.84 -0.65
## PP.BehavInt2_PBPB -0.12 -0.81 -0.86 -0.69
## PP.BehavInt3_PBPB -0.10 -0.79 -0.86 -0.68
## PP.BehavInt4_PBPB -0.11 -0.79 -0.86 -0.67
## PP.BehavInt1_PBFB -0.01 -0.87 -0.88 -0.79
## PP.BehavInt2_PBFB 0.06 -0.88 -0.86 -0.82
## PP.BehavInt3_PBFB 0.04 -0.87 -0.88 -0.80
## PP.BehavInt4_PBFB 0.05 -0.87 -0.87 -0.81
## PP.BehavInt1_VB -0.14 -0.67 -0.72 -0.54
## PP.BehavInt2_VB -0.17 -0.71 -0.72 -0.56
## PP.BehavInt3_VB -0.15 -0.66 -0.73 -0.52
## PP.BehavInt4_VB -0.15 -0.68 -0.73 -0.53
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.46 -0.25 -0.20
## PP.Nat_4R_GFFB 0.34 0.82 0.83
## PP.Nat_2R_GFFB 0.22 0.67 0.68
## PP.Nat_3R_GFFB 0.12 0.80 0.78
## PP.Nat_1_GFPRB 1.00 0.48 0.44
## PP.Nat_4R_GFPRB 0.48 1.00 0.95
## PP.Nat_2R_GFPRB 0.44 0.95 1.00
## PP.Nat_3R_GFPRB 0.31 0.90 0.90
## PP.Nat_1_CBB -0.26 -0.82 -0.78
## PP.Nat_4R_CBB -0.45 -0.05 -0.08
## PP.Nat_2R_CBB -0.46 -0.09 -0.10
## PP.Nat_3R_CBB -0.43 -0.03 -0.04
## PP.Nat_1_PBPB -0.28 -0.71 -0.75
## PP.Nat_4R_PBPB -0.29 0.16 0.03
## PP.Nat_2R_PBPB -0.35 0.15 0.05
## PP.Nat_3R_PBPB -0.48 0.16 0.07
## PP.Nat_1_PBFB -0.33 -0.82 -0.83
## PP.Nat_4R_PBFB 0.55 0.16 0.24
## PP.Nat_2R_PBFB 0.51 -0.08 0.02
## PP.Nat_3R_PBFB 0.56 -0.07 -0.01
## PP.Nat_1_VB -0.09 -0.46 -0.52
## PP.Nat_4R_VB -0.07 0.50 0.39
## PP.Nat_2R_VB 0.02 0.65 0.57
## PP.Nat_3R_VB -0.03 0.60 0.54
## PP.BehavInt1_GFFB 0.37 -0.28 -0.22
## PP.BehavInt2_GFFB 0.45 -0.17 -0.11
## PP.BehavInt3_GFFB 0.34 -0.31 -0.26
## PP.BehavInt4_GFFB 0.37 -0.25 -0.20
## PP.BehavInt1_GFPRB -0.17 -0.54 -0.56
## PP.BehavInt2_GFPRB -0.25 -0.62 -0.63
## PP.BehavInt3_GFPRB -0.19 -0.59 -0.61
## PP.BehavInt4_GFPRB -0.17 -0.57 -0.59
## PP.BehavInt1_CBB -0.24 -0.79 -0.73
## PP.BehavInt2_CBB -0.23 -0.81 -0.76
## PP.BehavInt3_CBB -0.24 -0.80 -0.74
## PP.BehavInt4_CBB -0.23 -0.79 -0.74
## PP.BehavInt1_PBPB -0.17 -0.54 -0.56
## PP.BehavInt2_PBPB -0.25 -0.62 -0.63
## PP.BehavInt3_PBPB -0.19 -0.59 -0.61
## PP.BehavInt4_PBPB -0.17 -0.57 -0.59
## PP.BehavInt1_PBFB -0.29 -0.73 -0.74
## PP.BehavInt2_PBFB -0.29 -0.77 -0.78
## PP.BehavInt3_PBFB -0.24 -0.72 -0.75
## PP.BehavInt4_PBFB -0.24 -0.73 -0.76
## PP.BehavInt1_VB -0.08 -0.47 -0.53
## PP.BehavInt2_VB -0.18 -0.55 -0.62
## PP.BehavInt3_VB -0.05 -0.44 -0.50
## PP.BehavInt4_VB -0.08 -0.48 -0.53
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB -0.29 0.48 -0.26 -0.11
## PP.Nat_4R_GFFB 0.81 -0.74 0.04 0.12
## PP.Nat_2R_GFFB 0.69 -0.69 0.07 0.24
## PP.Nat_3R_GFFB 0.87 -0.86 0.07 0.10
## PP.Nat_1_GFPRB 0.31 -0.26 -0.45 -0.46
## PP.Nat_4R_GFPRB 0.90 -0.82 -0.05 -0.09
## PP.Nat_2R_GFPRB 0.90 -0.78 -0.08 -0.10
## PP.Nat_3R_GFPRB 1.00 -0.85 -0.09 -0.06
## PP.Nat_1_CBB -0.85 1.00 0.19 0.16
## PP.Nat_4R_CBB -0.09 0.19 1.00 0.87
## PP.Nat_2R_CBB -0.06 0.16 0.87 1.00
## PP.Nat_3R_CBB 0.05 0.04 0.79 0.92
## PP.Nat_1_PBPB -0.77 0.69 -0.01 -0.17
## PP.Nat_4R_PBPB 0.06 -0.28 0.27 0.10
## PP.Nat_2R_PBPB 0.12 -0.32 0.40 0.34
## PP.Nat_3R_PBPB 0.26 -0.39 0.28 0.39
## PP.Nat_1_PBFB -0.84 0.82 0.10 -0.03
## PP.Nat_4R_PBFB 0.19 -0.16 -0.53 -0.35
## PP.Nat_2R_PBFB -0.08 0.13 -0.63 -0.60
## PP.Nat_3R_PBFB -0.13 0.15 -0.52 -0.56
## PP.Nat_1_VB -0.52 0.37 -0.27 -0.44
## PP.Nat_4R_VB 0.45 -0.61 0.01 -0.16
## PP.Nat_2R_VB 0.61 -0.75 -0.01 -0.10
## PP.Nat_3R_VB 0.61 -0.73 -0.02 -0.05
## PP.BehavInt1_GFFB -0.31 0.49 -0.36 -0.18
## PP.BehavInt2_GFFB -0.23 0.39 -0.40 -0.23
## PP.BehavInt3_GFFB -0.35 0.53 -0.35 -0.17
## PP.BehavInt4_GFFB -0.27 0.47 -0.36 -0.17
## PP.BehavInt1_GFPRB -0.62 0.55 -0.04 -0.27
## PP.BehavInt2_GFPRB -0.67 0.60 -0.01 -0.22
## PP.BehavInt3_GFPRB -0.65 0.58 -0.04 -0.26
## PP.BehavInt4_GFPRB -0.63 0.56 -0.09 -0.32
## PP.BehavInt1_CBB -0.83 0.93 0.17 0.08
## PP.BehavInt2_CBB -0.85 0.96 0.17 0.11
## PP.BehavInt3_CBB -0.85 0.94 0.16 0.09
## PP.BehavInt4_CBB -0.84 0.94 0.18 0.09
## PP.BehavInt1_PBPB -0.62 0.55 -0.04 -0.27
## PP.BehavInt2_PBPB -0.67 0.60 -0.01 -0.22
## PP.BehavInt3_PBPB -0.65 0.58 -0.04 -0.26
## PP.BehavInt4_PBPB -0.63 0.56 -0.09 -0.32
## PP.BehavInt1_PBFB -0.77 0.70 0.01 -0.16
## PP.BehavInt2_PBFB -0.82 0.75 0.04 -0.11
## PP.BehavInt3_PBFB -0.78 0.70 -0.02 -0.18
## PP.BehavInt4_PBFB -0.80 0.72 0.00 -0.15
## PP.BehavInt1_VB -0.54 0.37 -0.25 -0.46
## PP.BehavInt2_VB -0.60 0.40 -0.21 -0.39
## PP.BehavInt3_VB -0.50 0.34 -0.28 -0.50
## PP.BehavInt4_VB -0.53 0.36 -0.26 -0.46
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB -0.14 0.00 -0.72 -0.79
## PP.Nat_4R_GFFB 0.17 -0.82 -0.02 -0.03
## PP.Nat_2R_GFFB 0.31 -0.83 -0.01 0.01
## PP.Nat_3R_GFFB 0.16 -0.76 0.22 0.27
## PP.Nat_1_GFPRB -0.43 -0.28 -0.29 -0.35
## PP.Nat_4R_GFPRB -0.03 -0.71 0.16 0.15
## PP.Nat_2R_GFPRB -0.04 -0.75 0.03 0.05
## PP.Nat_3R_GFPRB 0.05 -0.77 0.06 0.12
## PP.Nat_1_CBB 0.04 0.69 -0.28 -0.32
## PP.Nat_4R_CBB 0.79 -0.01 0.27 0.40
## PP.Nat_2R_CBB 0.92 -0.17 0.10 0.34
## PP.Nat_3R_CBB 1.00 -0.25 0.07 0.34
## PP.Nat_1_PBPB -0.25 1.00 0.24 0.12
## PP.Nat_4R_PBPB 0.07 0.24 1.00 0.83
## PP.Nat_2R_PBPB 0.34 0.12 0.83 1.00
## PP.Nat_3R_PBPB 0.43 -0.23 0.62 0.72
## PP.Nat_1_PBFB -0.10 0.93 0.03 -0.02
## PP.Nat_4R_PBFB -0.29 -0.48 -0.66 -0.62
## PP.Nat_2R_PBFB -0.58 -0.04 -0.62 -0.77
## PP.Nat_3R_PBFB -0.54 0.07 -0.54 -0.68
## PP.Nat_1_VB -0.48 0.84 0.28 0.10
## PP.Nat_4R_VB -0.12 -0.02 0.75 0.65
## PP.Nat_2R_VB -0.05 -0.30 0.56 0.58
## PP.Nat_3R_VB -0.01 -0.43 0.49 0.51
## PP.BehavInt1_GFFB -0.21 0.02 -0.70 -0.82
## PP.BehavInt2_GFFB -0.26 -0.06 -0.68 -0.83
## PP.BehavInt3_GFFB -0.20 0.06 -0.68 -0.80
## PP.BehavInt4_GFFB -0.19 0.00 -0.68 -0.80
## PP.BehavInt1_GFPRB -0.36 0.92 0.27 0.15
## PP.BehavInt2_GFPRB -0.30 0.93 0.25 0.14
## PP.BehavInt3_GFPRB -0.33 0.93 0.23 0.12
## PP.BehavInt4_GFPRB -0.39 0.92 0.22 0.10
## PP.BehavInt1_CBB -0.06 0.74 -0.24 -0.28
## PP.BehavInt2_CBB -0.03 0.72 -0.26 -0.30
## PP.BehavInt3_CBB -0.04 0.73 -0.24 -0.28
## PP.BehavInt4_CBB -0.04 0.74 -0.23 -0.28
## PP.BehavInt1_PBPB -0.36 0.92 0.27 0.15
## PP.BehavInt2_PBPB -0.30 0.93 0.25 0.14
## PP.BehavInt3_PBPB -0.33 0.93 0.23 0.12
## PP.BehavInt4_PBPB -0.39 0.92 0.22 0.10
## PP.BehavInt1_PBFB -0.25 0.92 0.10 0.02
## PP.BehavInt2_PBFB -0.19 0.93 0.08 0.00
## PP.BehavInt3_PBFB -0.27 0.92 0.06 -0.02
## PP.BehavInt4_PBFB -0.24 0.93 0.07 0.00
## PP.BehavInt1_VB -0.49 0.86 0.28 0.10
## PP.BehavInt2_VB -0.43 0.88 0.35 0.19
## PP.BehavInt3_VB -0.53 0.85 0.28 0.11
## PP.BehavInt4_VB -0.50 0.86 0.29 0.13
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB -0.59 0.12 0.55 0.61
## PP.Nat_4R_GFFB 0.19 -0.88 0.26 -0.02
## PP.Nat_2R_GFFB 0.32 -0.85 0.27 -0.11
## PP.Nat_3R_GFFB 0.42 -0.84 0.03 -0.26
## PP.Nat_1_GFPRB -0.48 -0.33 0.55 0.51
## PP.Nat_4R_GFPRB 0.16 -0.82 0.16 -0.08
## PP.Nat_2R_GFPRB 0.07 -0.83 0.24 0.02
## PP.Nat_3R_GFPRB 0.26 -0.84 0.19 -0.08
## PP.Nat_1_CBB -0.39 0.82 -0.16 0.13
## PP.Nat_4R_CBB 0.28 0.10 -0.53 -0.63
## PP.Nat_2R_CBB 0.39 -0.03 -0.35 -0.60
## PP.Nat_3R_CBB 0.43 -0.10 -0.29 -0.58
## PP.Nat_1_PBPB -0.23 0.93 -0.48 -0.04
## PP.Nat_4R_PBPB 0.62 0.03 -0.66 -0.62
## PP.Nat_2R_PBPB 0.72 -0.02 -0.62 -0.77
## PP.Nat_3R_PBPB 1.00 -0.29 -0.41 -0.71
## PP.Nat_1_PBFB -0.29 1.00 -0.44 -0.06
## PP.Nat_4R_PBFB -0.41 -0.44 1.00 0.78
## PP.Nat_2R_PBFB -0.71 -0.06 0.78 1.00
## PP.Nat_3R_PBFB -0.81 0.05 0.69 0.88
## PP.Nat_1_VB -0.23 0.73 -0.43 0.01
## PP.Nat_4R_VB 0.50 -0.22 -0.52 -0.53
## PP.Nat_2R_VB 0.50 -0.42 -0.32 -0.49
## PP.Nat_3R_VB 0.64 -0.50 -0.27 -0.49
## PP.BehavInt1_GFFB -0.56 0.14 0.53 0.59
## PP.BehavInt2_GFFB -0.57 0.06 0.57 0.62
## PP.BehavInt3_GFFB -0.54 0.18 0.52 0.58
## PP.BehavInt4_GFFB -0.52 0.11 0.53 0.57
## PP.BehavInt1_GFPRB -0.29 0.86 -0.49 -0.06
## PP.BehavInt2_GFPRB -0.27 0.88 -0.48 -0.05
## PP.BehavInt3_GFPRB -0.32 0.87 -0.46 -0.02
## PP.BehavInt4_GFPRB -0.33 0.86 -0.43 0.00
## PP.BehavInt1_CBB -0.49 0.88 -0.22 0.12
## PP.BehavInt2_CBB -0.47 0.86 -0.19 0.13
## PP.BehavInt3_CBB -0.48 0.87 -0.20 0.12
## PP.BehavInt4_CBB -0.47 0.86 -0.21 0.12
## PP.BehavInt1_PBPB -0.29 0.86 -0.49 -0.06
## PP.BehavInt2_PBPB -0.27 0.88 -0.48 -0.05
## PP.BehavInt3_PBPB -0.32 0.87 -0.46 -0.02
## PP.BehavInt4_PBPB -0.33 0.86 -0.43 0.00
## PP.BehavInt1_PBFB -0.32 0.94 -0.43 -0.03
## PP.BehavInt2_PBFB -0.31 0.95 -0.42 -0.03
## PP.BehavInt3_PBFB -0.36 0.95 -0.40 0.00
## PP.BehavInt4_PBFB -0.35 0.95 -0.41 -0.02
## PP.BehavInt1_VB -0.28 0.74 -0.42 0.03
## PP.BehavInt2_VB -0.14 0.77 -0.43 -0.04
## PP.BehavInt3_VB -0.27 0.73 -0.40 0.03
## PP.BehavInt4_VB -0.26 0.73 -0.40 0.04
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.57 -0.12 -0.73 -0.71
## PP.Nat_4R_GFFB -0.07 -0.63 0.26 0.39
## PP.Nat_2R_GFFB -0.18 -0.66 0.19 0.33
## PP.Nat_3R_GFFB -0.32 -0.50 0.50 0.62
## PP.Nat_1_GFPRB 0.56 -0.09 -0.07 0.02
## PP.Nat_4R_GFPRB -0.07 -0.46 0.50 0.65
## PP.Nat_2R_GFPRB -0.01 -0.52 0.39 0.57
## PP.Nat_3R_GFPRB -0.13 -0.52 0.45 0.61
## PP.Nat_1_CBB 0.15 0.37 -0.61 -0.75
## PP.Nat_4R_CBB -0.52 -0.27 0.01 -0.01
## PP.Nat_2R_CBB -0.56 -0.44 -0.16 -0.10
## PP.Nat_3R_CBB -0.54 -0.48 -0.12 -0.05
## PP.Nat_1_PBPB 0.07 0.84 -0.02 -0.30
## PP.Nat_4R_PBPB -0.54 0.28 0.75 0.56
## PP.Nat_2R_PBPB -0.68 0.10 0.65 0.58
## PP.Nat_3R_PBPB -0.81 -0.23 0.50 0.50
## PP.Nat_1_PBFB 0.05 0.73 -0.22 -0.42
## PP.Nat_4R_PBFB 0.69 -0.43 -0.52 -0.32
## PP.Nat_2R_PBFB 0.88 0.01 -0.53 -0.49
## PP.Nat_3R_PBFB 1.00 0.10 -0.44 -0.45
## PP.Nat_1_VB 0.10 1.00 0.27 0.04
## PP.Nat_4R_VB -0.44 0.27 1.00 0.89
## PP.Nat_2R_VB -0.45 0.04 0.89 1.00
## PP.Nat_3R_VB -0.56 -0.11 0.77 0.87
## PP.BehavInt1_GFFB 0.54 -0.07 -0.68 -0.67
## PP.BehavInt2_GFFB 0.56 -0.10 -0.64 -0.59
## PP.BehavInt3_GFFB 0.52 -0.05 -0.70 -0.69
## PP.BehavInt4_GFFB 0.51 -0.10 -0.67 -0.66
## PP.BehavInt1_GFPRB 0.09 0.84 0.10 -0.15
## PP.BehavInt2_GFPRB 0.07 0.83 0.05 -0.20
## PP.BehavInt3_GFPRB 0.13 0.85 0.04 -0.21
## PP.BehavInt4_GFPRB 0.16 0.86 0.07 -0.18
## PP.BehavInt1_CBB 0.17 0.45 -0.54 -0.67
## PP.BehavInt2_CBB 0.18 0.42 -0.58 -0.71
## PP.BehavInt3_CBB 0.17 0.43 -0.57 -0.69
## PP.BehavInt4_CBB 0.17 0.42 -0.55 -0.70
## PP.BehavInt1_PBPB 0.09 0.84 0.10 -0.15
## PP.BehavInt2_PBPB 0.07 0.83 0.05 -0.20
## PP.BehavInt3_PBPB 0.13 0.85 0.04 -0.21
## PP.BehavInt4_PBPB 0.16 0.86 0.07 -0.18
## PP.BehavInt1_PBFB 0.10 0.78 -0.11 -0.32
## PP.BehavInt2_PBFB 0.09 0.75 -0.16 -0.37
## PP.BehavInt3_PBFB 0.14 0.78 -0.13 -0.34
## PP.BehavInt4_PBFB 0.13 0.78 -0.13 -0.34
## PP.BehavInt1_VB 0.16 0.92 0.21 -0.04
## PP.BehavInt2_VB 0.09 0.89 0.20 -0.06
## PP.BehavInt3_VB 0.16 0.91 0.24 -0.01
## PP.BehavInt4_VB 0.15 0.91 0.21 -0.04
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB -0.67 0.92 0.89
## PP.Nat_4R_GFFB 0.39 -0.03 0.05
## PP.Nat_2R_GFFB 0.39 0.00 0.06
## PP.Nat_3R_GFFB 0.64 -0.41 -0.32
## PP.Nat_1_GFPRB -0.03 0.37 0.45
## PP.Nat_4R_GFPRB 0.60 -0.28 -0.17
## PP.Nat_2R_GFPRB 0.54 -0.22 -0.11
## PP.Nat_3R_GFPRB 0.61 -0.31 -0.23
## PP.Nat_1_CBB -0.73 0.49 0.39
## PP.Nat_4R_CBB -0.02 -0.36 -0.40
## PP.Nat_2R_CBB -0.05 -0.18 -0.23
## PP.Nat_3R_CBB -0.01 -0.21 -0.26
## PP.Nat_1_PBPB -0.43 0.02 -0.06
## PP.Nat_4R_PBPB 0.49 -0.70 -0.68
## PP.Nat_2R_PBPB 0.51 -0.82 -0.83
## PP.Nat_3R_PBPB 0.64 -0.56 -0.57
## PP.Nat_1_PBFB -0.50 0.14 0.06
## PP.Nat_4R_PBFB -0.27 0.53 0.57
## PP.Nat_2R_PBFB -0.49 0.59 0.62
## PP.Nat_3R_PBFB -0.56 0.54 0.56
## PP.Nat_1_VB -0.11 -0.07 -0.10
## PP.Nat_4R_VB 0.77 -0.68 -0.64
## PP.Nat_2R_VB 0.87 -0.67 -0.59
## PP.Nat_3R_VB 1.00 -0.63 -0.57
## PP.BehavInt1_GFFB -0.63 1.00 0.98
## PP.BehavInt2_GFFB -0.57 0.98 1.00
## PP.BehavInt3_GFFB -0.65 0.99 0.97
## PP.BehavInt4_GFFB -0.61 0.99 0.97
## PP.BehavInt1_GFPRB -0.28 -0.11 -0.15
## PP.BehavInt2_GFPRB -0.32 -0.10 -0.16
## PP.BehavInt3_GFPRB -0.35 -0.08 -0.13
## PP.BehavInt4_GFPRB -0.32 -0.08 -0.13
## PP.BehavInt1_CBB -0.71 0.39 0.31
## PP.BehavInt2_CBB -0.73 0.44 0.36
## PP.BehavInt3_CBB -0.72 0.40 0.33
## PP.BehavInt4_CBB -0.73 0.40 0.32
## PP.BehavInt1_PBPB -0.28 -0.11 -0.15
## PP.BehavInt2_PBPB -0.32 -0.10 -0.16
## PP.BehavInt3_PBPB -0.35 -0.08 -0.13
## PP.BehavInt4_PBPB -0.32 -0.08 -0.13
## PP.BehavInt1_PBFB -0.40 0.02 -0.05
## PP.BehavInt2_PBFB -0.45 0.08 0.00
## PP.BehavInt3_PBFB -0.43 0.07 0.00
## PP.BehavInt4_PBFB -0.44 0.07 0.01
## PP.BehavInt1_VB -0.18 -0.11 -0.14
## PP.BehavInt2_VB -0.18 -0.14 -0.18
## PP.BehavInt3_VB -0.15 -0.11 -0.13
## PP.BehavInt4_VB -0.18 -0.13 -0.16
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.91 0.91 -0.12
## PP.Nat_4R_GFFB -0.08 0.00 -0.76
## PP.Nat_2R_GFFB -0.04 0.03 -0.84
## PP.Nat_3R_GFFB -0.45 -0.38 -0.65
## PP.Nat_1_GFPRB 0.34 0.37 -0.17
## PP.Nat_4R_GFPRB -0.31 -0.25 -0.54
## PP.Nat_2R_GFPRB -0.26 -0.20 -0.56
## PP.Nat_3R_GFPRB -0.35 -0.27 -0.62
## PP.Nat_1_CBB 0.53 0.47 0.55
## PP.Nat_4R_CBB -0.35 -0.36 -0.04
## PP.Nat_2R_CBB -0.17 -0.17 -0.27
## PP.Nat_3R_CBB -0.20 -0.19 -0.36
## PP.Nat_1_PBPB 0.06 0.00 0.92
## PP.Nat_4R_PBPB -0.68 -0.68 0.27
## PP.Nat_2R_PBPB -0.80 -0.80 0.15
## PP.Nat_3R_PBPB -0.54 -0.52 -0.29
## PP.Nat_1_PBFB 0.18 0.11 0.86
## PP.Nat_4R_PBFB 0.52 0.53 -0.49
## PP.Nat_2R_PBFB 0.58 0.57 -0.06
## PP.Nat_3R_PBFB 0.52 0.51 0.09
## PP.Nat_1_VB -0.05 -0.10 0.84
## PP.Nat_4R_VB -0.70 -0.67 0.10
## PP.Nat_2R_VB -0.69 -0.66 -0.15
## PP.Nat_3R_VB -0.65 -0.61 -0.28
## PP.BehavInt1_GFFB 0.99 0.99 -0.11
## PP.BehavInt2_GFFB 0.97 0.97 -0.15
## PP.BehavInt3_GFFB 1.00 0.99 -0.08
## PP.BehavInt4_GFFB 0.99 1.00 -0.14
## PP.BehavInt1_GFPRB -0.08 -0.14 1.00
## PP.BehavInt2_GFPRB -0.07 -0.14 0.98
## PP.BehavInt3_GFPRB -0.04 -0.11 0.99
## PP.BehavInt4_GFPRB -0.04 -0.11 0.99
## PP.BehavInt1_CBB 0.42 0.36 0.69
## PP.BehavInt2_CBB 0.48 0.41 0.64
## PP.BehavInt3_CBB 0.44 0.37 0.67
## PP.BehavInt4_CBB 0.44 0.38 0.66
## PP.BehavInt1_PBPB -0.08 -0.14 1.00
## PP.BehavInt2_PBPB -0.07 -0.14 0.98
## PP.BehavInt3_PBPB -0.04 -0.11 0.99
## PP.BehavInt4_PBPB -0.04 -0.11 0.99
## PP.BehavInt1_PBFB 0.05 -0.01 0.95
## PP.BehavInt2_PBFB 0.11 0.04 0.92
## PP.BehavInt3_PBFB 0.10 0.03 0.94
## PP.BehavInt4_PBFB 0.10 0.04 0.93
## PP.BehavInt1_VB -0.09 -0.14 0.92
## PP.BehavInt2_VB -0.11 -0.16 0.91
## PP.BehavInt3_VB -0.09 -0.14 0.92
## PP.BehavInt4_VB -0.10 -0.16 0.92
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB -0.12 -0.10 -0.11
## PP.Nat_4R_GFFB -0.81 -0.79 -0.79
## PP.Nat_2R_GFFB -0.86 -0.86 -0.86
## PP.Nat_3R_GFFB -0.69 -0.68 -0.67
## PP.Nat_1_GFPRB -0.25 -0.19 -0.17
## PP.Nat_4R_GFPRB -0.62 -0.59 -0.57
## PP.Nat_2R_GFPRB -0.63 -0.61 -0.59
## PP.Nat_3R_GFPRB -0.67 -0.65 -0.63
## PP.Nat_1_CBB 0.60 0.58 0.56
## PP.Nat_4R_CBB -0.01 -0.04 -0.09
## PP.Nat_2R_CBB -0.22 -0.26 -0.32
## PP.Nat_3R_CBB -0.30 -0.33 -0.39
## PP.Nat_1_PBPB 0.93 0.93 0.92
## PP.Nat_4R_PBPB 0.25 0.23 0.22
## PP.Nat_2R_PBPB 0.14 0.12 0.10
## PP.Nat_3R_PBPB -0.27 -0.32 -0.33
## PP.Nat_1_PBFB 0.88 0.87 0.86
## PP.Nat_4R_PBFB -0.48 -0.46 -0.43
## PP.Nat_2R_PBFB -0.05 -0.02 0.00
## PP.Nat_3R_PBFB 0.07 0.13 0.16
## PP.Nat_1_VB 0.83 0.85 0.86
## PP.Nat_4R_VB 0.05 0.04 0.07
## PP.Nat_2R_VB -0.20 -0.21 -0.18
## PP.Nat_3R_VB -0.32 -0.35 -0.32
## PP.BehavInt1_GFFB -0.10 -0.08 -0.08
## PP.BehavInt2_GFFB -0.16 -0.13 -0.13
## PP.BehavInt3_GFFB -0.07 -0.04 -0.04
## PP.BehavInt4_GFFB -0.14 -0.11 -0.11
## PP.BehavInt1_GFPRB 0.98 0.99 0.99
## PP.BehavInt2_GFPRB 1.00 0.98 0.98
## PP.BehavInt3_GFPRB 0.98 1.00 0.99
## PP.BehavInt4_GFPRB 0.98 0.99 1.00
## PP.BehavInt1_CBB 0.72 0.71 0.69
## PP.BehavInt2_CBB 0.69 0.67 0.65
## PP.BehavInt3_CBB 0.70 0.70 0.67
## PP.BehavInt4_CBB 0.70 0.70 0.66
## PP.BehavInt1_PBPB 0.98 0.99 0.99
## PP.BehavInt2_PBPB 1.00 0.98 0.98
## PP.BehavInt3_PBPB 0.98 1.00 0.99
## PP.BehavInt4_PBPB 0.98 0.99 1.00
## PP.BehavInt1_PBFB 0.96 0.95 0.95
## PP.BehavInt2_PBFB 0.95 0.92 0.91
## PP.BehavInt3_PBFB 0.94 0.95 0.94
## PP.BehavInt4_PBFB 0.94 0.95 0.94
## PP.BehavInt1_VB 0.91 0.92 0.93
## PP.BehavInt2_VB 0.91 0.92 0.92
## PP.BehavInt3_VB 0.89 0.92 0.93
## PP.BehavInt4_VB 0.91 0.92 0.93
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.37 0.43 0.39
## PP.Nat_4R_GFFB -0.77 -0.75 -0.77
## PP.Nat_2R_GFFB -0.75 -0.72 -0.74
## PP.Nat_3R_GFFB -0.83 -0.84 -0.84
## PP.Nat_1_GFPRB -0.24 -0.23 -0.24
## PP.Nat_4R_GFPRB -0.79 -0.81 -0.80
## PP.Nat_2R_GFPRB -0.73 -0.76 -0.74
## PP.Nat_3R_GFPRB -0.83 -0.85 -0.85
## PP.Nat_1_CBB 0.93 0.96 0.94
## PP.Nat_4R_CBB 0.17 0.17 0.16
## PP.Nat_2R_CBB 0.08 0.11 0.09
## PP.Nat_3R_CBB -0.06 -0.03 -0.04
## PP.Nat_1_PBPB 0.74 0.72 0.73
## PP.Nat_4R_PBPB -0.24 -0.26 -0.24
## PP.Nat_2R_PBPB -0.28 -0.30 -0.28
## PP.Nat_3R_PBPB -0.49 -0.47 -0.48
## PP.Nat_1_PBFB 0.88 0.86 0.87
## PP.Nat_4R_PBFB -0.22 -0.19 -0.20
## PP.Nat_2R_PBFB 0.12 0.13 0.12
## PP.Nat_3R_PBFB 0.17 0.18 0.17
## PP.Nat_1_VB 0.45 0.42 0.43
## PP.Nat_4R_VB -0.54 -0.58 -0.57
## PP.Nat_2R_VB -0.67 -0.71 -0.69
## PP.Nat_3R_VB -0.71 -0.73 -0.72
## PP.BehavInt1_GFFB 0.39 0.44 0.40
## PP.BehavInt2_GFFB 0.31 0.36 0.33
## PP.BehavInt3_GFFB 0.42 0.48 0.44
## PP.BehavInt4_GFFB 0.36 0.41 0.37
## PP.BehavInt1_GFPRB 0.69 0.64 0.67
## PP.BehavInt2_GFPRB 0.72 0.69 0.70
## PP.BehavInt3_GFPRB 0.71 0.67 0.70
## PP.BehavInt4_GFPRB 0.69 0.65 0.67
## PP.BehavInt1_CBB 1.00 0.99 0.99
## PP.BehavInt2_CBB 0.99 1.00 0.99
## PP.BehavInt3_CBB 0.99 0.99 1.00
## PP.BehavInt4_CBB 0.99 0.99 0.99
## PP.BehavInt1_PBPB 0.69 0.64 0.67
## PP.BehavInt2_PBPB 0.72 0.69 0.70
## PP.BehavInt3_PBPB 0.71 0.67 0.70
## PP.BehavInt4_PBPB 0.69 0.65 0.67
## PP.BehavInt1_PBFB 0.81 0.78 0.80
## PP.BehavInt2_PBFB 0.83 0.81 0.82
## PP.BehavInt3_PBFB 0.81 0.78 0.80
## PP.BehavInt4_PBFB 0.82 0.79 0.81
## PP.BehavInt1_VB 0.49 0.46 0.48
## PP.BehavInt2_VB 0.50 0.48 0.48
## PP.BehavInt3_VB 0.48 0.43 0.46
## PP.BehavInt4_VB 0.49 0.45 0.47
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.40 -0.12 -0.12
## PP.Nat_4R_GFFB -0.75 -0.76 -0.81
## PP.Nat_2R_GFFB -0.74 -0.84 -0.86
## PP.Nat_3R_GFFB -0.84 -0.65 -0.69
## PP.Nat_1_GFPRB -0.23 -0.17 -0.25
## PP.Nat_4R_GFPRB -0.79 -0.54 -0.62
## PP.Nat_2R_GFPRB -0.74 -0.56 -0.63
## PP.Nat_3R_GFPRB -0.84 -0.62 -0.67
## PP.Nat_1_CBB 0.94 0.55 0.60
## PP.Nat_4R_CBB 0.18 -0.04 -0.01
## PP.Nat_2R_CBB 0.09 -0.27 -0.22
## PP.Nat_3R_CBB -0.04 -0.36 -0.30
## PP.Nat_1_PBPB 0.74 0.92 0.93
## PP.Nat_4R_PBPB -0.23 0.27 0.25
## PP.Nat_2R_PBPB -0.28 0.15 0.14
## PP.Nat_3R_PBPB -0.47 -0.29 -0.27
## PP.Nat_1_PBFB 0.86 0.86 0.88
## PP.Nat_4R_PBFB -0.21 -0.49 -0.48
## PP.Nat_2R_PBFB 0.12 -0.06 -0.05
## PP.Nat_3R_PBFB 0.17 0.09 0.07
## PP.Nat_1_VB 0.42 0.84 0.83
## PP.Nat_4R_VB -0.55 0.10 0.05
## PP.Nat_2R_VB -0.70 -0.15 -0.20
## PP.Nat_3R_VB -0.73 -0.28 -0.32
## PP.BehavInt1_GFFB 0.40 -0.11 -0.10
## PP.BehavInt2_GFFB 0.32 -0.15 -0.16
## PP.BehavInt3_GFFB 0.44 -0.08 -0.07
## PP.BehavInt4_GFFB 0.38 -0.14 -0.14
## PP.BehavInt1_GFPRB 0.66 1.00 0.98
## PP.BehavInt2_GFPRB 0.70 0.98 1.00
## PP.BehavInt3_GFPRB 0.70 0.99 0.98
## PP.BehavInt4_GFPRB 0.66 0.99 0.98
## PP.BehavInt1_CBB 0.99 0.69 0.72
## PP.BehavInt2_CBB 0.99 0.64 0.69
## PP.BehavInt3_CBB 0.99 0.67 0.70
## PP.BehavInt4_CBB 1.00 0.66 0.70
## PP.BehavInt1_PBPB 0.66 1.00 0.98
## PP.BehavInt2_PBPB 0.70 0.98 1.00
## PP.BehavInt3_PBPB 0.70 0.99 0.98
## PP.BehavInt4_PBPB 0.66 0.99 0.98
## PP.BehavInt1_PBFB 0.79 0.95 0.96
## PP.BehavInt2_PBFB 0.82 0.92 0.95
## PP.BehavInt3_PBFB 0.80 0.94 0.94
## PP.BehavInt4_PBFB 0.81 0.93 0.94
## PP.BehavInt1_VB 0.48 0.92 0.91
## PP.BehavInt2_VB 0.48 0.91 0.91
## PP.BehavInt3_VB 0.46 0.92 0.89
## PP.BehavInt4_VB 0.47 0.92 0.91
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB -0.10 -0.11 -0.01
## PP.Nat_4R_GFFB -0.79 -0.79 -0.87
## PP.Nat_2R_GFFB -0.86 -0.86 -0.88
## PP.Nat_3R_GFFB -0.68 -0.67 -0.79
## PP.Nat_1_GFPRB -0.19 -0.17 -0.29
## PP.Nat_4R_GFPRB -0.59 -0.57 -0.73
## PP.Nat_2R_GFPRB -0.61 -0.59 -0.74
## PP.Nat_3R_GFPRB -0.65 -0.63 -0.77
## PP.Nat_1_CBB 0.58 0.56 0.70
## PP.Nat_4R_CBB -0.04 -0.09 0.01
## PP.Nat_2R_CBB -0.26 -0.32 -0.16
## PP.Nat_3R_CBB -0.33 -0.39 -0.25
## PP.Nat_1_PBPB 0.93 0.92 0.92
## PP.Nat_4R_PBPB 0.23 0.22 0.10
## PP.Nat_2R_PBPB 0.12 0.10 0.02
## PP.Nat_3R_PBPB -0.32 -0.33 -0.32
## PP.Nat_1_PBFB 0.87 0.86 0.94
## PP.Nat_4R_PBFB -0.46 -0.43 -0.43
## PP.Nat_2R_PBFB -0.02 0.00 -0.03
## PP.Nat_3R_PBFB 0.13 0.16 0.10
## PP.Nat_1_VB 0.85 0.86 0.78
## PP.Nat_4R_VB 0.04 0.07 -0.11
## PP.Nat_2R_VB -0.21 -0.18 -0.32
## PP.Nat_3R_VB -0.35 -0.32 -0.40
## PP.BehavInt1_GFFB -0.08 -0.08 0.02
## PP.BehavInt2_GFFB -0.13 -0.13 -0.05
## PP.BehavInt3_GFFB -0.04 -0.04 0.05
## PP.BehavInt4_GFFB -0.11 -0.11 -0.01
## PP.BehavInt1_GFPRB 0.99 0.99 0.95
## PP.BehavInt2_GFPRB 0.98 0.98 0.96
## PP.BehavInt3_GFPRB 1.00 0.99 0.95
## PP.BehavInt4_GFPRB 0.99 1.00 0.95
## PP.BehavInt1_CBB 0.71 0.69 0.81
## PP.BehavInt2_CBB 0.67 0.65 0.78
## PP.BehavInt3_CBB 0.70 0.67 0.80
## PP.BehavInt4_CBB 0.70 0.66 0.79
## PP.BehavInt1_PBPB 0.99 0.99 0.95
## PP.BehavInt2_PBPB 0.98 0.98 0.96
## PP.BehavInt3_PBPB 1.00 0.99 0.95
## PP.BehavInt4_PBPB 0.99 1.00 0.95
## PP.BehavInt1_PBFB 0.95 0.95 1.00
## PP.BehavInt2_PBFB 0.92 0.91 0.99
## PP.BehavInt3_PBFB 0.95 0.94 0.99
## PP.BehavInt4_PBFB 0.95 0.94 0.99
## PP.BehavInt1_VB 0.92 0.93 0.86
## PP.BehavInt2_VB 0.92 0.92 0.87
## PP.BehavInt3_VB 0.92 0.93 0.85
## PP.BehavInt4_VB 0.92 0.93 0.85
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.06 0.04 0.05
## PP.Nat_4R_GFFB -0.88 -0.87 -0.87
## PP.Nat_2R_GFFB -0.86 -0.88 -0.87
## PP.Nat_3R_GFFB -0.82 -0.80 -0.81
## PP.Nat_1_GFPRB -0.29 -0.24 -0.24
## PP.Nat_4R_GFPRB -0.77 -0.72 -0.73
## PP.Nat_2R_GFPRB -0.78 -0.75 -0.76
## PP.Nat_3R_GFPRB -0.82 -0.78 -0.80
## PP.Nat_1_CBB 0.75 0.70 0.72
## PP.Nat_4R_CBB 0.04 -0.02 0.00
## PP.Nat_2R_CBB -0.11 -0.18 -0.15
## PP.Nat_3R_CBB -0.19 -0.27 -0.24
## PP.Nat_1_PBPB 0.93 0.92 0.93
## PP.Nat_4R_PBPB 0.08 0.06 0.07
## PP.Nat_2R_PBPB 0.00 -0.02 0.00
## PP.Nat_3R_PBPB -0.31 -0.36 -0.35
## PP.Nat_1_PBFB 0.95 0.95 0.95
## PP.Nat_4R_PBFB -0.42 -0.40 -0.41
## PP.Nat_2R_PBFB -0.03 0.00 -0.02
## PP.Nat_3R_PBFB 0.09 0.14 0.13
## PP.Nat_1_VB 0.75 0.78 0.78
## PP.Nat_4R_VB -0.16 -0.13 -0.13
## PP.Nat_2R_VB -0.37 -0.34 -0.34
## PP.Nat_3R_VB -0.45 -0.43 -0.44
## PP.BehavInt1_GFFB 0.08 0.07 0.07
## PP.BehavInt2_GFFB 0.00 0.00 0.01
## PP.BehavInt3_GFFB 0.11 0.10 0.10
## PP.BehavInt4_GFFB 0.04 0.03 0.04
## PP.BehavInt1_GFPRB 0.92 0.94 0.93
## PP.BehavInt2_GFPRB 0.95 0.94 0.94
## PP.BehavInt3_GFPRB 0.92 0.95 0.95
## PP.BehavInt4_GFPRB 0.91 0.94 0.94
## PP.BehavInt1_CBB 0.83 0.81 0.82
## PP.BehavInt2_CBB 0.81 0.78 0.79
## PP.BehavInt3_CBB 0.82 0.80 0.81
## PP.BehavInt4_CBB 0.82 0.80 0.81
## PP.BehavInt1_PBPB 0.92 0.94 0.93
## PP.BehavInt2_PBPB 0.95 0.94 0.94
## PP.BehavInt3_PBPB 0.92 0.95 0.95
## PP.BehavInt4_PBPB 0.91 0.94 0.94
## PP.BehavInt1_PBFB 0.99 0.99 0.99
## PP.BehavInt2_PBFB 1.00 0.98 0.98
## PP.BehavInt3_PBFB 0.98 1.00 1.00
## PP.BehavInt4_PBFB 0.98 1.00 1.00
## PP.BehavInt1_VB 0.83 0.86 0.85
## PP.BehavInt2_VB 0.86 0.86 0.86
## PP.BehavInt3_VB 0.81 0.86 0.85
## PP.BehavInt4_VB 0.83 0.86 0.85
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB -0.14 -0.17 -0.15
## PP.Nat_4R_GFFB -0.67 -0.71 -0.66
## PP.Nat_2R_GFFB -0.72 -0.72 -0.73
## PP.Nat_3R_GFFB -0.54 -0.56 -0.52
## PP.Nat_1_GFPRB -0.08 -0.18 -0.05
## PP.Nat_4R_GFPRB -0.47 -0.55 -0.44
## PP.Nat_2R_GFPRB -0.53 -0.62 -0.50
## PP.Nat_3R_GFPRB -0.54 -0.60 -0.50
## PP.Nat_1_CBB 0.37 0.40 0.34
## PP.Nat_4R_CBB -0.25 -0.21 -0.28
## PP.Nat_2R_CBB -0.46 -0.39 -0.50
## PP.Nat_3R_CBB -0.49 -0.43 -0.53
## PP.Nat_1_PBPB 0.86 0.88 0.85
## PP.Nat_4R_PBPB 0.28 0.35 0.28
## PP.Nat_2R_PBPB 0.10 0.19 0.11
## PP.Nat_3R_PBPB -0.28 -0.14 -0.27
## PP.Nat_1_PBFB 0.74 0.77 0.73
## PP.Nat_4R_PBFB -0.42 -0.43 -0.40
## PP.Nat_2R_PBFB 0.03 -0.04 0.03
## PP.Nat_3R_PBFB 0.16 0.09 0.16
## PP.Nat_1_VB 0.92 0.89 0.91
## PP.Nat_4R_VB 0.21 0.20 0.24
## PP.Nat_2R_VB -0.04 -0.06 -0.01
## PP.Nat_3R_VB -0.18 -0.18 -0.15
## PP.BehavInt1_GFFB -0.11 -0.14 -0.11
## PP.BehavInt2_GFFB -0.14 -0.18 -0.13
## PP.BehavInt3_GFFB -0.09 -0.11 -0.09
## PP.BehavInt4_GFFB -0.14 -0.16 -0.14
## PP.BehavInt1_GFPRB 0.92 0.91 0.92
## PP.BehavInt2_GFPRB 0.91 0.91 0.89
## PP.BehavInt3_GFPRB 0.92 0.92 0.92
## PP.BehavInt4_GFPRB 0.93 0.92 0.93
## PP.BehavInt1_CBB 0.49 0.50 0.48
## PP.BehavInt2_CBB 0.46 0.48 0.43
## PP.BehavInt3_CBB 0.48 0.48 0.46
## PP.BehavInt4_CBB 0.48 0.48 0.46
## PP.BehavInt1_PBPB 0.92 0.91 0.92
## PP.BehavInt2_PBPB 0.91 0.91 0.89
## PP.BehavInt3_PBPB 0.92 0.92 0.92
## PP.BehavInt4_PBPB 0.93 0.92 0.93
## PP.BehavInt1_PBFB 0.86 0.87 0.85
## PP.BehavInt2_PBFB 0.83 0.86 0.81
## PP.BehavInt3_PBFB 0.86 0.86 0.86
## PP.BehavInt4_PBFB 0.85 0.86 0.85
## PP.BehavInt1_VB 1.00 0.97 0.99
## PP.BehavInt2_VB 0.97 1.00 0.95
## PP.BehavInt3_VB 0.99 0.95 1.00
## PP.BehavInt4_VB 0.99 0.97 0.99
## PP.BehavInt4_VB
## PP.Nat_1_GFFB -0.15
## PP.Nat_4R_GFFB -0.68
## PP.Nat_2R_GFFB -0.73
## PP.Nat_3R_GFFB -0.53
## PP.Nat_1_GFPRB -0.08
## PP.Nat_4R_GFPRB -0.48
## PP.Nat_2R_GFPRB -0.53
## PP.Nat_3R_GFPRB -0.53
## PP.Nat_1_CBB 0.36
## PP.Nat_4R_CBB -0.26
## PP.Nat_2R_CBB -0.46
## PP.Nat_3R_CBB -0.50
## PP.Nat_1_PBPB 0.86
## PP.Nat_4R_PBPB 0.29
## PP.Nat_2R_PBPB 0.13
## PP.Nat_3R_PBPB -0.26
## PP.Nat_1_PBFB 0.73
## PP.Nat_4R_PBFB -0.40
## PP.Nat_2R_PBFB 0.04
## PP.Nat_3R_PBFB 0.15
## PP.Nat_1_VB 0.91
## PP.Nat_4R_VB 0.21
## PP.Nat_2R_VB -0.04
## PP.Nat_3R_VB -0.18
## PP.BehavInt1_GFFB -0.13
## PP.BehavInt2_GFFB -0.16
## PP.BehavInt3_GFFB -0.10
## PP.BehavInt4_GFFB -0.16
## PP.BehavInt1_GFPRB 0.92
## PP.BehavInt2_GFPRB 0.91
## PP.BehavInt3_GFPRB 0.92
## PP.BehavInt4_GFPRB 0.93
## PP.BehavInt1_CBB 0.49
## PP.BehavInt2_CBB 0.45
## PP.BehavInt3_CBB 0.47
## PP.BehavInt4_CBB 0.47
## PP.BehavInt1_PBPB 0.92
## PP.BehavInt2_PBPB 0.91
## PP.BehavInt3_PBPB 0.92
## PP.BehavInt4_PBPB 0.93
## PP.BehavInt1_PBFB 0.85
## PP.BehavInt2_PBFB 0.83
## PP.BehavInt3_PBFB 0.86
## PP.BehavInt4_PBFB 0.85
## PP.BehavInt1_VB 0.99
## PP.BehavInt2_VB 0.97
## PP.BehavInt3_VB 0.99
## PP.BehavInt4_VB 1.00
##
## n= 48
##
##
## P
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 0.9750 0.9035 0.0055
## PP.Nat_4R_GFFB 0.9750 0.0000 0.0000
## PP.Nat_2R_GFFB 0.9035 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0055 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0009 0.0180 0.1291 0.4124
## PP.Nat_4R_GFPRB 0.0893 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.1703 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0475 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0006 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0741 0.8075 0.6245 0.6559
## PP.Nat_2R_CBB 0.4533 0.4298 0.0957 0.4871
## PP.Nat_3R_CBB 0.3388 0.2605 0.0315 0.2723
## PP.Nat_1_PBPB 0.9904 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.9023 0.9301 0.1403
## PP.Nat_2R_PBPB 0.0000 0.8597 0.9435 0.0596
## PP.Nat_3R_PBPB 0.0000 0.1943 0.0269 0.0032
## PP.Nat_1_PBFB 0.4227 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0803 0.0620 0.8538
## PP.Nat_2R_PBFB 0.0000 0.9014 0.4460 0.0799
## PP.Nat_3R_PBFB 0.0000 0.6431 0.2172 0.0243
## PP.Nat_1_VB 0.4114 0.0000 0.0000 0.0003
## PP.Nat_4R_VB 0.0000 0.0688 0.1987 0.0003
## PP.Nat_2R_VB 0.0000 0.0065 0.0201 0.0000
## PP.Nat_3R_VB 0.0000 0.0063 0.0060 0.0000
## PP.BehavInt1_GFFB 0.0000 0.8166 0.9957 0.0035
## PP.BehavInt2_GFFB 0.0000 0.7427 0.6654 0.0247
## PP.BehavInt3_GFFB 0.0000 0.6037 0.7974 0.0015
## PP.BehavInt4_GFFB 0.0000 0.9813 0.8575 0.0074
## PP.BehavInt1_GFPRB 0.4073 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.4043 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.4905 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.4694 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0089 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0024 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0059 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0051 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.4073 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.4043 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.4905 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.4694 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.9372 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.6968 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.7981 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.7596 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.3462 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.2443 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.3179 0.0000 0.0000 0.0001
## PP.BehavInt4_VB 0.2993 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.0009 0.0893 0.1703
## PP.Nat_4R_GFFB 0.0180 0.0000 0.0000
## PP.Nat_2R_GFFB 0.1291 0.0000 0.0000
## PP.Nat_3R_GFFB 0.4124 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0006 0.0019
## PP.Nat_4R_GFPRB 0.0006 0.0000
## PP.Nat_2R_GFPRB 0.0019 0.0000
## PP.Nat_3R_GFPRB 0.0306 0.0000 0.0000
## PP.Nat_1_CBB 0.0750 0.0000 0.0000
## PP.Nat_4R_CBB 0.0012 0.7360 0.5989
## PP.Nat_2R_CBB 0.0010 0.5215 0.5202
## PP.Nat_3R_CBB 0.0025 0.8450 0.7837
## PP.Nat_1_PBPB 0.0563 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0453 0.2776 0.8376
## PP.Nat_2R_PBPB 0.0150 0.2990 0.7528
## PP.Nat_3R_PBPB 0.0006 0.2698 0.6346
## PP.Nat_1_PBFB 0.0213 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.2754 0.0959
## PP.Nat_2R_PBFB 0.0002 0.5809 0.8932
## PP.Nat_3R_PBFB 0.0000 0.6391 0.9673
## PP.Nat_1_VB 0.5501 0.0009 0.0002
## PP.Nat_4R_VB 0.6513 0.0003 0.0057
## PP.Nat_2R_VB 0.8906 0.0000 0.0000
## PP.Nat_3R_VB 0.8300 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0088 0.0554 0.1364
## PP.BehavInt2_GFFB 0.0013 0.2389 0.4398
## PP.BehavInt3_GFFB 0.0167 0.0294 0.0769
## PP.BehavInt4_GFFB 0.0091 0.0803 0.1765
## PP.BehavInt1_GFPRB 0.2613 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0841 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.1876 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.2464 0.0000 0.0000
## PP.BehavInt1_CBB 0.1057 0.0000 0.0000
## PP.BehavInt2_CBB 0.1086 0.0000 0.0000
## PP.BehavInt3_CBB 0.0990 0.0000 0.0000
## PP.BehavInt4_CBB 0.1116 0.0000 0.0000
## PP.BehavInt1_PBPB 0.2613 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0841 0.0000 0.0000
## PP.BehavInt3_PBPB 0.1876 0.0000 0.0000
## PP.BehavInt4_PBPB 0.2464 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0463 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0433 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0975 0.0000 0.0000
## PP.BehavInt4_PBFB 0.1067 0.0000 0.0000
## PP.BehavInt1_VB 0.5729 0.0007 0.0001
## PP.BehavInt2_VB 0.2083 0.0000 0.0000
## PP.BehavInt3_VB 0.7437 0.0019 0.0003
## PP.BehavInt4_VB 0.5869 0.0006 0.0001
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB 0.0475 0.0006 0.0741 0.4533
## PP.Nat_4R_GFFB 0.0000 0.0000 0.8075 0.4298
## PP.Nat_2R_GFFB 0.0000 0.0000 0.6245 0.0957
## PP.Nat_3R_GFFB 0.0000 0.0000 0.6559 0.4871
## PP.Nat_1_GFPRB 0.0306 0.0750 0.0012 0.0010
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.7360 0.5215
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.5989 0.5202
## PP.Nat_3R_GFPRB 0.0000 0.5609 0.6687
## PP.Nat_1_CBB 0.0000 0.2001 0.2714
## PP.Nat_4R_CBB 0.5609 0.2001 0.0000
## PP.Nat_2R_CBB 0.6687 0.2714 0.0000
## PP.Nat_3R_CBB 0.7608 0.7653 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.9691 0.2569
## PP.Nat_4R_PBPB 0.7031 0.0575 0.0640 0.5041
## PP.Nat_2R_PBPB 0.4313 0.0252 0.0043 0.0164
## PP.Nat_3R_PBPB 0.0761 0.0067 0.0523 0.0066
## PP.Nat_1_PBFB 0.0000 0.0000 0.5080 0.8660
## PP.Nat_4R_PBFB 0.2066 0.2726 0.0001 0.0154
## PP.Nat_2R_PBFB 0.5951 0.3879 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3703 0.3154 0.0001 0.0000
## PP.Nat_1_VB 0.0001 0.0107 0.0674 0.0019
## PP.Nat_4R_VB 0.0013 0.0000 0.9493 0.2787
## PP.Nat_2R_VB 0.0000 0.0000 0.9619 0.5037
## PP.Nat_3R_VB 0.0000 0.0000 0.9144 0.7186
## PP.BehavInt1_GFFB 0.0300 0.0004 0.0127 0.2145
## PP.BehavInt2_GFFB 0.1175 0.0055 0.0045 0.1099
## PP.BehavInt3_GFFB 0.0159 0.0001 0.0151 0.2490
## PP.BehavInt4_GFFB 0.0639 0.0009 0.0128 0.2549
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.7698 0.0645
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.9614 0.1375
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.7846 0.0764
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.5295 0.0289
## PP.BehavInt1_CBB 0.0000 0.0000 0.2535 0.5990
## PP.BehavInt2_CBB 0.0000 0.0000 0.2586 0.4740
## PP.BehavInt3_CBB 0.0000 0.0000 0.2674 0.5351
## PP.BehavInt4_CBB 0.0000 0.0000 0.2258 0.5242
## PP.BehavInt1_PBPB 0.0000 0.0000 0.7698 0.0645
## PP.BehavInt2_PBPB 0.0000 0.0000 0.9614 0.1375
## PP.BehavInt3_PBPB 0.0000 0.0000 0.7846 0.0764
## PP.BehavInt4_PBPB 0.0000 0.0000 0.5295 0.0289
## PP.BehavInt1_PBFB 0.0000 0.0000 0.9649 0.2856
## PP.BehavInt2_PBFB 0.0000 0.0000 0.8031 0.4689
## PP.BehavInt3_PBFB 0.0000 0.0000 0.8894 0.2195
## PP.BehavInt4_PBFB 0.0000 0.0000 0.9876 0.2934
## PP.BehavInt1_VB 0.0000 0.0094 0.0889 0.0010
## PP.BehavInt2_VB 0.0000 0.0049 0.1611 0.0069
## PP.BehavInt3_VB 0.0003 0.0169 0.0542 0.0003
## PP.BehavInt4_VB 0.0001 0.0126 0.0704 0.0009
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB 0.3388 0.9904 0.0000 0.0000
## PP.Nat_4R_GFFB 0.2605 0.0000 0.9023 0.8597
## PP.Nat_2R_GFFB 0.0315 0.0000 0.9301 0.9435
## PP.Nat_3R_GFFB 0.2723 0.0000 0.1403 0.0596
## PP.Nat_1_GFPRB 0.0025 0.0563 0.0453 0.0150
## PP.Nat_4R_GFPRB 0.8450 0.0000 0.2776 0.2990
## PP.Nat_2R_GFPRB 0.7837 0.0000 0.8376 0.7528
## PP.Nat_3R_GFPRB 0.7608 0.0000 0.7031 0.4313
## PP.Nat_1_CBB 0.7653 0.0000 0.0575 0.0252
## PP.Nat_4R_CBB 0.0000 0.9691 0.0640 0.0043
## PP.Nat_2R_CBB 0.0000 0.2569 0.5041 0.0164
## PP.Nat_3R_CBB 0.0927 0.6270 0.0167
## PP.Nat_1_PBPB 0.0927 0.0980 0.4360
## PP.Nat_4R_PBPB 0.6270 0.0980 0.0000
## PP.Nat_2R_PBPB 0.0167 0.4360 0.0000
## PP.Nat_3R_PBPB 0.0021 0.1179 0.0000 0.0000
## PP.Nat_1_PBFB 0.4838 0.0000 0.8267 0.9185
## PP.Nat_4R_PBFB 0.0491 0.0005 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.7899 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.6341 0.0000 0.0000
## PP.Nat_1_VB 0.0006 0.0000 0.0523 0.4780
## PP.Nat_4R_VB 0.4204 0.8877 0.0000 0.0000
## PP.Nat_2R_VB 0.7310 0.0361 0.0000 0.0000
## PP.Nat_3R_VB 0.9568 0.0026 0.0004 0.0002
## PP.BehavInt1_GFFB 0.1548 0.8805 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0694 0.7045 0.0000 0.0000
## PP.BehavInt3_GFFB 0.1776 0.6909 0.0000 0.0000
## PP.BehavInt4_GFFB 0.1873 0.9945 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0124 0.0000 0.0679 0.3167
## PP.BehavInt2_GFPRB 0.0387 0.0000 0.0911 0.3541
## PP.BehavInt3_GFPRB 0.0208 0.0000 0.1151 0.4094
## PP.BehavInt4_GFPRB 0.0068 0.0000 0.1264 0.4930
## PP.BehavInt1_CBB 0.6880 0.0000 0.1056 0.0577
## PP.BehavInt2_CBB 0.8455 0.0000 0.0798 0.0358
## PP.BehavInt3_CBB 0.7641 0.0000 0.0977 0.0562
## PP.BehavInt4_CBB 0.8005 0.0000 0.1120 0.0582
## PP.BehavInt1_PBPB 0.0124 0.0000 0.0679 0.3167
## PP.BehavInt2_PBPB 0.0387 0.0000 0.0911 0.3541
## PP.BehavInt3_PBPB 0.0208 0.0000 0.1151 0.4094
## PP.BehavInt4_PBPB 0.0068 0.0000 0.1264 0.4930
## PP.BehavInt1_PBFB 0.0878 0.0000 0.4969 0.8688
## PP.BehavInt2_PBFB 0.1924 0.0000 0.5769 0.9918
## PP.BehavInt3_PBFB 0.0679 0.0000 0.6994 0.9038
## PP.BehavInt4_PBFB 0.0990 0.0000 0.6436 0.9847
## PP.BehavInt1_VB 0.0004 0.0000 0.0510 0.4804
## PP.BehavInt2_VB 0.0025 0.0000 0.0139 0.1995
## PP.BehavInt3_VB 0.0000 0.0000 0.0554 0.4538
## PP.BehavInt4_VB 0.0003 0.0000 0.0495 0.3842
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB 0.0000 0.4227 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1943 0.0000 0.0803 0.9014
## PP.Nat_2R_GFFB 0.0269 0.0000 0.0620 0.4460
## PP.Nat_3R_GFFB 0.0032 0.0000 0.8538 0.0799
## PP.Nat_1_GFPRB 0.0006 0.0213 0.0000 0.0002
## PP.Nat_4R_GFPRB 0.2698 0.0000 0.2754 0.5809
## PP.Nat_2R_GFPRB 0.6346 0.0000 0.0959 0.8932
## PP.Nat_3R_GFPRB 0.0761 0.0000 0.2066 0.5951
## PP.Nat_1_CBB 0.0067 0.0000 0.2726 0.3879
## PP.Nat_4R_CBB 0.0523 0.5080 0.0001 0.0000
## PP.Nat_2R_CBB 0.0066 0.8660 0.0154 0.0000
## PP.Nat_3R_CBB 0.0021 0.4838 0.0491 0.0000
## PP.Nat_1_PBPB 0.1179 0.0000 0.0005 0.7899
## PP.Nat_4R_PBPB 0.0000 0.8267 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.9185 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0468 0.0037 0.0000
## PP.Nat_1_PBFB 0.0468 0.0016 0.6806
## PP.Nat_4R_PBFB 0.0037 0.0016 0.0000
## PP.Nat_2R_PBFB 0.0000 0.6806 0.0000
## PP.Nat_3R_PBFB 0.0000 0.7361 0.0000 0.0000
## PP.Nat_1_VB 0.1208 0.0000 0.0025 0.9593
## PP.Nat_4R_VB 0.0003 0.1289 0.0002 0.0000
## PP.Nat_2R_VB 0.0003 0.0026 0.0252 0.0004
## PP.Nat_3R_VB 0.0000 0.0003 0.0650 0.0005
## PP.BehavInt1_GFFB 0.0000 0.3289 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.6913 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.2283 0.0002 0.0000
## PP.BehavInt4_GFFB 0.0002 0.4443 0.0001 0.0000
## PP.BehavInt1_GFPRB 0.0423 0.0000 0.0004 0.7019
## PP.BehavInt2_GFPRB 0.0633 0.0000 0.0005 0.7404
## PP.BehavInt3_GFPRB 0.0281 0.0000 0.0010 0.8750
## PP.BehavInt4_GFPRB 0.0240 0.0000 0.0022 0.9902
## PP.BehavInt1_CBB 0.0004 0.0000 0.1419 0.4328
## PP.BehavInt2_CBB 0.0008 0.0000 0.1978 0.3701
## PP.BehavInt3_CBB 0.0006 0.0000 0.1733 0.4005
## PP.BehavInt4_CBB 0.0007 0.0000 0.1473 0.4306
## PP.BehavInt1_PBPB 0.0423 0.0000 0.0004 0.7019
## PP.BehavInt2_PBPB 0.0633 0.0000 0.0005 0.7404
## PP.BehavInt3_PBPB 0.0281 0.0000 0.0010 0.8750
## PP.BehavInt4_PBPB 0.0240 0.0000 0.0022 0.9902
## PP.BehavInt1_PBFB 0.0245 0.0000 0.0022 0.8417
## PP.BehavInt2_PBFB 0.0334 0.0000 0.0031 0.8623
## PP.BehavInt3_PBFB 0.0117 0.0000 0.0045 0.9996
## PP.BehavInt4_PBFB 0.0144 0.0000 0.0037 0.9073
## PP.BehavInt1_VB 0.0576 0.0000 0.0032 0.8177
## PP.BehavInt2_VB 0.3288 0.0000 0.0023 0.8034
## PP.BehavInt3_VB 0.0682 0.0000 0.0047 0.8596
## PP.BehavInt4_VB 0.0770 0.0000 0.0051 0.8119
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.0000 0.4114 0.0000 0.0000
## PP.Nat_4R_GFFB 0.6431 0.0000 0.0688 0.0065
## PP.Nat_2R_GFFB 0.2172 0.0000 0.1987 0.0201
## PP.Nat_3R_GFFB 0.0243 0.0003 0.0003 0.0000
## PP.Nat_1_GFPRB 0.0000 0.5501 0.6513 0.8906
## PP.Nat_4R_GFPRB 0.6391 0.0009 0.0003 0.0000
## PP.Nat_2R_GFPRB 0.9673 0.0002 0.0057 0.0000
## PP.Nat_3R_GFPRB 0.3703 0.0001 0.0013 0.0000
## PP.Nat_1_CBB 0.3154 0.0107 0.0000 0.0000
## PP.Nat_4R_CBB 0.0001 0.0674 0.9493 0.9619
## PP.Nat_2R_CBB 0.0000 0.0019 0.2787 0.5037
## PP.Nat_3R_CBB 0.0000 0.0006 0.4204 0.7310
## PP.Nat_1_PBPB 0.6341 0.0000 0.8877 0.0361
## PP.Nat_4R_PBPB 0.0000 0.0523 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.4780 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.1208 0.0003 0.0003
## PP.Nat_1_PBFB 0.7361 0.0000 0.1289 0.0026
## PP.Nat_4R_PBFB 0.0000 0.0025 0.0002 0.0252
## PP.Nat_2R_PBFB 0.0000 0.9593 0.0000 0.0004
## PP.Nat_3R_PBFB 0.4963 0.0015 0.0012
## PP.Nat_1_VB 0.4963 0.0589 0.8010
## PP.Nat_4R_VB 0.0015 0.0589 0.0000
## PP.Nat_2R_VB 0.0012 0.8010 0.0000
## PP.Nat_3R_VB 0.0000 0.4384 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.6509 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.4965 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0002 0.7539 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0002 0.4941 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.5303 0.0000 0.5091 0.3204
## PP.BehavInt2_GFPRB 0.6319 0.0000 0.7559 0.1826
## PP.BehavInt3_GFPRB 0.3912 0.0000 0.7663 0.1487
## PP.BehavInt4_GFPRB 0.2823 0.0000 0.6510 0.2116
## PP.BehavInt1_CBB 0.2428 0.0013 0.0000 0.0000
## PP.BehavInt2_CBB 0.2341 0.0026 0.0000 0.0000
## PP.BehavInt3_CBB 0.2385 0.0022 0.0000 0.0000
## PP.BehavInt4_CBB 0.2531 0.0028 0.0000 0.0000
## PP.BehavInt1_PBPB 0.5303 0.0000 0.5091 0.3204
## PP.BehavInt2_PBPB 0.6319 0.0000 0.7559 0.1826
## PP.BehavInt3_PBPB 0.3912 0.0000 0.7663 0.1487
## PP.BehavInt4_PBPB 0.2823 0.0000 0.6510 0.2116
## PP.BehavInt1_PBFB 0.4922 0.0000 0.4542 0.0268
## PP.BehavInt2_PBFB 0.5253 0.0000 0.2743 0.0088
## PP.BehavInt3_PBFB 0.3432 0.0000 0.3919 0.0199
## PP.BehavInt4_PBFB 0.3898 0.0000 0.3737 0.0185
## PP.BehavInt1_VB 0.2727 0.0000 0.1454 0.8079
## PP.BehavInt2_VB 0.5522 0.0000 0.1699 0.6698
## PP.BehavInt3_VB 0.2843 0.0000 0.1057 0.9557
## PP.BehavInt4_VB 0.2964 0.0000 0.1541 0.7858
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.0063 0.8166 0.7427
## PP.Nat_2R_GFFB 0.0060 0.9957 0.6654
## PP.Nat_3R_GFFB 0.0000 0.0035 0.0247
## PP.Nat_1_GFPRB 0.8300 0.0088 0.0013
## PP.Nat_4R_GFPRB 0.0000 0.0554 0.2389
## PP.Nat_2R_GFPRB 0.0000 0.1364 0.4398
## PP.Nat_3R_GFPRB 0.0000 0.0300 0.1175
## PP.Nat_1_CBB 0.0000 0.0004 0.0055
## PP.Nat_4R_CBB 0.9144 0.0127 0.0045
## PP.Nat_2R_CBB 0.7186 0.2145 0.1099
## PP.Nat_3R_CBB 0.9568 0.1548 0.0694
## PP.Nat_1_PBPB 0.0026 0.8805 0.7045
## PP.Nat_4R_PBPB 0.0004 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0002 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.0003 0.3289 0.6913
## PP.Nat_4R_PBFB 0.0650 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0005 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.4384 0.6509 0.4965
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0573 0.4669 0.3039
## PP.BehavInt2_GFPRB 0.0286 0.4785 0.2628
## PP.BehavInt3_GFPRB 0.0140 0.6009 0.3717
## PP.BehavInt4_GFPRB 0.0271 0.6068 0.3910
## PP.BehavInt1_CBB 0.0000 0.0065 0.0316
## PP.BehavInt2_CBB 0.0000 0.0018 0.0126
## PP.BehavInt3_CBB 0.0000 0.0044 0.0228
## PP.BehavInt4_CBB 0.0000 0.0044 0.0247
## PP.BehavInt1_PBPB 0.0573 0.4669 0.3039
## PP.BehavInt2_PBPB 0.0286 0.4785 0.2628
## PP.BehavInt3_PBPB 0.0140 0.6009 0.3717
## PP.BehavInt4_PBPB 0.0271 0.6068 0.3910
## PP.BehavInt1_PBFB 0.0049 0.8822 0.7564
## PP.BehavInt2_PBFB 0.0013 0.6009 0.9975
## PP.BehavInt3_PBFB 0.0023 0.6344 0.9810
## PP.BehavInt4_PBFB 0.0020 0.6156 0.9712
## PP.BehavInt1_VB 0.2183 0.4529 0.3467
## PP.BehavInt2_VB 0.2140 0.3557 0.2212
## PP.BehavInt3_VB 0.3027 0.4525 0.3669
## PP.BehavInt4_VB 0.2199 0.3924 0.2868
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.0000 0.0000 0.4073
## PP.Nat_4R_GFFB 0.6037 0.9813 0.0000
## PP.Nat_2R_GFFB 0.7974 0.8575 0.0000
## PP.Nat_3R_GFFB 0.0015 0.0074 0.0000
## PP.Nat_1_GFPRB 0.0167 0.0091 0.2613
## PP.Nat_4R_GFPRB 0.0294 0.0803 0.0000
## PP.Nat_2R_GFPRB 0.0769 0.1765 0.0000
## PP.Nat_3R_GFPRB 0.0159 0.0639 0.0000
## PP.Nat_1_CBB 0.0001 0.0009 0.0000
## PP.Nat_4R_CBB 0.0151 0.0128 0.7698
## PP.Nat_2R_CBB 0.2490 0.2549 0.0645
## PP.Nat_3R_CBB 0.1776 0.1873 0.0124
## PP.Nat_1_PBPB 0.6909 0.9945 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0679
## PP.Nat_2R_PBPB 0.0000 0.0000 0.3167
## PP.Nat_3R_PBPB 0.0000 0.0002 0.0423
## PP.Nat_1_PBFB 0.2283 0.4443 0.0000
## PP.Nat_4R_PBFB 0.0002 0.0001 0.0004
## PP.Nat_2R_PBFB 0.0000 0.0000 0.7019
## PP.Nat_3R_PBFB 0.0002 0.0002 0.5303
## PP.Nat_1_VB 0.7539 0.4941 0.0000
## PP.Nat_4R_VB 0.0000 0.0000 0.5091
## PP.Nat_2R_VB 0.0000 0.0000 0.3204
## PP.Nat_3R_VB 0.0000 0.0000 0.0573
## PP.BehavInt1_GFFB 0.0000 0.0000 0.4669
## PP.BehavInt2_GFFB 0.0000 0.0000 0.3039
## PP.BehavInt3_GFFB 0.0000 0.6055
## PP.BehavInt4_GFFB 0.0000 0.3542
## PP.BehavInt1_GFPRB 0.6055 0.3542
## PP.BehavInt2_GFPRB 0.6454 0.3526 0.0000
## PP.BehavInt3_GFPRB 0.7700 0.4653 0.0000
## PP.BehavInt4_GFPRB 0.7644 0.4567 0.0000
## PP.BehavInt1_CBB 0.0028 0.0130 0.0000
## PP.BehavInt2_CBB 0.0006 0.0038 0.0000
## PP.BehavInt3_CBB 0.0018 0.0087 0.0000
## PP.BehavInt4_CBB 0.0018 0.0085 0.0000
## PP.BehavInt1_PBPB 0.6055 0.3542 0.0000
## PP.BehavInt2_PBPB 0.6454 0.3526 0.0000
## PP.BehavInt3_PBPB 0.7700 0.4653 0.0000
## PP.BehavInt4_PBPB 0.7644 0.4567 0.0000
## PP.BehavInt1_PBFB 0.7225 0.9417 0.0000
## PP.BehavInt2_PBFB 0.4561 0.7669 0.0000
## PP.BehavInt3_PBFB 0.5033 0.8157 0.0000
## PP.BehavInt4_PBFB 0.4799 0.7958 0.0000
## PP.BehavInt1_VB 0.5474 0.3352 0.0000
## PP.BehavInt2_VB 0.4693 0.2643 0.0000
## PP.BehavInt3_VB 0.5389 0.3349 0.0000
## PP.BehavInt4_VB 0.4839 0.2821 0.0000
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB 0.4043 0.4905 0.4694
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0841 0.1876 0.2464
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.9614 0.7846 0.5295
## PP.Nat_2R_CBB 0.1375 0.0764 0.0289
## PP.Nat_3R_CBB 0.0387 0.0208 0.0068
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0911 0.1151 0.1264
## PP.Nat_2R_PBPB 0.3541 0.4094 0.4930
## PP.Nat_3R_PBPB 0.0633 0.0281 0.0240
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0005 0.0010 0.0022
## PP.Nat_2R_PBFB 0.7404 0.8750 0.9902
## PP.Nat_3R_PBFB 0.6319 0.3912 0.2823
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.7559 0.7663 0.6510
## PP.Nat_2R_VB 0.1826 0.1487 0.2116
## PP.Nat_3R_VB 0.0286 0.0140 0.0271
## PP.BehavInt1_GFFB 0.4785 0.6009 0.6068
## PP.BehavInt2_GFFB 0.2628 0.3717 0.3910
## PP.BehavInt3_GFFB 0.6454 0.7700 0.7644
## PP.BehavInt4_GFFB 0.3526 0.4653 0.4567
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.0089 0.0024 0.0059
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1057 0.1086 0.0990
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.2535 0.2586 0.2674
## PP.Nat_2R_CBB 0.5990 0.4740 0.5351
## PP.Nat_3R_CBB 0.6880 0.8455 0.7641
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1056 0.0798 0.0977
## PP.Nat_2R_PBPB 0.0577 0.0358 0.0562
## PP.Nat_3R_PBPB 0.0004 0.0008 0.0006
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.1419 0.1978 0.1733
## PP.Nat_2R_PBFB 0.4328 0.3701 0.4005
## PP.Nat_3R_PBFB 0.2428 0.2341 0.2385
## PP.Nat_1_VB 0.0013 0.0026 0.0022
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0065 0.0018 0.0044
## PP.BehavInt2_GFFB 0.0316 0.0126 0.0228
## PP.BehavInt3_GFFB 0.0028 0.0006 0.0018
## PP.BehavInt4_GFFB 0.0130 0.0038 0.0087
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0004 0.0011 0.0006
## PP.BehavInt2_VB 0.0003 0.0006 0.0005
## PP.BehavInt3_VB 0.0006 0.0021 0.0010
## PP.BehavInt4_VB 0.0004 0.0014 0.0007
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.0051 0.4073 0.4043
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1116 0.2613 0.0841
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.2258 0.7698 0.9614
## PP.Nat_2R_CBB 0.5242 0.0645 0.1375
## PP.Nat_3R_CBB 0.8005 0.0124 0.0387
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1120 0.0679 0.0911
## PP.Nat_2R_PBPB 0.0582 0.3167 0.3541
## PP.Nat_3R_PBPB 0.0007 0.0423 0.0633
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.1473 0.0004 0.0005
## PP.Nat_2R_PBFB 0.4306 0.7019 0.7404
## PP.Nat_3R_PBFB 0.2531 0.5303 0.6319
## PP.Nat_1_VB 0.0028 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.5091 0.7559
## PP.Nat_2R_VB 0.0000 0.3204 0.1826
## PP.Nat_3R_VB 0.0000 0.0573 0.0286
## PP.BehavInt1_GFFB 0.0044 0.4669 0.4785
## PP.BehavInt2_GFFB 0.0247 0.3039 0.2628
## PP.BehavInt3_GFFB 0.0018 0.6055 0.6454
## PP.BehavInt4_GFFB 0.0085 0.3542 0.3526
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0006 0.0000 0.0000
## PP.BehavInt2_VB 0.0006 0.0000 0.0000
## PP.BehavInt3_VB 0.0010 0.0000 0.0000
## PP.BehavInt4_VB 0.0007 0.0000 0.0000
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB 0.4905 0.4694 0.9372
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1876 0.2464 0.0463
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.7846 0.5295 0.9649
## PP.Nat_2R_CBB 0.0764 0.0289 0.2856
## PP.Nat_3R_CBB 0.0208 0.0068 0.0878
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1151 0.1264 0.4969
## PP.Nat_2R_PBPB 0.4094 0.4930 0.8688
## PP.Nat_3R_PBPB 0.0281 0.0240 0.0245
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0010 0.0022 0.0022
## PP.Nat_2R_PBFB 0.8750 0.9902 0.8417
## PP.Nat_3R_PBFB 0.3912 0.2823 0.4922
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.7663 0.6510 0.4542
## PP.Nat_2R_VB 0.1487 0.2116 0.0268
## PP.Nat_3R_VB 0.0140 0.0271 0.0049
## PP.BehavInt1_GFFB 0.6009 0.6068 0.8822
## PP.BehavInt2_GFFB 0.3717 0.3910 0.7564
## PP.BehavInt3_GFFB 0.7700 0.7644 0.7225
## PP.BehavInt4_GFFB 0.4653 0.4567 0.9417
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.6968 0.7981 0.7596
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0433 0.0975 0.1067
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.8031 0.8894 0.9876
## PP.Nat_2R_CBB 0.4689 0.2195 0.2934
## PP.Nat_3R_CBB 0.1924 0.0679 0.0990
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.5769 0.6994 0.6436
## PP.Nat_2R_PBPB 0.9918 0.9038 0.9847
## PP.Nat_3R_PBPB 0.0334 0.0117 0.0144
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0031 0.0045 0.0037
## PP.Nat_2R_PBFB 0.8623 0.9996 0.9073
## PP.Nat_3R_PBFB 0.5253 0.3432 0.3898
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.2743 0.3919 0.3737
## PP.Nat_2R_VB 0.0088 0.0199 0.0185
## PP.Nat_3R_VB 0.0013 0.0023 0.0020
## PP.BehavInt1_GFFB 0.6009 0.6344 0.6156
## PP.BehavInt2_GFFB 0.9975 0.9810 0.9712
## PP.BehavInt3_GFFB 0.4561 0.5033 0.4799
## PP.BehavInt4_GFFB 0.7669 0.8157 0.7958
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB 0.3462 0.2443 0.3179
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0001
## PP.Nat_1_GFPRB 0.5729 0.2083 0.7437
## PP.Nat_4R_GFPRB 0.0007 0.0000 0.0019
## PP.Nat_2R_GFPRB 0.0001 0.0000 0.0003
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0003
## PP.Nat_1_CBB 0.0094 0.0049 0.0169
## PP.Nat_4R_CBB 0.0889 0.1611 0.0542
## PP.Nat_2R_CBB 0.0010 0.0069 0.0003
## PP.Nat_3R_CBB 0.0004 0.0025 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0510 0.0139 0.0554
## PP.Nat_2R_PBPB 0.4804 0.1995 0.4538
## PP.Nat_3R_PBPB 0.0576 0.3288 0.0682
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0032 0.0023 0.0047
## PP.Nat_2R_PBFB 0.8177 0.8034 0.8596
## PP.Nat_3R_PBFB 0.2727 0.5522 0.2843
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.1454 0.1699 0.1057
## PP.Nat_2R_VB 0.8079 0.6698 0.9557
## PP.Nat_3R_VB 0.2183 0.2140 0.3027
## PP.BehavInt1_GFFB 0.4529 0.3557 0.4525
## PP.BehavInt2_GFFB 0.3467 0.2212 0.3669
## PP.BehavInt3_GFFB 0.5474 0.4693 0.5389
## PP.BehavInt4_GFFB 0.3352 0.2643 0.3349
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0004 0.0003 0.0006
## PP.BehavInt2_CBB 0.0011 0.0006 0.0021
## PP.BehavInt3_CBB 0.0006 0.0005 0.0010
## PP.BehavInt4_CBB 0.0006 0.0006 0.0010
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB
## PP.Nat_1_GFFB 0.2993
## PP.Nat_4R_GFFB 0.0000
## PP.Nat_2R_GFFB 0.0000
## PP.Nat_3R_GFFB 0.0000
## PP.Nat_1_GFPRB 0.5869
## PP.Nat_4R_GFPRB 0.0006
## PP.Nat_2R_GFPRB 0.0001
## PP.Nat_3R_GFPRB 0.0001
## PP.Nat_1_CBB 0.0126
## PP.Nat_4R_CBB 0.0704
## PP.Nat_2R_CBB 0.0009
## PP.Nat_3R_CBB 0.0003
## PP.Nat_1_PBPB 0.0000
## PP.Nat_4R_PBPB 0.0495
## PP.Nat_2R_PBPB 0.3842
## PP.Nat_3R_PBPB 0.0770
## PP.Nat_1_PBFB 0.0000
## PP.Nat_4R_PBFB 0.0051
## PP.Nat_2R_PBFB 0.8119
## PP.Nat_3R_PBFB 0.2964
## PP.Nat_1_VB 0.0000
## PP.Nat_4R_VB 0.1541
## PP.Nat_2R_VB 0.7858
## PP.Nat_3R_VB 0.2199
## PP.BehavInt1_GFFB 0.3924
## PP.BehavInt2_GFFB 0.2868
## PP.BehavInt3_GFFB 0.4839
## PP.BehavInt4_GFFB 0.2821
## PP.BehavInt1_GFPRB 0.0000
## PP.BehavInt2_GFPRB 0.0000
## PP.BehavInt3_GFPRB 0.0000
## PP.BehavInt4_GFPRB 0.0000
## PP.BehavInt1_CBB 0.0004
## PP.BehavInt2_CBB 0.0014
## PP.BehavInt3_CBB 0.0007
## PP.BehavInt4_CBB 0.0007
## PP.BehavInt1_PBPB 0.0000
## PP.BehavInt2_PBPB 0.0000
## PP.BehavInt3_PBPB 0.0000
## PP.BehavInt4_PBPB 0.0000
## PP.BehavInt1_PBFB 0.0000
## PP.BehavInt2_PBFB 0.0000
## PP.BehavInt3_PBFB 0.0000
## PP.BehavInt4_PBFB 0.0000
## PP.BehavInt1_VB 0.0000
## PP.BehavInt2_VB 0.0000
## PP.BehavInt3_VB 0.0000
## PP.BehavInt4_VB
library(corrplot)
corrplot(mydata.cor4, method="color")

corrplot(mydata.cor4, addCoef.col = 1, number.cex = 0.3, method = 'number')

#Naturalness (TOTAL SCALE), Support, and Individual Difference Measures
PP$corAll <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB, PP$CCB_Scale,PP$CNS_Scale,PP$ATNS_Scale, PP$CollScale, PP$IndScale)
mydata.cor6 = cor(PP$corAll, use = "pairwise.complete.obs")
head(round(mydata.cor6,2))
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 0.18 -0.15
## PP.Nat_4R_GFFB 0.18 1.00 0.61 0.50
## PP.Nat_2R_GFFB 0.18 0.61 1.00 0.44
## PP.Nat_3R_GFFB -0.15 0.50 0.44 1.00
## PP.Nat_1_GFPRB 0.42 0.15 0.07 0.01
## PP.Nat_4R_GFPRB 0.04 0.47 0.21 0.33
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.42 0.04 -0.03 -0.04
## PP.Nat_4R_GFFB 0.15 0.47 0.49 0.38
## PP.Nat_2R_GFFB 0.07 0.21 0.29 0.17
## PP.Nat_3R_GFFB 0.01 0.33 0.34 0.49
## PP.Nat_1_GFPRB 1.00 0.38 0.25 0.14
## PP.Nat_4R_GFPRB 0.38 1.00 0.68 0.52
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.35 -0.01 0.04 0.00
## PP.Nat_4R_GFFB -0.36 0.20 0.14 0.05
## PP.Nat_2R_GFFB -0.32 0.13 0.22 0.21
## PP.Nat_3R_GFFB -0.41 0.08 0.07 0.01
## PP.Nat_1_GFPRB -0.10 -0.05 -0.13 -0.13
## PP.Nat_4R_GFPRB -0.34 0.11 -0.06 -0.06
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.14 -0.21 -0.26 -0.17
## PP.Nat_4R_GFFB -0.23 0.08 0.00 -0.04
## PP.Nat_2R_GFFB -0.27 0.15 0.04 0.06
## PP.Nat_3R_GFFB -0.36 0.09 0.14 0.10
## PP.Nat_1_GFPRB -0.04 0.03 0.05 -0.33
## PP.Nat_4R_GFPRB -0.23 0.20 0.11 -0.12
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.17 0.24 0.28 0.29
## PP.Nat_4R_GFFB -0.35 -0.07 0.03 0.05
## PP.Nat_2R_GFFB -0.33 0.05 -0.11 -0.07
## PP.Nat_3R_GFFB -0.37 -0.11 -0.11 -0.15
## PP.Nat_1_GFPRB -0.06 0.23 0.20 0.28
## PP.Nat_4R_GFPRB -0.35 -0.01 -0.04 0.05
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.09 -0.21 -0.22 -0.24
## PP.Nat_4R_GFFB -0.13 0.25 0.13 0.05
## PP.Nat_2R_GFFB -0.09 0.15 0.12 0.12
## PP.Nat_3R_GFFB -0.04 0.27 0.22 0.20
## PP.Nat_1_GFPRB 0.09 0.02 0.07 0.06
## PP.Nat_4R_GFPRB -0.11 0.32 0.39 0.25
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Nat_1_GFFB 0.59 0.52 0.58
## PP.Nat_4R_GFFB 0.13 0.18 0.10
## PP.Nat_2R_GFFB 0.16 0.16 0.12
## PP.Nat_3R_GFFB -0.19 -0.09 -0.21
## PP.Nat_1_GFPRB 0.27 0.31 0.24
## PP.Nat_4R_GFPRB -0.04 0.05 -0.03
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Nat_1_GFFB 0.59 0.08 0.03
## PP.Nat_4R_GFFB 0.15 -0.19 -0.24
## PP.Nat_2R_GFFB 0.14 -0.29 -0.31
## PP.Nat_3R_GFFB -0.17 -0.20 -0.23
## PP.Nat_1_GFPRB 0.26 0.15 0.04
## PP.Nat_4R_GFPRB -0.05 -0.04 -0.13
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Nat_1_GFFB 0.02 0.02 0.26
## PP.Nat_4R_GFFB -0.22 -0.29 -0.26
## PP.Nat_2R_GFFB -0.34 -0.33 -0.27
## PP.Nat_3R_GFFB -0.22 -0.22 -0.29
## PP.Nat_1_GFPRB 0.08 0.07 -0.02
## PP.Nat_4R_GFPRB -0.10 -0.05 -0.27
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Nat_1_GFFB 0.35 0.29 0.31
## PP.Nat_4R_GFFB -0.29 -0.29 -0.26
## PP.Nat_2R_GFFB -0.25 -0.28 -0.28
## PP.Nat_3R_GFFB -0.29 -0.32 -0.33
## PP.Nat_1_GFPRB -0.03 -0.06 -0.03
## PP.Nat_4R_GFPRB -0.34 -0.33 -0.30
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Nat_1_GFFB 0.08 0.03 0.02
## PP.Nat_4R_GFFB -0.19 -0.24 -0.22
## PP.Nat_2R_GFFB -0.29 -0.31 -0.34
## PP.Nat_3R_GFFB -0.20 -0.23 -0.22
## PP.Nat_1_GFPRB 0.15 0.04 0.08
## PP.Nat_4R_GFPRB -0.04 -0.13 -0.10
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Nat_1_GFFB 0.02 0.03 0.16
## PP.Nat_4R_GFFB -0.29 -0.38 -0.38
## PP.Nat_2R_GFFB -0.33 -0.37 -0.29
## PP.Nat_3R_GFFB -0.22 -0.34 -0.39
## PP.Nat_1_GFPRB 0.07 -0.10 -0.04
## PP.Nat_4R_GFPRB -0.05 -0.27 -0.28
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Nat_1_GFFB 0.08 0.12 0.05
## PP.Nat_4R_GFFB -0.37 -0.35 -0.14
## PP.Nat_2R_GFFB -0.36 -0.31 -0.17
## PP.Nat_3R_GFFB -0.38 -0.41 -0.11
## PP.Nat_1_GFPRB -0.01 0.05 0.10
## PP.Nat_4R_GFPRB -0.22 -0.20 -0.08
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB PP.CCB_48
## PP.Nat_1_GFFB 0.04 0.05 0.05 -0.05
## PP.Nat_4R_GFFB -0.17 -0.17 -0.15 -0.06
## PP.Nat_2R_GFFB -0.12 -0.18 -0.18 -0.17
## PP.Nat_3R_GFFB -0.09 -0.10 -0.09 -0.02
## PP.Nat_1_GFPRB 0.03 0.17 0.13 0.07
## PP.Nat_4R_GFPRB -0.21 -0.03 -0.12 0.02
## PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.Nat_1_GFFB -0.03 0.01 0.07 0.12 0.16 0.11
## PP.Nat_4R_GFFB -0.10 -0.05 -0.05 -0.10 -0.04 -0.03
## PP.Nat_2R_GFFB -0.14 -0.13 -0.16 -0.11 -0.12 -0.14
## PP.Nat_3R_GFFB 0.01 -0.01 -0.03 -0.13 -0.09 -0.03
## PP.Nat_1_GFPRB 0.08 0.04 0.06 0.12 0.22 0.11
## PP.Nat_4R_GFPRB 0.00 0.01 -0.06 -0.09 0.00 -0.06
## PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4 PP.ATNS_5 PP.Ind_3
## PP.Nat_1_GFFB 0.20 -0.23 0.10 0.09 0.11 0.22
## PP.Nat_4R_GFFB -0.12 0.23 -0.13 -0.04 -0.10 -0.15
## PP.Nat_2R_GFFB -0.14 0.09 -0.10 -0.08 -0.10 -0.10
## PP.Nat_3R_GFFB -0.17 0.23 -0.11 -0.08 -0.10 -0.24
## PP.Nat_1_GFPRB 0.10 0.12 0.04 0.11 0.08 0.12
## PP.Nat_4R_GFPRB -0.09 0.34 -0.20 -0.10 -0.12 -0.21
## PP.Ind_4 PP.Ind_7 PP.Ind_8 PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB 0.22 0.19 0.22 0.12 0.12 0.12 0.13
## PP.Nat_4R_GFFB 0.05 -0.12 0.04 0.06 0.02 -0.02 -0.02
## PP.Nat_2R_GFFB 0.00 -0.09 0.01 0.00 -0.06 -0.13 -0.04
## PP.Nat_3R_GFFB -0.05 -0.20 -0.09 -0.05 -0.02 -0.12 -0.05
## PP.Nat_1_GFPRB 0.26 0.10 0.31 0.26 0.24 0.21 0.26
## PP.Nat_4R_GFPRB 0.01 -0.17 -0.02 0.06 0.00 0.01 0.00
library("Hmisc")
mydata.rcorr6 = rcorr(as.matrix(mydata.cor6))
mydata.rcorr6
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 -0.02 0.02 -0.42
## PP.Nat_4R_GFFB -0.02 1.00 0.92 0.85
## PP.Nat_2R_GFFB 0.02 0.92 1.00 0.79
## PP.Nat_3R_GFFB -0.42 0.85 0.79 1.00
## PP.Nat_1_GFPRB 0.45 0.34 0.22 0.11
## PP.Nat_4R_GFPRB -0.27 0.82 0.66 0.80
## PP.Nat_2R_GFPRB -0.22 0.83 0.68 0.79
## PP.Nat_3R_GFPRB -0.31 0.81 0.68 0.87
## PP.Nat_1_CBB 0.50 -0.73 -0.66 -0.84
## PP.Nat_4R_CBB -0.22 0.05 0.10 0.08
## PP.Nat_2R_CBB -0.08 0.12 0.26 0.10
## PP.Nat_3R_CBB -0.11 0.16 0.32 0.15
## PP.Nat_1_PBPB 0.04 -0.79 -0.79 -0.74
## PP.Nat_4R_PBPB -0.66 0.01 0.02 0.23
## PP.Nat_2R_PBPB -0.73 0.00 0.04 0.28
## PP.Nat_3R_PBPB -0.54 0.20 0.34 0.40
## PP.Nat_1_PBFB 0.14 -0.86 -0.82 -0.81
## PP.Nat_4R_PBFB 0.53 0.22 0.24 0.00
## PP.Nat_2R_PBFB 0.56 -0.05 -0.14 -0.26
## PP.Nat_3R_PBFB 0.50 -0.08 -0.20 -0.30
## PP.Nat_1_VB -0.10 -0.63 -0.66 -0.49
## PP.Nat_4R_VB -0.71 0.28 0.20 0.51
## PP.Nat_2R_VB -0.70 0.39 0.33 0.63
## PP.Nat_3R_VB -0.65 0.40 0.40 0.64
## PP.BehavInt1_GFFB 0.92 -0.05 0.00 -0.43
## PP.BehavInt2_GFFB 0.89 0.03 0.06 -0.35
## PP.BehavInt3_GFFB 0.91 -0.09 -0.04 -0.46
## PP.BehavInt4_GFFB 0.91 -0.02 0.02 -0.40
## PP.BehavInt1_GFPRB -0.09 -0.71 -0.77 -0.60
## PP.BehavInt2_GFPRB -0.09 -0.76 -0.80 -0.64
## PP.BehavInt3_GFPRB -0.08 -0.74 -0.80 -0.63
## PP.BehavInt4_GFPRB -0.08 -0.75 -0.80 -0.63
## PP.BehavInt1_CBB 0.39 -0.73 -0.71 -0.80
## PP.BehavInt2_CBB 0.44 -0.72 -0.68 -0.81
## PP.BehavInt3_CBB 0.40 -0.74 -0.70 -0.81
## PP.BehavInt4_CBB 0.41 -0.72 -0.70 -0.80
## PP.BehavInt1_PBPB -0.09 -0.71 -0.77 -0.60
## PP.BehavInt2_PBPB -0.09 -0.76 -0.80 -0.64
## PP.BehavInt3_PBPB -0.08 -0.74 -0.80 -0.63
## PP.BehavInt4_PBPB -0.08 -0.75 -0.80 -0.63
## PP.BehavInt1_PBFB 0.01 -0.83 -0.83 -0.74
## PP.BehavInt2_PBFB 0.09 -0.83 -0.80 -0.77
## PP.BehavInt3_PBFB 0.06 -0.83 -0.83 -0.76
## PP.BehavInt4_PBFB 0.07 -0.82 -0.81 -0.76
## PP.BehavInt1_VB -0.12 -0.66 -0.71 -0.52
## PP.BehavInt2_VB -0.13 -0.70 -0.71 -0.55
## PP.BehavInt3_VB -0.13 -0.65 -0.72 -0.51
## PP.BehavInt4_VB -0.13 -0.66 -0.72 -0.52
## PP.CCB_48 -0.17 -0.40 -0.53 -0.26
## PP.CCB_49 -0.13 -0.41 -0.53 -0.27
## PP.CCB_50 -0.12 -0.44 -0.56 -0.31
## PP.CCB_51 0.00 -0.52 -0.64 -0.43
## PP.CNS_1 0.24 -0.51 -0.55 -0.53
## PP.CNS_2 0.23 -0.36 -0.46 -0.40
## PP.CNS_3 0.17 -0.39 -0.48 -0.38
## PP.ATNS_1 0.42 -0.25 -0.26 -0.37
## PP.ATNS_2R -0.54 0.66 0.55 0.77
## PP.ATNS_3 0.24 -0.35 -0.35 -0.38
## PP.ATNS_4 0.15 -0.34 -0.40 -0.36
## PP.ATNS_5 0.23 -0.22 -0.25 -0.26
## PP.Ind_3 0.45 -0.44 -0.40 -0.58
## PP.Ind_4 0.39 -0.10 -0.16 -0.25
## PP.Ind_7 0.44 -0.44 -0.41 -0.59
## PP.Ind_8 0.43 -0.15 -0.21 -0.32
## PP.Ind_1 0.20 -0.05 -0.16 -0.14
## PP.Ind_2 0.21 -0.08 -0.17 -0.15
## PP.Ind_5 0.24 -0.22 -0.34 -0.30
## PP.Ind_6 0.27 -0.09 -0.16 -0.19
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.45 -0.27 -0.22
## PP.Nat_4R_GFFB 0.34 0.82 0.83
## PP.Nat_2R_GFFB 0.22 0.66 0.68
## PP.Nat_3R_GFFB 0.11 0.80 0.79
## PP.Nat_1_GFPRB 1.00 0.45 0.42
## PP.Nat_4R_GFPRB 0.45 1.00 0.94
## PP.Nat_2R_GFPRB 0.42 0.94 1.00
## PP.Nat_3R_GFPRB 0.31 0.89 0.90
## PP.Nat_1_CBB -0.26 -0.80 -0.77
## PP.Nat_4R_CBB -0.45 0.01 -0.05
## PP.Nat_2R_CBB -0.46 -0.04 -0.07
## PP.Nat_3R_CBB -0.43 -0.01 -0.03
## PP.Nat_1_PBPB -0.29 -0.67 -0.72
## PP.Nat_4R_PBPB -0.31 0.20 0.05
## PP.Nat_2R_PBPB -0.37 0.19 0.07
## PP.Nat_3R_PBPB -0.46 0.17 0.09
## PP.Nat_1_PBFB -0.34 -0.78 -0.81
## PP.Nat_4R_PBFB 0.53 0.11 0.21
## PP.Nat_2R_PBFB 0.50 -0.13 -0.01
## PP.Nat_3R_PBFB 0.54 -0.08 -0.02
## PP.Nat_1_VB -0.09 -0.45 -0.52
## PP.Nat_4R_VB -0.08 0.52 0.40
## PP.Nat_2R_VB -0.01 0.66 0.57
## PP.Nat_3R_VB -0.04 0.62 0.55
## PP.BehavInt1_GFFB 0.37 -0.30 -0.23
## PP.BehavInt2_GFFB 0.44 -0.20 -0.13
## PP.BehavInt3_GFFB 0.33 -0.33 -0.28
## PP.BehavInt4_GFFB 0.37 -0.28 -0.22
## PP.BehavInt1_GFPRB -0.20 -0.48 -0.53
## PP.BehavInt2_GFPRB -0.28 -0.56 -0.60
## PP.BehavInt3_GFPRB -0.23 -0.53 -0.58
## PP.BehavInt4_GFPRB -0.20 -0.51 -0.56
## PP.BehavInt1_CBB -0.24 -0.74 -0.71
## PP.BehavInt2_CBB -0.24 -0.77 -0.74
## PP.BehavInt3_CBB -0.25 -0.76 -0.73
## PP.BehavInt4_CBB -0.24 -0.74 -0.72
## PP.BehavInt1_PBPB -0.20 -0.48 -0.53
## PP.BehavInt2_PBPB -0.28 -0.56 -0.60
## PP.BehavInt3_PBPB -0.23 -0.53 -0.58
## PP.BehavInt4_PBPB -0.20 -0.51 -0.56
## PP.BehavInt1_PBFB -0.31 -0.67 -0.71
## PP.BehavInt2_PBFB -0.32 -0.71 -0.75
## PP.BehavInt3_PBFB -0.27 -0.67 -0.72
## PP.BehavInt4_PBFB -0.26 -0.66 -0.72
## PP.BehavInt1_VB -0.09 -0.46 -0.53
## PP.BehavInt2_VB -0.19 -0.54 -0.62
## PP.BehavInt3_VB -0.06 -0.42 -0.50
## PP.BehavInt4_VB -0.09 -0.46 -0.53
## PP.CCB_48 0.03 -0.22 -0.26
## PP.CCB_49 0.05 -0.24 -0.26
## PP.CCB_50 0.00 -0.29 -0.32
## PP.CCB_51 -0.01 -0.39 -0.39
## PP.CNS_1 0.08 -0.52 -0.48
## PP.CNS_2 0.28 -0.32 -0.30
## PP.CNS_3 0.14 -0.39 -0.38
## PP.ATNS_1 0.26 -0.33 -0.27
## PP.ATNS_2R 0.19 0.77 0.75
## PP.ATNS_3 0.13 -0.42 -0.34
## PP.ATNS_4 0.17 -0.36 -0.30
## PP.ATNS_5 0.23 -0.27 -0.18
## PP.Ind_3 0.15 -0.56 -0.49
## PP.Ind_4 0.46 -0.18 -0.14
## PP.Ind_7 0.17 -0.55 -0.51
## PP.Ind_8 0.49 -0.21 -0.16
## PP.Ind_1 0.46 -0.06 -0.03
## PP.Ind_2 0.43 -0.10 -0.07
## PP.Ind_5 0.39 -0.20 -0.17
## PP.Ind_6 0.45 -0.13 -0.09
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB -0.31 0.50 -0.22 -0.08
## PP.Nat_4R_GFFB 0.81 -0.73 0.05 0.12
## PP.Nat_2R_GFFB 0.68 -0.66 0.10 0.26
## PP.Nat_3R_GFFB 0.87 -0.84 0.08 0.10
## PP.Nat_1_GFPRB 0.31 -0.26 -0.45 -0.46
## PP.Nat_4R_GFPRB 0.89 -0.80 0.01 -0.04
## PP.Nat_2R_GFPRB 0.90 -0.77 -0.05 -0.07
## PP.Nat_3R_GFPRB 1.00 -0.85 -0.08 -0.07
## PP.Nat_1_CBB -0.85 1.00 0.21 0.19
## PP.Nat_4R_CBB -0.08 0.21 1.00 0.89
## PP.Nat_2R_CBB -0.07 0.19 0.89 1.00
## PP.Nat_3R_CBB 0.03 0.07 0.80 0.92
## PP.Nat_1_PBPB -0.76 0.70 0.08 -0.07
## PP.Nat_4R_PBPB 0.06 -0.23 0.38 0.22
## PP.Nat_2R_PBPB 0.11 -0.28 0.48 0.43
## PP.Nat_3R_PBPB 0.26 -0.36 0.33 0.42
## PP.Nat_1_PBFB -0.84 0.82 0.15 0.03
## PP.Nat_4R_PBFB 0.17 -0.16 -0.55 -0.39
## PP.Nat_2R_PBFB -0.08 0.10 -0.68 -0.64
## PP.Nat_3R_PBFB -0.12 0.11 -0.56 -0.60
## PP.Nat_1_VB -0.52 0.37 -0.25 -0.41
## PP.Nat_4R_VB 0.44 -0.58 0.09 -0.07
## PP.Nat_2R_VB 0.60 -0.72 0.06 -0.04
## PP.Nat_3R_VB 0.61 -0.70 0.07 0.02
## PP.BehavInt1_GFFB -0.33 0.50 -0.31 -0.16
## PP.BehavInt2_GFFB -0.25 0.41 -0.35 -0.20
## PP.BehavInt3_GFFB -0.36 0.54 -0.30 -0.14
## PP.BehavInt4_GFFB -0.29 0.47 -0.34 -0.17
## PP.BehavInt1_GFPRB -0.60 0.55 0.08 -0.13
## PP.BehavInt2_GFPRB -0.65 0.61 0.12 -0.08
## PP.BehavInt3_GFPRB -0.64 0.58 0.08 -0.12
## PP.BehavInt4_GFPRB -0.62 0.56 0.03 -0.18
## PP.BehavInt1_CBB -0.82 0.93 0.23 0.15
## PP.BehavInt2_CBB -0.84 0.95 0.23 0.17
## PP.BehavInt3_CBB -0.84 0.94 0.22 0.15
## PP.BehavInt4_CBB -0.82 0.94 0.24 0.16
## PP.BehavInt1_PBPB -0.60 0.55 0.08 -0.13
## PP.BehavInt2_PBPB -0.65 0.61 0.12 -0.08
## PP.BehavInt3_PBPB -0.64 0.58 0.08 -0.12
## PP.BehavInt4_PBPB -0.62 0.56 0.03 -0.18
## PP.BehavInt1_PBFB -0.75 0.70 0.10 -0.06
## PP.BehavInt2_PBFB -0.79 0.75 0.14 0.01
## PP.BehavInt3_PBFB -0.76 0.71 0.08 -0.07
## PP.BehavInt4_PBFB -0.77 0.72 0.12 -0.03
## PP.BehavInt1_VB -0.54 0.38 -0.19 -0.39
## PP.BehavInt2_VB -0.61 0.43 -0.15 -0.31
## PP.BehavInt3_VB -0.51 0.36 -0.22 -0.43
## PP.BehavInt4_VB -0.53 0.37 -0.20 -0.39
## PP.CCB_48 -0.25 0.10 -0.39 -0.53
## PP.CCB_49 -0.27 0.13 -0.39 -0.54
## PP.CCB_50 -0.31 0.18 -0.35 -0.50
## PP.CCB_51 -0.42 0.34 -0.33 -0.48
## PP.CNS_1 -0.50 0.48 -0.36 -0.43
## PP.CNS_2 -0.32 0.26 -0.53 -0.61
## PP.CNS_3 -0.36 0.30 -0.47 -0.54
## PP.ATNS_1 -0.22 0.20 -0.62 -0.55
## PP.ATNS_2R 0.80 -0.85 -0.04 -0.06
## PP.ATNS_3 -0.28 0.19 -0.60 -0.58
## PP.ATNS_4 -0.28 0.16 -0.59 -0.61
## PP.ATNS_5 -0.12 0.05 -0.68 -0.64
## PP.Ind_3 -0.51 0.48 -0.35 -0.31
## PP.Ind_4 -0.14 0.11 -0.59 -0.59
## PP.Ind_7 -0.51 0.45 -0.44 -0.40
## PP.Ind_8 -0.19 0.18 -0.62 -0.61
## PP.Ind_1 -0.05 -0.02 -0.61 -0.65
## PP.Ind_2 -0.08 -0.01 -0.59 -0.60
## PP.Ind_5 -0.22 0.13 -0.60 -0.67
## PP.Ind_6 -0.08 0.05 -0.55 -0.57
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB -0.11 0.04 -0.66 -0.73
## PP.Nat_4R_GFFB 0.16 -0.79 0.01 0.00
## PP.Nat_2R_GFFB 0.32 -0.79 0.02 0.04
## PP.Nat_3R_GFFB 0.15 -0.74 0.23 0.28
## PP.Nat_1_GFPRB -0.43 -0.29 -0.31 -0.37
## PP.Nat_4R_GFPRB -0.01 -0.67 0.20 0.19
## PP.Nat_2R_GFPRB -0.03 -0.72 0.05 0.07
## PP.Nat_3R_GFPRB 0.03 -0.76 0.06 0.11
## PP.Nat_1_CBB 0.07 0.70 -0.23 -0.28
## PP.Nat_4R_CBB 0.80 0.08 0.38 0.48
## PP.Nat_2R_CBB 0.92 -0.07 0.22 0.43
## PP.Nat_3R_CBB 1.00 -0.17 0.16 0.40
## PP.Nat_1_PBPB -0.17 1.00 0.28 0.16
## PP.Nat_4R_PBPB 0.16 0.28 1.00 0.84
## PP.Nat_2R_PBPB 0.40 0.16 0.84 1.00
## PP.Nat_3R_PBPB 0.47 -0.20 0.61 0.71
## PP.Nat_1_PBFB -0.06 0.93 0.07 0.02
## PP.Nat_4R_PBFB -0.32 -0.49 -0.67 -0.64
## PP.Nat_2R_PBFB -0.62 -0.09 -0.65 -0.80
## PP.Nat_3R_PBFB -0.59 0.02 -0.55 -0.69
## PP.Nat_1_VB -0.47 0.81 0.25 0.08
## PP.Nat_4R_VB -0.06 0.00 0.75 0.66
## PP.Nat_2R_VB -0.02 -0.27 0.57 0.60
## PP.Nat_3R_VB 0.04 -0.38 0.51 0.54
## PP.BehavInt1_GFFB -0.18 0.05 -0.65 -0.77
## PP.BehavInt2_GFFB -0.23 -0.03 -0.64 -0.78
## PP.BehavInt3_GFFB -0.16 0.09 -0.63 -0.75
## PP.BehavInt4_GFFB -0.19 0.01 -0.65 -0.77
## PP.BehavInt1_GFPRB -0.25 0.92 0.33 0.21
## PP.BehavInt2_GFPRB -0.19 0.93 0.31 0.20
## PP.BehavInt3_GFPRB -0.23 0.93 0.29 0.19
## PP.BehavInt4_GFPRB -0.28 0.92 0.28 0.17
## PP.BehavInt1_CBB 0.00 0.76 -0.15 -0.20
## PP.BehavInt2_CBB 0.02 0.74 -0.17 -0.23
## PP.BehavInt3_CBB 0.01 0.75 -0.16 -0.20
## PP.BehavInt4_CBB 0.01 0.76 -0.15 -0.20
## PP.BehavInt1_PBPB -0.25 0.92 0.33 0.21
## PP.BehavInt2_PBPB -0.19 0.93 0.31 0.20
## PP.BehavInt3_PBPB -0.23 0.93 0.29 0.19
## PP.BehavInt4_PBPB -0.28 0.92 0.28 0.17
## PP.BehavInt1_PBFB -0.18 0.92 0.16 0.08
## PP.BehavInt2_PBFB -0.10 0.93 0.15 0.07
## PP.BehavInt3_PBFB -0.19 0.92 0.12 0.04
## PP.BehavInt4_PBFB -0.15 0.93 0.15 0.08
## PP.BehavInt1_VB -0.46 0.85 0.28 0.11
## PP.BehavInt2_VB -0.38 0.87 0.34 0.19
## PP.BehavInt3_VB -0.49 0.84 0.27 0.11
## PP.BehavInt4_VB -0.45 0.85 0.28 0.13
## PP.CCB_48 -0.57 0.38 0.00 -0.12
## PP.CCB_49 -0.58 0.38 -0.05 -0.17
## PP.CCB_50 -0.54 0.43 -0.03 -0.15
## PP.CCB_51 -0.54 0.54 -0.08 -0.20
## PP.CNS_1 -0.45 0.42 -0.30 -0.41
## PP.CNS_2 -0.59 0.29 -0.33 -0.45
## PP.CNS_3 -0.53 0.30 -0.30 -0.41
## PP.ATNS_1 -0.46 0.02 -0.50 -0.59
## PP.ATNS_2R 0.04 -0.64 0.28 0.33
## PP.ATNS_3 -0.46 0.16 -0.43 -0.50
## PP.ATNS_4 -0.54 0.25 -0.31 -0.41
## PP.ATNS_5 -0.53 0.00 -0.46 -0.52
## PP.Ind_3 -0.26 0.34 -0.33 -0.42
## PP.Ind_4 -0.51 0.04 -0.42 -0.57
## PP.Ind_7 -0.35 0.36 -0.39 -0.49
## PP.Ind_8 -0.55 0.15 -0.40 -0.54
## PP.Ind_1 -0.63 -0.03 -0.38 -0.50
## PP.Ind_2 -0.56 -0.04 -0.44 -0.49
## PP.Ind_5 -0.65 0.16 -0.36 -0.49
## PP.Ind_6 -0.48 -0.03 -0.41 -0.52
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB -0.54 0.14 0.53 0.56
## PP.Nat_4R_GFFB 0.20 -0.86 0.22 -0.05
## PP.Nat_2R_GFFB 0.34 -0.82 0.24 -0.14
## PP.Nat_3R_GFFB 0.40 -0.81 0.00 -0.26
## PP.Nat_1_GFPRB -0.46 -0.34 0.53 0.50
## PP.Nat_4R_GFPRB 0.17 -0.78 0.11 -0.13
## PP.Nat_2R_GFPRB 0.09 -0.81 0.21 -0.01
## PP.Nat_3R_GFPRB 0.26 -0.84 0.17 -0.08
## PP.Nat_1_CBB -0.36 0.82 -0.16 0.10
## PP.Nat_4R_CBB 0.33 0.15 -0.55 -0.68
## PP.Nat_2R_CBB 0.42 0.03 -0.39 -0.64
## PP.Nat_3R_CBB 0.47 -0.06 -0.32 -0.62
## PP.Nat_1_PBPB -0.20 0.93 -0.49 -0.09
## PP.Nat_4R_PBPB 0.61 0.07 -0.67 -0.65
## PP.Nat_2R_PBPB 0.71 0.02 -0.64 -0.80
## PP.Nat_3R_PBPB 1.00 -0.27 -0.41 -0.71
## PP.Nat_1_PBFB -0.27 1.00 -0.44 -0.09
## PP.Nat_4R_PBFB -0.41 -0.44 1.00 0.78
## PP.Nat_2R_PBFB -0.71 -0.09 0.78 1.00
## PP.Nat_3R_PBFB -0.82 0.03 0.68 0.87
## PP.Nat_1_VB -0.26 0.72 -0.40 0.03
## PP.Nat_4R_VB 0.50 -0.20 -0.54 -0.55
## PP.Nat_2R_VB 0.48 -0.39 -0.34 -0.51
## PP.Nat_3R_VB 0.63 -0.47 -0.29 -0.52
## PP.BehavInt1_GFFB -0.52 0.15 0.51 0.55
## PP.BehavInt2_GFFB -0.53 0.07 0.55 0.57
## PP.BehavInt3_GFFB -0.49 0.19 0.49 0.53
## PP.BehavInt4_GFFB -0.50 0.12 0.52 0.55
## PP.BehavInt1_GFPRB -0.25 0.85 -0.51 -0.13
## PP.BehavInt2_GFPRB -0.22 0.88 -0.49 -0.12
## PP.BehavInt3_GFPRB -0.27 0.87 -0.47 -0.09
## PP.BehavInt4_GFPRB -0.29 0.86 -0.45 -0.06
## PP.BehavInt1_CBB -0.44 0.88 -0.24 0.06
## PP.BehavInt2_CBB -0.42 0.86 -0.21 0.08
## PP.BehavInt3_CBB -0.43 0.87 -0.22 0.07
## PP.BehavInt4_CBB -0.43 0.87 -0.23 0.06
## PP.BehavInt1_PBPB -0.25 0.85 -0.51 -0.13
## PP.BehavInt2_PBPB -0.22 0.88 -0.49 -0.12
## PP.BehavInt3_PBPB -0.27 0.87 -0.47 -0.09
## PP.BehavInt4_PBPB -0.29 0.86 -0.45 -0.06
## PP.BehavInt1_PBFB -0.30 0.94 -0.44 -0.07
## PP.BehavInt2_PBFB -0.27 0.95 -0.43 -0.08
## PP.BehavInt3_PBFB -0.33 0.95 -0.41 -0.05
## PP.BehavInt4_PBFB -0.31 0.95 -0.42 -0.08
## PP.BehavInt1_VB -0.29 0.74 -0.41 0.03
## PP.BehavInt2_VB -0.15 0.77 -0.42 -0.04
## PP.BehavInt3_VB -0.28 0.74 -0.39 0.02
## PP.BehavInt4_VB -0.27 0.74 -0.40 0.03
## PP.CCB_48 -0.46 0.36 -0.08 0.30
## PP.CCB_49 -0.50 0.38 -0.05 0.32
## PP.CCB_50 -0.50 0.42 -0.06 0.33
## PP.CCB_51 -0.56 0.55 -0.09 0.32
## PP.CNS_1 -0.51 0.49 0.02 0.40
## PP.CNS_2 -0.57 0.33 0.14 0.48
## PP.CNS_3 -0.52 0.37 0.07 0.43
## PP.ATNS_1 -0.39 0.07 0.47 0.63
## PP.ATNS_2R 0.39 -0.74 -0.01 -0.22
## PP.ATNS_3 -0.36 0.19 0.30 0.55
## PP.ATNS_4 -0.44 0.26 0.22 0.50
## PP.ATNS_5 -0.40 0.04 0.43 0.62
## PP.Ind_3 -0.34 0.34 0.17 0.43
## PP.Ind_4 -0.46 0.04 0.31 0.60
## PP.Ind_7 -0.41 0.38 0.16 0.45
## PP.Ind_8 -0.49 0.12 0.25 0.54
## PP.Ind_1 -0.50 -0.02 0.29 0.55
## PP.Ind_2 -0.44 -0.01 0.29 0.51
## PP.Ind_5 -0.54 0.15 0.21 0.54
## PP.Ind_6 -0.40 -0.02 0.30 0.53
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.50 -0.10 -0.71 -0.70
## PP.Nat_4R_GFFB -0.08 -0.63 0.28 0.39
## PP.Nat_2R_GFFB -0.20 -0.66 0.20 0.33
## PP.Nat_3R_GFFB -0.30 -0.49 0.51 0.63
## PP.Nat_1_GFPRB 0.54 -0.09 -0.08 -0.01
## PP.Nat_4R_GFPRB -0.08 -0.45 0.52 0.66
## PP.Nat_2R_GFPRB -0.02 -0.52 0.40 0.57
## PP.Nat_3R_GFPRB -0.12 -0.52 0.44 0.60
## PP.Nat_1_CBB 0.11 0.37 -0.58 -0.72
## PP.Nat_4R_CBB -0.56 -0.25 0.09 0.06
## PP.Nat_2R_CBB -0.60 -0.41 -0.07 -0.04
## PP.Nat_3R_CBB -0.59 -0.47 -0.06 -0.02
## PP.Nat_1_PBPB 0.02 0.81 0.00 -0.27
## PP.Nat_4R_PBPB -0.55 0.25 0.75 0.57
## PP.Nat_2R_PBPB -0.69 0.08 0.66 0.60
## PP.Nat_3R_PBPB -0.82 -0.26 0.50 0.48
## PP.Nat_1_PBFB 0.03 0.72 -0.20 -0.39
## PP.Nat_4R_PBFB 0.68 -0.40 -0.54 -0.34
## PP.Nat_2R_PBFB 0.87 0.03 -0.55 -0.51
## PP.Nat_3R_PBFB 1.00 0.13 -0.45 -0.44
## PP.Nat_1_VB 0.13 1.00 0.25 0.03
## PP.Nat_4R_VB -0.45 0.25 1.00 0.89
## PP.Nat_2R_VB -0.44 0.03 0.89 1.00
## PP.Nat_3R_VB -0.56 -0.13 0.77 0.87
## PP.BehavInt1_GFFB 0.48 -0.05 -0.67 -0.67
## PP.BehavInt2_GFFB 0.50 -0.09 -0.63 -0.60
## PP.BehavInt3_GFFB 0.45 -0.03 -0.69 -0.69
## PP.BehavInt4_GFFB 0.47 -0.08 -0.67 -0.67
## PP.BehavInt1_GFPRB 0.03 0.81 0.13 -0.10
## PP.BehavInt2_GFPRB 0.01 0.79 0.08 -0.15
## PP.BehavInt3_GFPRB 0.07 0.81 0.08 -0.16
## PP.BehavInt4_GFPRB 0.10 0.83 0.10 -0.14
## PP.BehavInt1_CBB 0.12 0.45 -0.48 -0.61
## PP.BehavInt2_CBB 0.12 0.43 -0.53 -0.66
## PP.BehavInt3_CBB 0.12 0.44 -0.51 -0.64
## PP.BehavInt4_CBB 0.11 0.43 -0.50 -0.64
## PP.BehavInt1_PBPB 0.03 0.81 0.13 -0.10
## PP.BehavInt2_PBPB 0.01 0.79 0.08 -0.15
## PP.BehavInt3_PBPB 0.07 0.81 0.08 -0.16
## PP.BehavInt4_PBPB 0.10 0.83 0.10 -0.14
## PP.BehavInt1_PBFB 0.07 0.76 -0.08 -0.27
## PP.BehavInt2_PBFB 0.04 0.72 -0.12 -0.32
## PP.BehavInt3_PBFB 0.09 0.76 -0.09 -0.29
## PP.BehavInt4_PBFB 0.07 0.75 -0.09 -0.28
## PP.BehavInt1_VB 0.17 0.92 0.21 -0.03
## PP.BehavInt2_VB 0.08 0.88 0.19 -0.07
## PP.BehavInt3_VB 0.16 0.91 0.23 0.00
## PP.BehavInt4_VB 0.15 0.91 0.21 -0.03
## PP.CCB_48 0.45 0.61 0.07 0.00
## PP.CCB_49 0.47 0.61 0.03 -0.02
## PP.CCB_50 0.48 0.61 0.00 -0.09
## PP.CCB_51 0.47 0.67 -0.08 -0.18
## PP.CNS_1 0.39 0.49 -0.35 -0.44
## PP.CNS_2 0.50 0.47 -0.22 -0.26
## PP.CNS_3 0.46 0.49 -0.24 -0.30
## PP.ATNS_1 0.50 0.19 -0.45 -0.45
## PP.ATNS_2R -0.20 -0.39 0.55 0.66
## PP.ATNS_3 0.46 0.32 -0.32 -0.37
## PP.ATNS_4 0.49 0.45 -0.21 -0.29
## PP.ATNS_5 0.53 0.23 -0.30 -0.29
## PP.Ind_3 0.33 0.29 -0.42 -0.56
## PP.Ind_4 0.56 0.22 -0.28 -0.37
## PP.Ind_7 0.37 0.37 -0.40 -0.52
## PP.Ind_8 0.51 0.31 -0.26 -0.34
## PP.Ind_1 0.54 0.28 -0.17 -0.18
## PP.Ind_2 0.50 0.25 -0.21 -0.19
## PP.Ind_5 0.54 0.41 -0.19 -0.26
## PP.Ind_6 0.47 0.20 -0.26 -0.27
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB -0.65 0.92 0.89
## PP.Nat_4R_GFFB 0.40 -0.05 0.03
## PP.Nat_2R_GFFB 0.40 0.00 0.06
## PP.Nat_3R_GFFB 0.64 -0.43 -0.35
## PP.Nat_1_GFPRB -0.04 0.37 0.44
## PP.Nat_4R_GFPRB 0.62 -0.30 -0.20
## PP.Nat_2R_GFPRB 0.55 -0.23 -0.13
## PP.Nat_3R_GFPRB 0.61 -0.33 -0.25
## PP.Nat_1_CBB -0.70 0.50 0.41
## PP.Nat_4R_CBB 0.07 -0.31 -0.35
## PP.Nat_2R_CBB 0.02 -0.16 -0.20
## PP.Nat_3R_CBB 0.04 -0.18 -0.23
## PP.Nat_1_PBPB -0.38 0.05 -0.03
## PP.Nat_4R_PBPB 0.51 -0.65 -0.64
## PP.Nat_2R_PBPB 0.54 -0.77 -0.78
## PP.Nat_3R_PBPB 0.63 -0.52 -0.53
## PP.Nat_1_PBFB -0.47 0.15 0.07
## PP.Nat_4R_PBFB -0.29 0.51 0.55
## PP.Nat_2R_PBFB -0.52 0.55 0.57
## PP.Nat_3R_PBFB -0.56 0.48 0.50
## PP.Nat_1_VB -0.13 -0.05 -0.09
## PP.Nat_4R_VB 0.77 -0.67 -0.63
## PP.Nat_2R_VB 0.87 -0.67 -0.60
## PP.Nat_3R_VB 1.00 -0.62 -0.56
## PP.BehavInt1_GFFB -0.62 1.00 0.98
## PP.BehavInt2_GFFB -0.56 0.98 1.00
## PP.BehavInt3_GFFB -0.64 0.99 0.97
## PP.BehavInt4_GFFB -0.61 0.99 0.97
## PP.BehavInt1_GFPRB -0.22 -0.09 -0.13
## PP.BehavInt2_GFPRB -0.26 -0.08 -0.14
## PP.BehavInt3_GFPRB -0.29 -0.06 -0.12
## PP.BehavInt4_GFPRB -0.26 -0.06 -0.11
## PP.BehavInt1_CBB -0.64 0.39 0.32
## PP.BehavInt2_CBB -0.67 0.44 0.37
## PP.BehavInt3_CBB -0.66 0.41 0.33
## PP.BehavInt4_CBB -0.66 0.40 0.33
## PP.BehavInt1_PBPB -0.22 -0.09 -0.13
## PP.BehavInt2_PBPB -0.26 -0.08 -0.14
## PP.BehavInt3_PBPB -0.29 -0.06 -0.12
## PP.BehavInt4_PBPB -0.26 -0.06 -0.11
## PP.BehavInt1_PBFB -0.35 0.03 -0.03
## PP.BehavInt2_PBFB -0.39 0.09 0.02
## PP.BehavInt3_PBFB -0.38 0.08 0.02
## PP.BehavInt4_PBFB -0.37 0.09 0.02
## PP.BehavInt1_VB -0.18 -0.09 -0.12
## PP.BehavInt2_VB -0.19 -0.11 -0.15
## PP.BehavInt3_VB -0.15 -0.10 -0.12
## PP.BehavInt4_VB -0.18 -0.11 -0.14
## PP.CCB_48 -0.20 -0.14 -0.15
## PP.CCB_49 -0.22 -0.10 -0.10
## PP.CCB_50 -0.29 -0.11 -0.13
## PP.CCB_51 -0.38 0.01 -0.01
## PP.CNS_1 -0.54 0.25 0.22
## PP.CNS_2 -0.40 0.24 0.23
## PP.CNS_3 -0.44 0.20 0.18
## PP.ATNS_1 -0.45 0.43 0.43
## PP.ATNS_2R 0.64 -0.54 -0.47
## PP.ATNS_3 -0.40 0.26 0.25
## PP.ATNS_4 -0.38 0.19 0.18
## PP.ATNS_5 -0.35 0.26 0.26
## PP.Ind_3 -0.60 0.44 0.39
## PP.Ind_4 -0.43 0.40 0.39
## PP.Ind_7 -0.58 0.49 0.46
## PP.Ind_8 -0.40 0.47 0.46
## PP.Ind_1 -0.26 0.23 0.25
## PP.Ind_2 -0.23 0.23 0.25
## PP.Ind_5 -0.35 0.27 0.28
## PP.Ind_6 -0.30 0.31 0.32
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.91 0.91 -0.09
## PP.Nat_4R_GFFB -0.09 -0.02 -0.71
## PP.Nat_2R_GFFB -0.04 0.02 -0.77
## PP.Nat_3R_GFFB -0.46 -0.40 -0.60
## PP.Nat_1_GFPRB 0.33 0.37 -0.20
## PP.Nat_4R_GFPRB -0.33 -0.28 -0.48
## PP.Nat_2R_GFPRB -0.28 -0.22 -0.53
## PP.Nat_3R_GFPRB -0.36 -0.29 -0.60
## PP.Nat_1_CBB 0.54 0.47 0.55
## PP.Nat_4R_CBB -0.30 -0.34 0.08
## PP.Nat_2R_CBB -0.14 -0.17 -0.13
## PP.Nat_3R_CBB -0.16 -0.19 -0.25
## PP.Nat_1_PBPB 0.09 0.01 0.92
## PP.Nat_4R_PBPB -0.63 -0.65 0.33
## PP.Nat_2R_PBPB -0.75 -0.77 0.21
## PP.Nat_3R_PBPB -0.49 -0.50 -0.25
## PP.Nat_1_PBFB 0.19 0.12 0.85
## PP.Nat_4R_PBFB 0.49 0.52 -0.51
## PP.Nat_2R_PBFB 0.53 0.55 -0.13
## PP.Nat_3R_PBFB 0.45 0.47 0.03
## PP.Nat_1_VB -0.03 -0.08 0.81
## PP.Nat_4R_VB -0.69 -0.67 0.13
## PP.Nat_2R_VB -0.69 -0.67 -0.10
## PP.Nat_3R_VB -0.64 -0.61 -0.22
## PP.BehavInt1_GFFB 0.99 0.99 -0.09
## PP.BehavInt2_GFFB 0.97 0.97 -0.13
## PP.BehavInt3_GFFB 1.00 0.99 -0.05
## PP.BehavInt4_GFFB 0.99 1.00 -0.13
## PP.BehavInt1_GFPRB -0.05 -0.13 1.00
## PP.BehavInt2_GFPRB -0.04 -0.12 0.98
## PP.BehavInt3_GFPRB -0.03 -0.10 0.99
## PP.BehavInt4_GFPRB -0.03 -0.10 0.99
## PP.BehavInt1_CBB 0.43 0.35 0.71
## PP.BehavInt2_CBB 0.48 0.41 0.66
## PP.BehavInt3_CBB 0.44 0.37 0.69
## PP.BehavInt4_CBB 0.44 0.37 0.68
## PP.BehavInt1_PBPB -0.05 -0.13 1.00
## PP.BehavInt2_PBPB -0.04 -0.12 0.98
## PP.BehavInt3_PBPB -0.03 -0.10 0.99
## PP.BehavInt4_PBPB -0.03 -0.10 0.99
## PP.BehavInt1_PBFB 0.07 0.00 0.95
## PP.BehavInt2_PBFB 0.13 0.05 0.92
## PP.BehavInt3_PBFB 0.11 0.04 0.94
## PP.BehavInt4_PBFB 0.12 0.04 0.94
## PP.BehavInt1_VB -0.07 -0.13 0.90
## PP.BehavInt2_VB -0.07 -0.14 0.89
## PP.BehavInt3_VB -0.08 -0.13 0.90
## PP.BehavInt4_VB -0.09 -0.14 0.90
## PP.CCB_48 -0.15 -0.13 0.44
## PP.CCB_49 -0.11 -0.09 0.44
## PP.CCB_50 -0.11 -0.10 0.48
## PP.CCB_51 0.02 0.02 0.57
## PP.CNS_1 0.27 0.27 0.32
## PP.CNS_2 0.24 0.28 0.23
## PP.CNS_3 0.20 0.23 0.24
## PP.ATNS_1 0.44 0.47 -0.11
## PP.ATNS_2R -0.57 -0.50 -0.52
## PP.ATNS_3 0.28 0.30 0.03
## PP.ATNS_4 0.20 0.22 0.19
## PP.ATNS_5 0.26 0.30 -0.07
## PP.Ind_3 0.45 0.44 0.19
## PP.Ind_4 0.37 0.41 -0.04
## PP.Ind_7 0.49 0.49 0.22
## PP.Ind_8 0.44 0.48 0.08
## PP.Ind_1 0.19 0.25 -0.04
## PP.Ind_2 0.20 0.24 -0.08
## PP.Ind_5 0.25 0.28 0.12
## PP.Ind_6 0.29 0.33 -0.10
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB -0.09 -0.08 -0.08
## PP.Nat_4R_GFFB -0.76 -0.74 -0.75
## PP.Nat_2R_GFFB -0.80 -0.80 -0.80
## PP.Nat_3R_GFFB -0.64 -0.63 -0.63
## PP.Nat_1_GFPRB -0.28 -0.23 -0.20
## PP.Nat_4R_GFPRB -0.56 -0.53 -0.51
## PP.Nat_2R_GFPRB -0.60 -0.58 -0.56
## PP.Nat_3R_GFPRB -0.65 -0.64 -0.62
## PP.Nat_1_CBB 0.61 0.58 0.56
## PP.Nat_4R_CBB 0.12 0.08 0.03
## PP.Nat_2R_CBB -0.08 -0.12 -0.18
## PP.Nat_3R_CBB -0.19 -0.23 -0.28
## PP.Nat_1_PBPB 0.93 0.93 0.92
## PP.Nat_4R_PBPB 0.31 0.29 0.28
## PP.Nat_2R_PBPB 0.20 0.19 0.17
## PP.Nat_3R_PBPB -0.22 -0.27 -0.29
## PP.Nat_1_PBFB 0.88 0.87 0.86
## PP.Nat_4R_PBFB -0.49 -0.47 -0.45
## PP.Nat_2R_PBFB -0.12 -0.09 -0.06
## PP.Nat_3R_PBFB 0.01 0.07 0.10
## PP.Nat_1_VB 0.79 0.81 0.83
## PP.Nat_4R_VB 0.08 0.08 0.10
## PP.Nat_2R_VB -0.15 -0.16 -0.14
## PP.Nat_3R_VB -0.26 -0.29 -0.26
## PP.BehavInt1_GFFB -0.08 -0.06 -0.06
## PP.BehavInt2_GFFB -0.14 -0.12 -0.11
## PP.BehavInt3_GFFB -0.04 -0.03 -0.03
## PP.BehavInt4_GFFB -0.12 -0.10 -0.10
## PP.BehavInt1_GFPRB 0.98 0.99 0.99
## PP.BehavInt2_GFPRB 1.00 0.98 0.98
## PP.BehavInt3_GFPRB 0.98 1.00 0.99
## PP.BehavInt4_GFPRB 0.98 0.99 1.00
## PP.BehavInt1_CBB 0.74 0.73 0.70
## PP.BehavInt2_CBB 0.70 0.69 0.66
## PP.BehavInt3_CBB 0.72 0.71 0.69
## PP.BehavInt4_CBB 0.72 0.71 0.68
## PP.BehavInt1_PBPB 0.98 0.99 0.99
## PP.BehavInt2_PBPB 1.00 0.98 0.98
## PP.BehavInt3_PBPB 0.98 1.00 0.99
## PP.BehavInt4_PBPB 0.98 0.99 1.00
## PP.BehavInt1_PBFB 0.96 0.95 0.95
## PP.BehavInt2_PBFB 0.95 0.93 0.92
## PP.BehavInt3_PBFB 0.94 0.95 0.94
## PP.BehavInt4_PBFB 0.94 0.95 0.94
## PP.BehavInt1_VB 0.88 0.90 0.91
## PP.BehavInt2_VB 0.89 0.90 0.91
## PP.BehavInt3_VB 0.87 0.90 0.91
## PP.BehavInt4_VB 0.89 0.91 0.92
## PP.CCB_48 0.40 0.46 0.48
## PP.CCB_49 0.40 0.46 0.48
## PP.CCB_50 0.45 0.50 0.52
## PP.CCB_51 0.55 0.60 0.61
## PP.CNS_1 0.33 0.34 0.34
## PP.CNS_2 0.22 0.24 0.26
## PP.CNS_3 0.24 0.27 0.27
## PP.ATNS_1 -0.08 -0.08 -0.06
## PP.ATNS_2R -0.57 -0.55 -0.54
## PP.ATNS_3 0.06 0.06 0.08
## PP.ATNS_4 0.19 0.21 0.23
## PP.ATNS_5 -0.07 -0.04 -0.02
## PP.Ind_3 0.22 0.22 0.22
## PP.Ind_4 -0.06 -0.02 0.00
## PP.Ind_7 0.23 0.25 0.25
## PP.Ind_8 0.04 0.09 0.11
## PP.Ind_1 -0.09 -0.04 -0.02
## PP.Ind_2 -0.11 -0.08 -0.06
## PP.Ind_5 0.09 0.13 0.15
## PP.Ind_6 -0.11 -0.09 -0.07
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.39 0.44 0.40
## PP.Nat_4R_GFFB -0.73 -0.72 -0.74
## PP.Nat_2R_GFFB -0.71 -0.68 -0.70
## PP.Nat_3R_GFFB -0.80 -0.81 -0.81
## PP.Nat_1_GFPRB -0.24 -0.24 -0.25
## PP.Nat_4R_GFPRB -0.74 -0.77 -0.76
## PP.Nat_2R_GFPRB -0.71 -0.74 -0.73
## PP.Nat_3R_GFPRB -0.82 -0.84 -0.84
## PP.Nat_1_CBB 0.93 0.95 0.94
## PP.Nat_4R_CBB 0.23 0.23 0.22
## PP.Nat_2R_CBB 0.15 0.17 0.15
## PP.Nat_3R_CBB 0.00 0.02 0.01
## PP.Nat_1_PBPB 0.76 0.74 0.75
## PP.Nat_4R_PBPB -0.15 -0.17 -0.16
## PP.Nat_2R_PBPB -0.20 -0.23 -0.20
## PP.Nat_3R_PBPB -0.44 -0.42 -0.43
## PP.Nat_1_PBFB 0.88 0.86 0.87
## PP.Nat_4R_PBFB -0.24 -0.21 -0.22
## PP.Nat_2R_PBFB 0.06 0.08 0.07
## PP.Nat_3R_PBFB 0.12 0.12 0.12
## PP.Nat_1_VB 0.45 0.43 0.44
## PP.Nat_4R_VB -0.48 -0.53 -0.51
## PP.Nat_2R_VB -0.61 -0.66 -0.64
## PP.Nat_3R_VB -0.64 -0.67 -0.66
## PP.BehavInt1_GFFB 0.39 0.44 0.41
## PP.BehavInt2_GFFB 0.32 0.37 0.33
## PP.BehavInt3_GFFB 0.43 0.48 0.44
## PP.BehavInt4_GFFB 0.35 0.41 0.37
## PP.BehavInt1_GFPRB 0.71 0.66 0.69
## PP.BehavInt2_GFPRB 0.74 0.70 0.72
## PP.BehavInt3_GFPRB 0.73 0.69 0.71
## PP.BehavInt4_GFPRB 0.70 0.66 0.69
## PP.BehavInt1_CBB 1.00 0.99 0.99
## PP.BehavInt2_CBB 0.99 1.00 0.99
## PP.BehavInt3_CBB 0.99 0.99 1.00
## PP.BehavInt4_CBB 0.99 0.99 0.99
## PP.BehavInt1_PBPB 0.71 0.66 0.69
## PP.BehavInt2_PBPB 0.74 0.70 0.72
## PP.BehavInt3_PBPB 0.73 0.69 0.71
## PP.BehavInt4_PBPB 0.70 0.66 0.69
## PP.BehavInt1_PBFB 0.82 0.79 0.81
## PP.BehavInt2_PBFB 0.84 0.82 0.83
## PP.BehavInt3_PBFB 0.82 0.79 0.81
## PP.BehavInt4_PBFB 0.83 0.80 0.82
## PP.BehavInt1_VB 0.51 0.47 0.49
## PP.BehavInt2_VB 0.53 0.50 0.51
## PP.BehavInt3_VB 0.49 0.45 0.48
## PP.BehavInt4_VB 0.50 0.47 0.49
## PP.CCB_48 0.20 0.16 0.20
## PP.CCB_49 0.23 0.19 0.22
## PP.CCB_50 0.27 0.23 0.27
## PP.CCB_51 0.44 0.40 0.44
## PP.CNS_1 0.44 0.45 0.44
## PP.CNS_2 0.25 0.25 0.25
## PP.CNS_3 0.29 0.29 0.28
## PP.ATNS_1 0.07 0.11 0.08
## PP.ATNS_2R -0.84 -0.86 -0.85
## PP.ATNS_3 0.08 0.10 0.09
## PP.ATNS_4 0.13 0.13 0.14
## PP.ATNS_5 -0.05 -0.03 -0.03
## PP.Ind_3 0.36 0.40 0.38
## PP.Ind_4 0.02 0.05 0.02
## PP.Ind_7 0.36 0.38 0.38
## PP.Ind_8 0.12 0.14 0.12
## PP.Ind_1 -0.04 -0.04 -0.04
## PP.Ind_2 -0.03 -0.03 -0.03
## PP.Ind_5 0.13 0.12 0.13
## PP.Ind_6 -0.02 -0.01 -0.02
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.41 -0.09 -0.09
## PP.Nat_4R_GFFB -0.72 -0.71 -0.76
## PP.Nat_2R_GFFB -0.70 -0.77 -0.80
## PP.Nat_3R_GFFB -0.80 -0.60 -0.64
## PP.Nat_1_GFPRB -0.24 -0.20 -0.28
## PP.Nat_4R_GFPRB -0.74 -0.48 -0.56
## PP.Nat_2R_GFPRB -0.72 -0.53 -0.60
## PP.Nat_3R_GFPRB -0.82 -0.60 -0.65
## PP.Nat_1_CBB 0.94 0.55 0.61
## PP.Nat_4R_CBB 0.24 0.08 0.12
## PP.Nat_2R_CBB 0.16 -0.13 -0.08
## PP.Nat_3R_CBB 0.01 -0.25 -0.19
## PP.Nat_1_PBPB 0.76 0.92 0.93
## PP.Nat_4R_PBPB -0.15 0.33 0.31
## PP.Nat_2R_PBPB -0.20 0.21 0.20
## PP.Nat_3R_PBPB -0.43 -0.25 -0.22
## PP.Nat_1_PBFB 0.87 0.85 0.88
## PP.Nat_4R_PBFB -0.23 -0.51 -0.49
## PP.Nat_2R_PBFB 0.06 -0.13 -0.12
## PP.Nat_3R_PBFB 0.11 0.03 0.01
## PP.Nat_1_VB 0.43 0.81 0.79
## PP.Nat_4R_VB -0.50 0.13 0.08
## PP.Nat_2R_VB -0.64 -0.10 -0.15
## PP.Nat_3R_VB -0.66 -0.22 -0.26
## PP.BehavInt1_GFFB 0.40 -0.09 -0.08
## PP.BehavInt2_GFFB 0.33 -0.13 -0.14
## PP.BehavInt3_GFFB 0.44 -0.05 -0.04
## PP.BehavInt4_GFFB 0.37 -0.13 -0.12
## PP.BehavInt1_GFPRB 0.68 1.00 0.98
## PP.BehavInt2_GFPRB 0.72 0.98 1.00
## PP.BehavInt3_GFPRB 0.71 0.99 0.98
## PP.BehavInt4_GFPRB 0.68 0.99 0.98
## PP.BehavInt1_CBB 0.99 0.71 0.74
## PP.BehavInt2_CBB 0.99 0.66 0.70
## PP.BehavInt3_CBB 0.99 0.69 0.72
## PP.BehavInt4_CBB 1.00 0.68 0.72
## PP.BehavInt1_PBPB 0.68 1.00 0.98
## PP.BehavInt2_PBPB 0.72 0.98 1.00
## PP.BehavInt3_PBPB 0.71 0.99 0.98
## PP.BehavInt4_PBPB 0.68 0.99 0.98
## PP.BehavInt1_PBFB 0.80 0.95 0.96
## PP.BehavInt2_PBFB 0.83 0.92 0.95
## PP.BehavInt3_PBFB 0.81 0.94 0.94
## PP.BehavInt4_PBFB 0.82 0.94 0.94
## PP.BehavInt1_VB 0.49 0.90 0.88
## PP.BehavInt2_VB 0.50 0.89 0.89
## PP.BehavInt3_VB 0.48 0.90 0.87
## PP.BehavInt4_VB 0.49 0.90 0.89
## PP.CCB_48 0.19 0.44 0.40
## PP.CCB_49 0.21 0.44 0.40
## PP.CCB_50 0.26 0.48 0.45
## PP.CCB_51 0.43 0.57 0.55
## PP.CNS_1 0.44 0.32 0.33
## PP.CNS_2 0.24 0.23 0.22
## PP.CNS_3 0.28 0.24 0.24
## PP.ATNS_1 0.07 -0.11 -0.08
## PP.ATNS_2R -0.84 -0.52 -0.57
## PP.ATNS_3 0.08 0.03 0.06
## PP.ATNS_4 0.13 0.19 0.19
## PP.ATNS_5 -0.05 -0.07 -0.07
## PP.Ind_3 0.37 0.19 0.22
## PP.Ind_4 0.02 -0.04 -0.06
## PP.Ind_7 0.36 0.22 0.23
## PP.Ind_8 0.11 0.08 0.04
## PP.Ind_1 -0.05 -0.04 -0.09
## PP.Ind_2 -0.04 -0.08 -0.11
## PP.Ind_5 0.13 0.12 0.09
## PP.Ind_6 -0.02 -0.10 -0.11
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB -0.08 -0.08 0.01
## PP.Nat_4R_GFFB -0.74 -0.75 -0.83
## PP.Nat_2R_GFFB -0.80 -0.80 -0.83
## PP.Nat_3R_GFFB -0.63 -0.63 -0.74
## PP.Nat_1_GFPRB -0.23 -0.20 -0.31
## PP.Nat_4R_GFPRB -0.53 -0.51 -0.67
## PP.Nat_2R_GFPRB -0.58 -0.56 -0.71
## PP.Nat_3R_GFPRB -0.64 -0.62 -0.75
## PP.Nat_1_CBB 0.58 0.56 0.70
## PP.Nat_4R_CBB 0.08 0.03 0.10
## PP.Nat_2R_CBB -0.12 -0.18 -0.06
## PP.Nat_3R_CBB -0.23 -0.28 -0.18
## PP.Nat_1_PBPB 0.93 0.92 0.92
## PP.Nat_4R_PBPB 0.29 0.28 0.16
## PP.Nat_2R_PBPB 0.19 0.17 0.08
## PP.Nat_3R_PBPB -0.27 -0.29 -0.30
## PP.Nat_1_PBFB 0.87 0.86 0.94
## PP.Nat_4R_PBFB -0.47 -0.45 -0.44
## PP.Nat_2R_PBFB -0.09 -0.06 -0.07
## PP.Nat_3R_PBFB 0.07 0.10 0.07
## PP.Nat_1_VB 0.81 0.83 0.76
## PP.Nat_4R_VB 0.08 0.10 -0.08
## PP.Nat_2R_VB -0.16 -0.14 -0.27
## PP.Nat_3R_VB -0.29 -0.26 -0.35
## PP.BehavInt1_GFFB -0.06 -0.06 0.03
## PP.BehavInt2_GFFB -0.12 -0.11 -0.03
## PP.BehavInt3_GFFB -0.03 -0.03 0.07
## PP.BehavInt4_GFFB -0.10 -0.10 0.00
## PP.BehavInt1_GFPRB 0.99 0.99 0.95
## PP.BehavInt2_GFPRB 0.98 0.98 0.96
## PP.BehavInt3_GFPRB 1.00 0.99 0.95
## PP.BehavInt4_GFPRB 0.99 1.00 0.95
## PP.BehavInt1_CBB 0.73 0.70 0.82
## PP.BehavInt2_CBB 0.69 0.66 0.79
## PP.BehavInt3_CBB 0.71 0.69 0.81
## PP.BehavInt4_CBB 0.71 0.68 0.80
## PP.BehavInt1_PBPB 0.99 0.99 0.95
## PP.BehavInt2_PBPB 0.98 0.98 0.96
## PP.BehavInt3_PBPB 1.00 0.99 0.95
## PP.BehavInt4_PBPB 0.99 1.00 0.95
## PP.BehavInt1_PBFB 0.95 0.95 1.00
## PP.BehavInt2_PBFB 0.93 0.92 0.98
## PP.BehavInt3_PBFB 0.95 0.94 0.99
## PP.BehavInt4_PBFB 0.95 0.94 0.99
## PP.BehavInt1_VB 0.90 0.91 0.85
## PP.BehavInt2_VB 0.90 0.91 0.86
## PP.BehavInt3_VB 0.90 0.91 0.84
## PP.BehavInt4_VB 0.91 0.92 0.85
## PP.CCB_48 0.46 0.48 0.45
## PP.CCB_49 0.46 0.48 0.46
## PP.CCB_50 0.50 0.52 0.50
## PP.CCB_51 0.60 0.61 0.61
## PP.CNS_1 0.34 0.34 0.42
## PP.CNS_2 0.24 0.26 0.30
## PP.CNS_3 0.27 0.27 0.34
## PP.ATNS_1 -0.08 -0.06 -0.01
## PP.ATNS_2R -0.55 -0.54 -0.68
## PP.ATNS_3 0.06 0.08 0.11
## PP.ATNS_4 0.21 0.23 0.23
## PP.ATNS_5 -0.04 -0.02 -0.01
## PP.Ind_3 0.22 0.22 0.25
## PP.Ind_4 -0.02 0.00 0.00
## PP.Ind_7 0.25 0.25 0.31
## PP.Ind_8 0.09 0.11 0.09
## PP.Ind_1 -0.04 -0.02 -0.03
## PP.Ind_2 -0.08 -0.06 -0.05
## PP.Ind_5 0.13 0.15 0.13
## PP.Ind_6 -0.09 -0.07 -0.06
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.09 0.06 0.07
## PP.Nat_4R_GFFB -0.83 -0.83 -0.82
## PP.Nat_2R_GFFB -0.80 -0.83 -0.81
## PP.Nat_3R_GFFB -0.77 -0.76 -0.76
## PP.Nat_1_GFPRB -0.32 -0.27 -0.26
## PP.Nat_4R_GFPRB -0.71 -0.67 -0.66
## PP.Nat_2R_GFPRB -0.75 -0.72 -0.72
## PP.Nat_3R_GFPRB -0.79 -0.76 -0.77
## PP.Nat_1_CBB 0.75 0.71 0.72
## PP.Nat_4R_CBB 0.14 0.08 0.12
## PP.Nat_2R_CBB 0.01 -0.07 -0.03
## PP.Nat_3R_CBB -0.10 -0.19 -0.15
## PP.Nat_1_PBPB 0.93 0.92 0.93
## PP.Nat_4R_PBPB 0.15 0.12 0.15
## PP.Nat_2R_PBPB 0.07 0.04 0.08
## PP.Nat_3R_PBPB -0.27 -0.33 -0.31
## PP.Nat_1_PBFB 0.95 0.95 0.95
## PP.Nat_4R_PBFB -0.43 -0.41 -0.42
## PP.Nat_2R_PBFB -0.08 -0.05 -0.08
## PP.Nat_3R_PBFB 0.04 0.09 0.07
## PP.Nat_1_VB 0.72 0.76 0.75
## PP.Nat_4R_VB -0.12 -0.09 -0.09
## PP.Nat_2R_VB -0.32 -0.29 -0.28
## PP.Nat_3R_VB -0.39 -0.38 -0.37
## PP.BehavInt1_GFFB 0.09 0.08 0.09
## PP.BehavInt2_GFFB 0.02 0.02 0.02
## PP.BehavInt3_GFFB 0.13 0.11 0.12
## PP.BehavInt4_GFFB 0.05 0.04 0.04
## PP.BehavInt1_GFPRB 0.92 0.94 0.94
## PP.BehavInt2_GFPRB 0.95 0.94 0.94
## PP.BehavInt3_GFPRB 0.93 0.95 0.95
## PP.BehavInt4_GFPRB 0.92 0.94 0.94
## PP.BehavInt1_CBB 0.84 0.82 0.83
## PP.BehavInt2_CBB 0.82 0.79 0.80
## PP.BehavInt3_CBB 0.83 0.81 0.82
## PP.BehavInt4_CBB 0.83 0.81 0.82
## PP.BehavInt1_PBPB 0.92 0.94 0.94
## PP.BehavInt2_PBPB 0.95 0.94 0.94
## PP.BehavInt3_PBPB 0.93 0.95 0.95
## PP.BehavInt4_PBPB 0.92 0.94 0.94
## PP.BehavInt1_PBFB 0.98 0.99 0.99
## PP.BehavInt2_PBFB 1.00 0.98 0.98
## PP.BehavInt3_PBFB 0.98 1.00 1.00
## PP.BehavInt4_PBFB 0.98 1.00 1.00
## PP.BehavInt1_VB 0.82 0.85 0.84
## PP.BehavInt2_VB 0.85 0.86 0.85
## PP.BehavInt3_VB 0.80 0.85 0.83
## PP.BehavInt4_VB 0.82 0.85 0.84
## PP.CCB_48 0.37 0.44 0.40
## PP.CCB_49 0.37 0.45 0.41
## PP.CCB_50 0.42 0.49 0.45
## PP.CCB_51 0.54 0.60 0.56
## PP.CNS_1 0.38 0.43 0.39
## PP.CNS_2 0.25 0.31 0.27
## PP.CNS_3 0.28 0.34 0.30
## PP.ATNS_1 -0.02 0.01 -0.03
## PP.ATNS_2R -0.73 -0.70 -0.71
## PP.ATNS_3 0.10 0.13 0.09
## PP.ATNS_4 0.19 0.25 0.21
## PP.ATNS_5 -0.04 0.01 -0.04
## PP.Ind_3 0.29 0.26 0.25
## PP.Ind_4 -0.02 0.02 -0.01
## PP.Ind_7 0.33 0.33 0.31
## PP.Ind_8 0.07 0.10 0.07
## PP.Ind_1 -0.09 -0.03 -0.06
## PP.Ind_2 -0.10 -0.04 -0.08
## PP.Ind_5 0.08 0.14 0.11
## PP.Ind_6 -0.10 -0.06 -0.10
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB -0.12 -0.13 -0.13
## PP.Nat_4R_GFFB -0.66 -0.70 -0.65
## PP.Nat_2R_GFFB -0.71 -0.71 -0.72
## PP.Nat_3R_GFFB -0.52 -0.55 -0.51
## PP.Nat_1_GFPRB -0.09 -0.19 -0.06
## PP.Nat_4R_GFPRB -0.46 -0.54 -0.42
## PP.Nat_2R_GFPRB -0.53 -0.62 -0.50
## PP.Nat_3R_GFPRB -0.54 -0.61 -0.51
## PP.Nat_1_CBB 0.38 0.43 0.36
## PP.Nat_4R_CBB -0.19 -0.15 -0.22
## PP.Nat_2R_CBB -0.39 -0.31 -0.43
## PP.Nat_3R_CBB -0.46 -0.38 -0.49
## PP.Nat_1_PBPB 0.85 0.87 0.84
## PP.Nat_4R_PBPB 0.28 0.34 0.27
## PP.Nat_2R_PBPB 0.11 0.19 0.11
## PP.Nat_3R_PBPB -0.29 -0.15 -0.28
## PP.Nat_1_PBFB 0.74 0.77 0.74
## PP.Nat_4R_PBFB -0.41 -0.42 -0.39
## PP.Nat_2R_PBFB 0.03 -0.04 0.02
## PP.Nat_3R_PBFB 0.17 0.08 0.16
## PP.Nat_1_VB 0.92 0.88 0.91
## PP.Nat_4R_VB 0.21 0.19 0.23
## PP.Nat_2R_VB -0.03 -0.07 0.00
## PP.Nat_3R_VB -0.18 -0.19 -0.15
## PP.BehavInt1_GFFB -0.09 -0.11 -0.10
## PP.BehavInt2_GFFB -0.12 -0.15 -0.12
## PP.BehavInt3_GFFB -0.07 -0.07 -0.08
## PP.BehavInt4_GFFB -0.13 -0.14 -0.13
## PP.BehavInt1_GFPRB 0.90 0.89 0.90
## PP.BehavInt2_GFPRB 0.88 0.89 0.87
## PP.BehavInt3_GFPRB 0.90 0.90 0.90
## PP.BehavInt4_GFPRB 0.91 0.91 0.91
## PP.BehavInt1_CBB 0.51 0.53 0.49
## PP.BehavInt2_CBB 0.47 0.50 0.45
## PP.BehavInt3_CBB 0.49 0.51 0.48
## PP.BehavInt4_CBB 0.49 0.50 0.48
## PP.BehavInt1_PBPB 0.90 0.89 0.90
## PP.BehavInt2_PBPB 0.88 0.89 0.87
## PP.BehavInt3_PBPB 0.90 0.90 0.90
## PP.BehavInt4_PBPB 0.91 0.91 0.91
## PP.BehavInt1_PBFB 0.85 0.86 0.84
## PP.BehavInt2_PBFB 0.82 0.85 0.80
## PP.BehavInt3_PBFB 0.85 0.86 0.85
## PP.BehavInt4_PBFB 0.84 0.85 0.83
## PP.BehavInt1_VB 1.00 0.96 0.99
## PP.BehavInt2_VB 0.96 1.00 0.95
## PP.BehavInt3_VB 0.99 0.95 1.00
## PP.BehavInt4_VB 0.99 0.96 0.99
## PP.CCB_48 0.62 0.52 0.62
## PP.CCB_49 0.62 0.51 0.62
## PP.CCB_50 0.64 0.55 0.64
## PP.CCB_51 0.69 0.59 0.68
## PP.CNS_1 0.46 0.44 0.46
## PP.CNS_2 0.43 0.37 0.45
## PP.CNS_3 0.46 0.41 0.46
## PP.ATNS_1 0.07 0.08 0.08
## PP.ATNS_2R -0.43 -0.48 -0.41
## PP.ATNS_3 0.24 0.24 0.25
## PP.ATNS_4 0.39 0.36 0.40
## PP.ATNS_5 0.16 0.14 0.16
## PP.Ind_3 0.31 0.33 0.28
## PP.Ind_4 0.21 0.17 0.21
## PP.Ind_7 0.39 0.37 0.37
## PP.Ind_8 0.28 0.23 0.27
## PP.Ind_1 0.21 0.12 0.21
## PP.Ind_2 0.16 0.08 0.16
## PP.Ind_5 0.35 0.27 0.35
## PP.Ind_6 0.13 0.07 0.13
## PP.BehavInt4_VB PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.Nat_1_GFFB -0.13 -0.17 -0.13 -0.12 0.00
## PP.Nat_4R_GFFB -0.66 -0.40 -0.41 -0.44 -0.52
## PP.Nat_2R_GFFB -0.72 -0.53 -0.53 -0.56 -0.64
## PP.Nat_3R_GFFB -0.52 -0.26 -0.27 -0.31 -0.43
## PP.Nat_1_GFPRB -0.09 0.03 0.05 0.00 -0.01
## PP.Nat_4R_GFPRB -0.46 -0.22 -0.24 -0.29 -0.39
## PP.Nat_2R_GFPRB -0.53 -0.26 -0.26 -0.32 -0.39
## PP.Nat_3R_GFPRB -0.53 -0.25 -0.27 -0.31 -0.42
## PP.Nat_1_CBB 0.37 0.10 0.13 0.18 0.34
## PP.Nat_4R_CBB -0.20 -0.39 -0.39 -0.35 -0.33
## PP.Nat_2R_CBB -0.39 -0.53 -0.54 -0.50 -0.48
## PP.Nat_3R_CBB -0.45 -0.57 -0.58 -0.54 -0.54
## PP.Nat_1_PBPB 0.85 0.38 0.38 0.43 0.54
## PP.Nat_4R_PBPB 0.28 0.00 -0.05 -0.03 -0.08
## PP.Nat_2R_PBPB 0.13 -0.12 -0.17 -0.15 -0.20
## PP.Nat_3R_PBPB -0.27 -0.46 -0.50 -0.50 -0.56
## PP.Nat_1_PBFB 0.74 0.36 0.38 0.42 0.55
## PP.Nat_4R_PBFB -0.40 -0.08 -0.05 -0.06 -0.09
## PP.Nat_2R_PBFB 0.03 0.30 0.32 0.33 0.32
## PP.Nat_3R_PBFB 0.15 0.45 0.47 0.48 0.47
## PP.Nat_1_VB 0.91 0.61 0.61 0.61 0.67
## PP.Nat_4R_VB 0.21 0.07 0.03 0.00 -0.08
## PP.Nat_2R_VB -0.03 0.00 -0.02 -0.09 -0.18
## PP.Nat_3R_VB -0.18 -0.20 -0.22 -0.29 -0.38
## PP.BehavInt1_GFFB -0.11 -0.14 -0.10 -0.11 0.01
## PP.BehavInt2_GFFB -0.14 -0.15 -0.10 -0.13 -0.01
## PP.BehavInt3_GFFB -0.09 -0.15 -0.11 -0.11 0.02
## PP.BehavInt4_GFFB -0.14 -0.13 -0.09 -0.10 0.02
## PP.BehavInt1_GFPRB 0.90 0.44 0.44 0.48 0.57
## PP.BehavInt2_GFPRB 0.89 0.40 0.40 0.45 0.55
## PP.BehavInt3_GFPRB 0.91 0.46 0.46 0.50 0.60
## PP.BehavInt4_GFPRB 0.92 0.48 0.48 0.52 0.61
## PP.BehavInt1_CBB 0.50 0.20 0.23 0.27 0.44
## PP.BehavInt2_CBB 0.47 0.16 0.19 0.23 0.40
## PP.BehavInt3_CBB 0.49 0.20 0.22 0.27 0.44
## PP.BehavInt4_CBB 0.49 0.19 0.21 0.26 0.43
## PP.BehavInt1_PBPB 0.90 0.44 0.44 0.48 0.57
## PP.BehavInt2_PBPB 0.89 0.40 0.40 0.45 0.55
## PP.BehavInt3_PBPB 0.91 0.46 0.46 0.50 0.60
## PP.BehavInt4_PBPB 0.92 0.48 0.48 0.52 0.61
## PP.BehavInt1_PBFB 0.85 0.45 0.46 0.50 0.61
## PP.BehavInt2_PBFB 0.82 0.37 0.37 0.42 0.54
## PP.BehavInt3_PBFB 0.85 0.44 0.45 0.49 0.60
## PP.BehavInt4_PBFB 0.84 0.40 0.41 0.45 0.56
## PP.BehavInt1_VB 0.99 0.62 0.62 0.64 0.69
## PP.BehavInt2_VB 0.96 0.52 0.51 0.55 0.59
## PP.BehavInt3_VB 0.99 0.62 0.62 0.64 0.68
## PP.BehavInt4_VB 1.00 0.60 0.59 0.62 0.67
## PP.CCB_48 0.60 1.00 0.98 0.97 0.93
## PP.CCB_49 0.59 0.98 1.00 0.96 0.94
## PP.CCB_50 0.62 0.97 0.96 1.00 0.94
## PP.CCB_51 0.67 0.93 0.94 0.94 1.00
## PP.CNS_1 0.46 0.57 0.60 0.62 0.65
## PP.CNS_2 0.42 0.66 0.68 0.66 0.68
## PP.CNS_3 0.45 0.70 0.72 0.72 0.72
## PP.ATNS_1 0.07 0.25 0.28 0.27 0.27
## PP.ATNS_2R -0.43 -0.11 -0.14 -0.19 -0.32
## PP.ATNS_3 0.23 0.38 0.41 0.41 0.40
## PP.ATNS_4 0.38 0.57 0.58 0.59 0.56
## PP.ATNS_5 0.14 0.41 0.44 0.42 0.40
## PP.Ind_3 0.31 0.16 0.17 0.21 0.26
## PP.Ind_4 0.20 0.35 0.36 0.35 0.34
## PP.Ind_7 0.37 0.29 0.31 0.32 0.37
## PP.Ind_8 0.26 0.35 0.37 0.36 0.37
## PP.Ind_1 0.19 0.54 0.55 0.52 0.48
## PP.Ind_2 0.14 0.46 0.48 0.45 0.41
## PP.Ind_5 0.33 0.57 0.58 0.57 0.54
## PP.Ind_6 0.12 0.41 0.42 0.39 0.37
## PP.CNS_1 PP.CNS_2 PP.CNS_3 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3
## PP.Nat_1_GFFB 0.24 0.23 0.17 0.42 -0.54 0.24
## PP.Nat_4R_GFFB -0.51 -0.36 -0.39 -0.25 0.66 -0.35
## PP.Nat_2R_GFFB -0.55 -0.46 -0.48 -0.26 0.55 -0.35
## PP.Nat_3R_GFFB -0.53 -0.40 -0.38 -0.37 0.77 -0.38
## PP.Nat_1_GFPRB 0.08 0.28 0.14 0.26 0.19 0.13
## PP.Nat_4R_GFPRB -0.52 -0.32 -0.39 -0.33 0.77 -0.42
## PP.Nat_2R_GFPRB -0.48 -0.30 -0.38 -0.27 0.75 -0.34
## PP.Nat_3R_GFPRB -0.50 -0.32 -0.36 -0.22 0.80 -0.28
## PP.Nat_1_CBB 0.48 0.26 0.30 0.20 -0.85 0.19
## PP.Nat_4R_CBB -0.36 -0.53 -0.47 -0.62 -0.04 -0.60
## PP.Nat_2R_CBB -0.43 -0.61 -0.54 -0.55 -0.06 -0.58
## PP.Nat_3R_CBB -0.45 -0.59 -0.53 -0.46 0.04 -0.46
## PP.Nat_1_PBPB 0.42 0.29 0.30 0.02 -0.64 0.16
## PP.Nat_4R_PBPB -0.30 -0.33 -0.30 -0.50 0.28 -0.43
## PP.Nat_2R_PBPB -0.41 -0.45 -0.41 -0.59 0.33 -0.50
## PP.Nat_3R_PBPB -0.51 -0.57 -0.52 -0.39 0.39 -0.36
## PP.Nat_1_PBFB 0.49 0.33 0.37 0.07 -0.74 0.19
## PP.Nat_4R_PBFB 0.02 0.14 0.07 0.47 -0.01 0.30
## PP.Nat_2R_PBFB 0.40 0.48 0.43 0.63 -0.22 0.55
## PP.Nat_3R_PBFB 0.39 0.50 0.46 0.50 -0.20 0.46
## PP.Nat_1_VB 0.49 0.47 0.49 0.19 -0.39 0.32
## PP.Nat_4R_VB -0.35 -0.22 -0.24 -0.45 0.55 -0.32
## PP.Nat_2R_VB -0.44 -0.26 -0.30 -0.45 0.66 -0.37
## PP.Nat_3R_VB -0.54 -0.40 -0.44 -0.45 0.64 -0.40
## PP.BehavInt1_GFFB 0.25 0.24 0.20 0.43 -0.54 0.26
## PP.BehavInt2_GFFB 0.22 0.23 0.18 0.43 -0.47 0.25
## PP.BehavInt3_GFFB 0.27 0.24 0.20 0.44 -0.57 0.28
## PP.BehavInt4_GFFB 0.27 0.28 0.23 0.47 -0.50 0.30
## PP.BehavInt1_GFPRB 0.32 0.23 0.24 -0.11 -0.52 0.03
## PP.BehavInt2_GFPRB 0.33 0.22 0.24 -0.08 -0.57 0.06
## PP.BehavInt3_GFPRB 0.34 0.24 0.27 -0.08 -0.55 0.06
## PP.BehavInt4_GFPRB 0.34 0.26 0.27 -0.06 -0.54 0.08
## PP.BehavInt1_CBB 0.44 0.25 0.29 0.07 -0.84 0.08
## PP.BehavInt2_CBB 0.45 0.25 0.29 0.11 -0.86 0.10
## PP.BehavInt3_CBB 0.44 0.25 0.28 0.08 -0.85 0.09
## PP.BehavInt4_CBB 0.44 0.24 0.28 0.07 -0.84 0.08
## PP.BehavInt1_PBPB 0.32 0.23 0.24 -0.11 -0.52 0.03
## PP.BehavInt2_PBPB 0.33 0.22 0.24 -0.08 -0.57 0.06
## PP.BehavInt3_PBPB 0.34 0.24 0.27 -0.08 -0.55 0.06
## PP.BehavInt4_PBPB 0.34 0.26 0.27 -0.06 -0.54 0.08
## PP.BehavInt1_PBFB 0.42 0.30 0.34 -0.01 -0.68 0.11
## PP.BehavInt2_PBFB 0.38 0.25 0.28 -0.02 -0.73 0.10
## PP.BehavInt3_PBFB 0.43 0.31 0.34 0.01 -0.70 0.13
## PP.BehavInt4_PBFB 0.39 0.27 0.30 -0.03 -0.71 0.09
## PP.BehavInt1_VB 0.46 0.43 0.46 0.07 -0.43 0.24
## PP.BehavInt2_VB 0.44 0.37 0.41 0.08 -0.48 0.24
## PP.BehavInt3_VB 0.46 0.45 0.46 0.08 -0.41 0.25
## PP.BehavInt4_VB 0.46 0.42 0.45 0.07 -0.43 0.23
## PP.CCB_48 0.57 0.66 0.70 0.25 -0.11 0.38
## PP.CCB_49 0.60 0.68 0.72 0.28 -0.14 0.41
## PP.CCB_50 0.62 0.66 0.72 0.27 -0.19 0.41
## PP.CCB_51 0.65 0.68 0.72 0.27 -0.32 0.40
## PP.CNS_1 1.00 0.87 0.88 0.62 -0.40 0.67
## PP.CNS_2 0.87 1.00 0.91 0.64 -0.23 0.68
## PP.CNS_3 0.88 0.91 1.00 0.59 -0.25 0.63
## PP.ATNS_1 0.62 0.64 0.59 1.00 -0.24 0.82
## PP.ATNS_2R -0.40 -0.23 -0.25 -0.24 1.00 -0.19
## PP.ATNS_3 0.67 0.68 0.63 0.82 -0.19 1.00
## PP.ATNS_4 0.71 0.76 0.73 0.73 -0.17 0.86
## PP.ATNS_5 0.61 0.67 0.62 0.82 -0.09 0.88
## PP.Ind_3 0.58 0.51 0.49 0.57 -0.47 0.57
## PP.Ind_4 0.62 0.67 0.64 0.63 -0.13 0.61
## PP.Ind_7 0.61 0.60 0.57 0.60 -0.48 0.60
## PP.Ind_8 0.58 0.66 0.61 0.60 -0.20 0.59
## PP.Ind_1 0.63 0.72 0.73 0.55 0.03 0.56
## PP.Ind_2 0.62 0.69 0.69 0.55 0.02 0.57
## PP.Ind_5 0.70 0.76 0.75 0.56 -0.12 0.59
## PP.Ind_6 0.59 0.67 0.65 0.60 -0.03 0.59
## PP.ATNS_4 PP.ATNS_5 PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8
## PP.Nat_1_GFFB 0.15 0.23 0.45 0.39 0.44 0.43
## PP.Nat_4R_GFFB -0.34 -0.22 -0.44 -0.10 -0.44 -0.15
## PP.Nat_2R_GFFB -0.40 -0.25 -0.40 -0.16 -0.41 -0.21
## PP.Nat_3R_GFFB -0.36 -0.26 -0.58 -0.25 -0.59 -0.32
## PP.Nat_1_GFPRB 0.17 0.23 0.15 0.46 0.17 0.49
## PP.Nat_4R_GFPRB -0.36 -0.27 -0.56 -0.18 -0.55 -0.21
## PP.Nat_2R_GFPRB -0.30 -0.18 -0.49 -0.14 -0.51 -0.16
## PP.Nat_3R_GFPRB -0.28 -0.12 -0.51 -0.14 -0.51 -0.19
## PP.Nat_1_CBB 0.16 0.05 0.48 0.11 0.45 0.18
## PP.Nat_4R_CBB -0.59 -0.68 -0.35 -0.59 -0.44 -0.62
## PP.Nat_2R_CBB -0.61 -0.64 -0.31 -0.59 -0.40 -0.61
## PP.Nat_3R_CBB -0.54 -0.53 -0.26 -0.51 -0.35 -0.55
## PP.Nat_1_PBPB 0.25 0.00 0.34 0.04 0.36 0.15
## PP.Nat_4R_PBPB -0.31 -0.46 -0.33 -0.42 -0.39 -0.40
## PP.Nat_2R_PBPB -0.41 -0.52 -0.42 -0.57 -0.49 -0.54
## PP.Nat_3R_PBPB -0.44 -0.40 -0.34 -0.46 -0.41 -0.49
## PP.Nat_1_PBFB 0.26 0.04 0.34 0.04 0.38 0.12
## PP.Nat_4R_PBFB 0.22 0.43 0.17 0.31 0.16 0.25
## PP.Nat_2R_PBFB 0.50 0.62 0.43 0.60 0.45 0.54
## PP.Nat_3R_PBFB 0.49 0.53 0.33 0.56 0.37 0.51
## PP.Nat_1_VB 0.45 0.23 0.29 0.22 0.37 0.31
## PP.Nat_4R_VB -0.21 -0.30 -0.42 -0.28 -0.40 -0.26
## PP.Nat_2R_VB -0.29 -0.29 -0.56 -0.37 -0.52 -0.34
## PP.Nat_3R_VB -0.38 -0.35 -0.60 -0.43 -0.58 -0.40
## PP.BehavInt1_GFFB 0.19 0.26 0.44 0.40 0.49 0.47
## PP.BehavInt2_GFFB 0.18 0.26 0.39 0.39 0.46 0.46
## PP.BehavInt3_GFFB 0.20 0.26 0.45 0.37 0.49 0.44
## PP.BehavInt4_GFFB 0.22 0.30 0.44 0.41 0.49 0.48
## PP.BehavInt1_GFPRB 0.19 -0.07 0.19 -0.04 0.22 0.08
## PP.BehavInt2_GFPRB 0.19 -0.07 0.22 -0.06 0.23 0.04
## PP.BehavInt3_GFPRB 0.21 -0.04 0.22 -0.02 0.25 0.09
## PP.BehavInt4_GFPRB 0.23 -0.02 0.22 0.00 0.25 0.11
## PP.BehavInt1_CBB 0.13 -0.05 0.36 0.02 0.36 0.12
## PP.BehavInt2_CBB 0.13 -0.03 0.40 0.05 0.38 0.14
## PP.BehavInt3_CBB 0.14 -0.03 0.38 0.02 0.38 0.12
## PP.BehavInt4_CBB 0.13 -0.05 0.37 0.02 0.36 0.11
## PP.BehavInt1_PBPB 0.19 -0.07 0.19 -0.04 0.22 0.08
## PP.BehavInt2_PBPB 0.19 -0.07 0.22 -0.06 0.23 0.04
## PP.BehavInt3_PBPB 0.21 -0.04 0.22 -0.02 0.25 0.09
## PP.BehavInt4_PBPB 0.23 -0.02 0.22 0.00 0.25 0.11
## PP.BehavInt1_PBFB 0.23 -0.01 0.25 0.00 0.31 0.09
## PP.BehavInt2_PBFB 0.19 -0.04 0.29 -0.02 0.33 0.07
## PP.BehavInt3_PBFB 0.25 0.01 0.26 0.02 0.33 0.10
## PP.BehavInt4_PBFB 0.21 -0.04 0.25 -0.01 0.31 0.07
## PP.BehavInt1_VB 0.39 0.16 0.31 0.21 0.39 0.28
## PP.BehavInt2_VB 0.36 0.14 0.33 0.17 0.37 0.23
## PP.BehavInt3_VB 0.40 0.16 0.28 0.21 0.37 0.27
## PP.BehavInt4_VB 0.38 0.14 0.31 0.20 0.37 0.26
## PP.CCB_48 0.57 0.41 0.16 0.35 0.29 0.35
## PP.CCB_49 0.58 0.44 0.17 0.36 0.31 0.37
## PP.CCB_50 0.59 0.42 0.21 0.35 0.32 0.36
## PP.CCB_51 0.56 0.40 0.26 0.34 0.37 0.37
## PP.CNS_1 0.71 0.61 0.58 0.62 0.61 0.58
## PP.CNS_2 0.76 0.67 0.51 0.67 0.60 0.66
## PP.CNS_3 0.73 0.62 0.49 0.64 0.57 0.61
## PP.ATNS_1 0.73 0.82 0.57 0.63 0.60 0.60
## PP.ATNS_2R -0.17 -0.09 -0.47 -0.13 -0.48 -0.20
## PP.ATNS_3 0.86 0.88 0.57 0.61 0.60 0.59
## PP.ATNS_4 1.00 0.83 0.46 0.56 0.55 0.55
## PP.ATNS_5 0.83 1.00 0.50 0.63 0.57 0.58
## PP.Ind_3 0.46 0.50 1.00 0.72 0.89 0.70
## PP.Ind_4 0.56 0.63 0.72 1.00 0.73 0.87
## PP.Ind_7 0.55 0.57 0.89 0.73 1.00 0.73
## PP.Ind_8 0.55 0.58 0.70 0.87 0.73 1.00
## PP.Ind_1 0.59 0.59 0.45 0.77 0.54 0.74
## PP.Ind_2 0.57 0.58 0.42 0.70 0.51 0.69
## PP.Ind_5 0.63 0.59 0.53 0.74 0.61 0.76
## PP.Ind_6 0.55 0.60 0.55 0.78 0.62 0.78
## PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB 0.20 0.21 0.24 0.27
## PP.Nat_4R_GFFB -0.05 -0.08 -0.22 -0.09
## PP.Nat_2R_GFFB -0.16 -0.17 -0.34 -0.16
## PP.Nat_3R_GFFB -0.14 -0.15 -0.30 -0.19
## PP.Nat_1_GFPRB 0.46 0.43 0.39 0.45
## PP.Nat_4R_GFPRB -0.06 -0.10 -0.20 -0.13
## PP.Nat_2R_GFPRB -0.03 -0.07 -0.17 -0.09
## PP.Nat_3R_GFPRB -0.05 -0.08 -0.22 -0.08
## PP.Nat_1_CBB -0.02 -0.01 0.13 0.05
## PP.Nat_4R_CBB -0.61 -0.59 -0.60 -0.55
## PP.Nat_2R_CBB -0.65 -0.60 -0.67 -0.57
## PP.Nat_3R_CBB -0.63 -0.56 -0.65 -0.48
## PP.Nat_1_PBPB -0.03 -0.04 0.16 -0.03
## PP.Nat_4R_PBPB -0.38 -0.44 -0.36 -0.41
## PP.Nat_2R_PBPB -0.50 -0.49 -0.49 -0.52
## PP.Nat_3R_PBPB -0.50 -0.44 -0.54 -0.40
## PP.Nat_1_PBFB -0.02 -0.01 0.15 -0.02
## PP.Nat_4R_PBFB 0.29 0.29 0.21 0.30
## PP.Nat_2R_PBFB 0.55 0.51 0.54 0.53
## PP.Nat_3R_PBFB 0.54 0.50 0.54 0.47
## PP.Nat_1_VB 0.28 0.25 0.41 0.20
## PP.Nat_4R_VB -0.17 -0.21 -0.19 -0.26
## PP.Nat_2R_VB -0.18 -0.19 -0.26 -0.27
## PP.Nat_3R_VB -0.26 -0.23 -0.35 -0.30
## PP.BehavInt1_GFFB 0.23 0.23 0.27 0.31
## PP.BehavInt2_GFFB 0.25 0.25 0.28 0.32
## PP.BehavInt3_GFFB 0.19 0.20 0.25 0.29
## PP.BehavInt4_GFFB 0.25 0.24 0.28 0.33
## PP.BehavInt1_GFPRB -0.04 -0.08 0.12 -0.10
## PP.BehavInt2_GFPRB -0.09 -0.11 0.09 -0.11
## PP.BehavInt3_GFPRB -0.04 -0.08 0.13 -0.09
## PP.BehavInt4_GFPRB -0.02 -0.06 0.15 -0.07
## PP.BehavInt1_CBB -0.04 -0.03 0.13 -0.02
## PP.BehavInt2_CBB -0.04 -0.03 0.12 -0.01
## PP.BehavInt3_CBB -0.04 -0.03 0.13 -0.02
## PP.BehavInt4_CBB -0.05 -0.04 0.13 -0.02
## PP.BehavInt1_PBPB -0.04 -0.08 0.12 -0.10
## PP.BehavInt2_PBPB -0.09 -0.11 0.09 -0.11
## PP.BehavInt3_PBPB -0.04 -0.08 0.13 -0.09
## PP.BehavInt4_PBPB -0.02 -0.06 0.15 -0.07
## PP.BehavInt1_PBFB -0.03 -0.05 0.13 -0.06
## PP.BehavInt2_PBFB -0.09 -0.10 0.08 -0.10
## PP.BehavInt3_PBFB -0.03 -0.04 0.14 -0.06
## PP.BehavInt4_PBFB -0.06 -0.08 0.11 -0.10
## PP.BehavInt1_VB 0.21 0.16 0.35 0.13
## PP.BehavInt2_VB 0.12 0.08 0.27 0.07
## PP.BehavInt3_VB 0.21 0.16 0.35 0.13
## PP.BehavInt4_VB 0.19 0.14 0.33 0.12
## PP.CCB_48 0.54 0.46 0.57 0.41
## PP.CCB_49 0.55 0.48 0.58 0.42
## PP.CCB_50 0.52 0.45 0.57 0.39
## PP.CCB_51 0.48 0.41 0.54 0.37
## PP.CNS_1 0.63 0.62 0.70 0.59
## PP.CNS_2 0.72 0.69 0.76 0.67
## PP.CNS_3 0.73 0.69 0.75 0.65
## PP.ATNS_1 0.55 0.55 0.56 0.60
## PP.ATNS_2R 0.03 0.02 -0.12 -0.03
## PP.ATNS_3 0.56 0.57 0.59 0.59
## PP.ATNS_4 0.59 0.57 0.63 0.55
## PP.ATNS_5 0.59 0.58 0.59 0.60
## PP.Ind_3 0.45 0.42 0.53 0.55
## PP.Ind_4 0.77 0.70 0.74 0.78
## PP.Ind_7 0.54 0.51 0.61 0.62
## PP.Ind_8 0.74 0.69 0.76 0.78
## PP.Ind_1 1.00 0.90 0.90 0.85
## PP.Ind_2 0.90 1.00 0.87 0.82
## PP.Ind_5 0.90 0.87 1.00 0.81
## PP.Ind_6 0.85 0.82 0.81 1.00
##
## n= 68
##
##
## P
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 0.8446 0.8908 0.0004
## PP.Nat_4R_GFFB 0.8446 0.0000 0.0000
## PP.Nat_2R_GFFB 0.8908 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0004 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0001 0.0046 0.0721 0.3669
## PP.Nat_4R_GFPRB 0.0250 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0683 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0105 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0769 0.6710 0.3989 0.5284
## PP.Nat_2R_CBB 0.4948 0.3310 0.0354 0.4028
## PP.Nat_3R_CBB 0.3601 0.1873 0.0076 0.2164
## PP.Nat_1_PBPB 0.7579 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.9611 0.8901 0.0632
## PP.Nat_2R_PBPB 0.0000 0.9946 0.7492 0.0200
## PP.Nat_3R_PBPB 0.0000 0.1058 0.0050 0.0007
## PP.Nat_1_PBFB 0.2575 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0686 0.0508 0.9713
## PP.Nat_2R_PBFB 0.0000 0.7049 0.2470 0.0305
## PP.Nat_3R_PBFB 0.0000 0.5294 0.0953 0.0130
## PP.Nat_1_VB 0.4088 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.0209 0.0985 0.0000
## PP.Nat_2R_VB 0.0000 0.0009 0.0054 0.0000
## PP.Nat_3R_VB 0.0000 0.0007 0.0007 0.0000
## PP.BehavInt1_GFFB 0.0000 0.6958 0.9854 0.0002
## PP.BehavInt2_GFFB 0.0000 0.7999 0.6078 0.0039
## PP.BehavInt3_GFFB 0.0000 0.4493 0.7700 0.0000
## PP.BehavInt4_GFFB 0.0000 0.8577 0.8744 0.0007
## PP.BehavInt1_GFPRB 0.4558 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.4866 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.5389 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.5219 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0011 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0002 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0006 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0006 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.4558 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.4866 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.5389 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.5219 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.9221 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.4798 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.6266 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.5611 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.3418 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.2906 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.3024 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.2989 0.0000 0.0000 0.0000
## PP.CCB_48 0.1575 0.0008 0.0000 0.0351
## PP.CCB_49 0.2762 0.0005 0.0000 0.0243
## PP.CCB_50 0.3391 0.0002 0.0000 0.0095
## PP.CCB_51 0.9993 0.0000 0.0000 0.0003
## PP.CNS_1 0.0452 0.0000 0.0000 0.0000
## PP.CNS_2 0.0636 0.0025 0.0000 0.0008
## PP.CNS_3 0.1556 0.0009 0.0000 0.0012
## PP.ATNS_1 0.0004 0.0398 0.0348 0.0021
## PP.ATNS_2R 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_3 0.0531 0.0039 0.0035 0.0015
## PP.ATNS_4 0.2079 0.0040 0.0007 0.0024
## PP.ATNS_5 0.0595 0.0709 0.0383 0.0317
## PP.Ind_3 0.0001 0.0002 0.0008 0.0000
## PP.Ind_4 0.0010 0.4363 0.1926 0.0389
## PP.Ind_7 0.0002 0.0001 0.0005 0.0000
## PP.Ind_8 0.0003 0.2254 0.0883 0.0087
## PP.Ind_1 0.1021 0.6618 0.1830 0.2610
## PP.Ind_2 0.0852 0.5195 0.1549 0.2347
## PP.Ind_5 0.0512 0.0719 0.0051 0.0122
## PP.Ind_6 0.0261 0.4567 0.2028 0.1224
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.0001 0.0250 0.0683
## PP.Nat_4R_GFFB 0.0046 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0721 0.0000 0.0000
## PP.Nat_3R_GFFB 0.3669 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0001 0.0003
## PP.Nat_4R_GFPRB 0.0001 0.0000
## PP.Nat_2R_GFPRB 0.0003 0.0000
## PP.Nat_3R_GFPRB 0.0114 0.0000 0.0000
## PP.Nat_1_CBB 0.0343 0.0000 0.0000
## PP.Nat_4R_CBB 0.0001 0.9530 0.6969
## PP.Nat_2R_CBB 0.0000 0.7173 0.5609
## PP.Nat_3R_CBB 0.0002 0.9557 0.8117
## PP.Nat_1_PBPB 0.0163 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0091 0.1055 0.6681
## PP.Nat_2R_PBPB 0.0019 0.1197 0.5770
## PP.Nat_3R_PBPB 0.0000 0.1549 0.4847
## PP.Nat_1_PBFB 0.0042 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.3579 0.0857
## PP.Nat_2R_PBFB 0.0000 0.2977 0.9140
## PP.Nat_3R_PBFB 0.0000 0.4908 0.8756
## PP.Nat_1_VB 0.4852 0.0000 0.0000
## PP.Nat_4R_VB 0.5047 0.0000 0.0006
## PP.Nat_2R_VB 0.9601 0.0000 0.0000
## PP.Nat_3R_VB 0.7210 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0017 0.0142 0.0546
## PP.BehavInt2_GFFB 0.0002 0.1079 0.2747
## PP.BehavInt3_GFFB 0.0053 0.0053 0.0229
## PP.BehavInt4_GFFB 0.0017 0.0204 0.0740
## PP.BehavInt1_GFPRB 0.1092 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0207 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0642 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0973 0.0000 0.0000
## PP.BehavInt1_CBB 0.0449 0.0000 0.0000
## PP.BehavInt2_CBB 0.0486 0.0000 0.0000
## PP.BehavInt3_CBB 0.0381 0.0000 0.0000
## PP.BehavInt4_CBB 0.0447 0.0000 0.0000
## PP.BehavInt1_PBPB 0.1092 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0207 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0642 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0973 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0107 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0084 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0267 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0291 0.0000 0.0000
## PP.BehavInt1_VB 0.4447 0.0000 0.0000
## PP.BehavInt2_VB 0.1199 0.0000 0.0000
## PP.BehavInt3_VB 0.6061 0.0003 0.0000
## PP.BehavInt4_VB 0.4630 0.0000 0.0000
## PP.CCB_48 0.7977 0.0660 0.0329
## PP.CCB_49 0.6970 0.0458 0.0308
## PP.CCB_50 0.9745 0.0159 0.0085
## PP.CCB_51 0.9558 0.0009 0.0010
## PP.CNS_1 0.5228 0.0000 0.0000
## PP.CNS_2 0.0208 0.0079 0.0132
## PP.CNS_3 0.2428 0.0010 0.0012
## PP.ATNS_1 0.0316 0.0059 0.0250
## PP.ATNS_2R 0.1120 0.0000 0.0000
## PP.ATNS_3 0.2982 0.0004 0.0049
## PP.ATNS_4 0.1755 0.0026 0.0118
## PP.ATNS_5 0.0546 0.0261 0.1322
## PP.Ind_3 0.2126 0.0000 0.0000
## PP.Ind_4 0.0000 0.1399 0.2646
## PP.Ind_7 0.1717 0.0000 0.0000
## PP.Ind_8 0.0000 0.0829 0.1874
## PP.Ind_1 0.0000 0.6318 0.7991
## PP.Ind_2 0.0003 0.3962 0.5704
## PP.Ind_5 0.0009 0.0967 0.1752
## PP.Ind_6 0.0001 0.2829 0.4690
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB 0.0105 0.0000 0.0769 0.4948
## PP.Nat_4R_GFFB 0.0000 0.0000 0.6710 0.3310
## PP.Nat_2R_GFFB 0.0000 0.0000 0.3989 0.0354
## PP.Nat_3R_GFFB 0.0000 0.0000 0.5284 0.4028
## PP.Nat_1_GFPRB 0.0114 0.0343 0.0001 0.0000
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.9530 0.7173
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.6969 0.5609
## PP.Nat_3R_GFPRB 0.0000 0.4993 0.5916
## PP.Nat_1_CBB 0.0000 0.0861 0.1258
## PP.Nat_4R_CBB 0.4993 0.0861 0.0000
## PP.Nat_2R_CBB 0.5916 0.1258 0.0000
## PP.Nat_3R_CBB 0.7788 0.5531 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.4981 0.5982
## PP.Nat_4R_PBPB 0.6308 0.0636 0.0015 0.0687
## PP.Nat_2R_PBPB 0.3508 0.0219 0.0000 0.0003
## PP.Nat_3R_PBPB 0.0348 0.0029 0.0067 0.0003
## PP.Nat_1_PBFB 0.0000 0.0000 0.2264 0.7796
## PP.Nat_4R_PBFB 0.1575 0.1825 0.0000 0.0011
## PP.Nat_2R_PBFB 0.5092 0.4071 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3336 0.3766 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.0020 0.0426 0.0006
## PP.Nat_4R_VB 0.0001 0.0000 0.4759 0.5536
## PP.Nat_2R_VB 0.0000 0.0000 0.6403 0.7751
## PP.Nat_3R_VB 0.0000 0.0000 0.5774 0.8438
## PP.BehavInt1_GFFB 0.0062 0.0000 0.0097 0.1949
## PP.BehavInt2_GFFB 0.0424 0.0005 0.0032 0.0957
## PP.BehavInt3_GFFB 0.0023 0.0000 0.0145 0.2588
## PP.BehavInt4_GFFB 0.0181 0.0000 0.0050 0.1675
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.5091 0.3064
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.3501 0.5338
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.5284 0.3225
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.8186 0.1499
## PP.BehavInt1_CBB 0.0000 0.0000 0.0568 0.2309
## PP.BehavInt2_CBB 0.0000 0.0000 0.0637 0.1704
## PP.BehavInt3_CBB 0.0000 0.0000 0.0691 0.2089
## PP.BehavInt4_CBB 0.0000 0.0000 0.0489 0.1902
## PP.BehavInt1_PBPB 0.0000 0.0000 0.5091 0.3064
## PP.BehavInt2_PBPB 0.0000 0.0000 0.3501 0.5338
## PP.BehavInt3_PBPB 0.0000 0.0000 0.5284 0.3225
## PP.BehavInt4_PBPB 0.0000 0.0000 0.8186 0.1499
## PP.BehavInt1_PBFB 0.0000 0.0000 0.4389 0.6407
## PP.BehavInt2_PBFB 0.0000 0.0000 0.2491 0.9360
## PP.BehavInt3_PBFB 0.0000 0.0000 0.5382 0.5527
## PP.BehavInt4_PBFB 0.0000 0.0000 0.3441 0.8124
## PP.BehavInt1_VB 0.0000 0.0012 0.1152 0.0010
## PP.BehavInt2_VB 0.0000 0.0003 0.2370 0.0097
## PP.BehavInt3_VB 0.0000 0.0027 0.0723 0.0003
## PP.BehavInt4_VB 0.0000 0.0016 0.1051 0.0011
## PP.CCB_48 0.0416 0.4049 0.0012 0.0000
## PP.CCB_49 0.0269 0.2777 0.0009 0.0000
## PP.CCB_50 0.0107 0.1500 0.0033 0.0000
## PP.CCB_51 0.0004 0.0051 0.0054 0.0000
## PP.CNS_1 0.0000 0.0000 0.0025 0.0002
## PP.CNS_2 0.0074 0.0299 0.0000 0.0000
## PP.CNS_3 0.0024 0.0133 0.0000 0.0000
## PP.ATNS_1 0.0772 0.0938 0.0000 0.0000
## PP.ATNS_2R 0.0000 0.0000 0.7531 0.6518
## PP.ATNS_3 0.0223 0.1135 0.0000 0.0000
## PP.ATNS_4 0.0218 0.1937 0.0000 0.0000
## PP.ATNS_5 0.3213 0.6879 0.0000 0.0000
## PP.Ind_3 0.0000 0.0000 0.0034 0.0093
## PP.Ind_4 0.2684 0.3737 0.0000 0.0000
## PP.Ind_7 0.0000 0.0001 0.0002 0.0007
## PP.Ind_8 0.1217 0.1332 0.0000 0.0000
## PP.Ind_1 0.6965 0.8438 0.0000 0.0000
## PP.Ind_2 0.5355 0.9307 0.0000 0.0000
## PP.Ind_5 0.0752 0.2848 0.0000 0.0000
## PP.Ind_6 0.5155 0.6812 0.0000 0.0000
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB 0.3601 0.7579 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1873 0.0000 0.9611 0.9946
## PP.Nat_2R_GFFB 0.0076 0.0000 0.8901 0.7492
## PP.Nat_3R_GFFB 0.2164 0.0000 0.0632 0.0200
## PP.Nat_1_GFPRB 0.0002 0.0163 0.0091 0.0019
## PP.Nat_4R_GFPRB 0.9557 0.0000 0.1055 0.1197
## PP.Nat_2R_GFPRB 0.8117 0.0000 0.6681 0.5770
## PP.Nat_3R_GFPRB 0.7788 0.0000 0.6308 0.3508
## PP.Nat_1_CBB 0.5531 0.0000 0.0636 0.0219
## PP.Nat_4R_CBB 0.0000 0.4981 0.0015 0.0000
## PP.Nat_2R_CBB 0.0000 0.5982 0.0687 0.0003
## PP.Nat_3R_CBB 0.1734 0.1929 0.0007
## PP.Nat_1_PBPB 0.1734 0.0229 0.1988
## PP.Nat_4R_PBPB 0.1929 0.0229 0.0000
## PP.Nat_2R_PBPB 0.0007 0.1988 0.0000
## PP.Nat_3R_PBPB 0.0000 0.1029 0.0000 0.0000
## PP.Nat_1_PBFB 0.6233 0.0000 0.5607 0.8555
## PP.Nat_4R_PBFB 0.0086 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4890 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.8514 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0414 0.5126
## PP.Nat_4R_VB 0.6005 0.9911 0.0000 0.0000
## PP.Nat_2R_VB 0.8863 0.0246 0.0000 0.0000
## PP.Nat_3R_VB 0.7252 0.0013 0.0000 0.0000
## PP.BehavInt1_GFFB 0.1370 0.7074 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0553 0.8096 0.0000 0.0000
## PP.BehavInt3_GFFB 0.1818 0.4798 0.0000 0.0000
## PP.BehavInt4_GFFB 0.1272 0.9063 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0378 0.0000 0.0068 0.0788
## PP.BehavInt2_GFPRB 0.1173 0.0000 0.0110 0.0945
## PP.BehavInt3_GFPRB 0.0549 0.0000 0.0154 0.1231
## PP.BehavInt4_GFPRB 0.0186 0.0000 0.0193 0.1761
## PP.BehavInt1_CBB 0.9713 0.0000 0.2162 0.1080
## PP.BehavInt2_CBB 0.8531 0.0000 0.1551 0.0624
## PP.BehavInt3_CBB 0.9601 0.0000 0.1858 0.0979
## PP.BehavInt4_CBB 0.9044 0.0000 0.2256 0.1088
## PP.BehavInt1_PBPB 0.0378 0.0000 0.0068 0.0788
## PP.BehavInt2_PBPB 0.1173 0.0000 0.0110 0.0945
## PP.BehavInt3_PBPB 0.0549 0.0000 0.0154 0.1231
## PP.BehavInt4_PBPB 0.0186 0.0000 0.0193 0.1761
## PP.BehavInt1_PBFB 0.1434 0.0000 0.1972 0.5137
## PP.BehavInt2_PBFB 0.4022 0.0000 0.2147 0.5560
## PP.BehavInt3_PBFB 0.1239 0.0000 0.3248 0.7166
## PP.BehavInt4_PBFB 0.2259 0.0000 0.2377 0.5291
## PP.BehavInt1_VB 0.0000 0.0000 0.0222 0.3927
## PP.BehavInt2_VB 0.0015 0.0000 0.0043 0.1284
## PP.BehavInt3_VB 0.0000 0.0000 0.0239 0.3608
## PP.BehavInt4_VB 0.0001 0.0000 0.0188 0.2822
## PP.CCB_48 0.0000 0.0013 0.9701 0.3137
## PP.CCB_49 0.0000 0.0014 0.7033 0.1682
## PP.CCB_50 0.0000 0.0002 0.8303 0.2353
## PP.CCB_51 0.0000 0.0000 0.5316 0.1070
## PP.CNS_1 0.0001 0.0004 0.0141 0.0005
## PP.CNS_2 0.0000 0.0181 0.0052 0.0001
## PP.CNS_3 0.0000 0.0121 0.0119 0.0005
## PP.ATNS_1 0.0000 0.8487 0.0000 0.0000
## PP.ATNS_2R 0.7356 0.0000 0.0227 0.0068
## PP.ATNS_3 0.0000 0.2018 0.0002 0.0000
## PP.ATNS_4 0.0000 0.0416 0.0095 0.0005
## PP.ATNS_5 0.0000 0.9729 0.0000 0.0000
## PP.Ind_3 0.0292 0.0043 0.0054 0.0003
## PP.Ind_4 0.0000 0.7243 0.0004 0.0000
## PP.Ind_7 0.0034 0.0029 0.0010 0.0000
## PP.Ind_8 0.0000 0.2272 0.0006 0.0000
## PP.Ind_1 0.0000 0.8164 0.0016 0.0000
## PP.Ind_2 0.0000 0.7555 0.0002 0.0000
## PP.Ind_5 0.0000 0.1826 0.0023 0.0000
## PP.Ind_6 0.0000 0.8031 0.0005 0.0000
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB 0.0000 0.2575 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1058 0.0000 0.0686 0.7049
## PP.Nat_2R_GFFB 0.0050 0.0000 0.0508 0.2470
## PP.Nat_3R_GFFB 0.0007 0.0000 0.9713 0.0305
## PP.Nat_1_GFPRB 0.0000 0.0042 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.1549 0.0000 0.3579 0.2977
## PP.Nat_2R_GFPRB 0.4847 0.0000 0.0857 0.9140
## PP.Nat_3R_GFPRB 0.0348 0.0000 0.1575 0.5092
## PP.Nat_1_CBB 0.0029 0.0000 0.1825 0.4071
## PP.Nat_4R_CBB 0.0067 0.2264 0.0000 0.0000
## PP.Nat_2R_CBB 0.0003 0.7796 0.0011 0.0000
## PP.Nat_3R_CBB 0.0000 0.6233 0.0086 0.0000
## PP.Nat_1_PBPB 0.1029 0.0000 0.0000 0.4890
## PP.Nat_4R_PBPB 0.0000 0.5607 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.8555 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0245 0.0005 0.0000
## PP.Nat_1_PBFB 0.0245 0.0002 0.4891
## PP.Nat_4R_PBFB 0.0005 0.0002 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4891 0.0000
## PP.Nat_3R_PBFB 0.0000 0.8390 0.0000 0.0000
## PP.Nat_1_VB 0.0349 0.0000 0.0008 0.7995
## PP.Nat_4R_VB 0.0000 0.1053 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0010 0.0040 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0148 0.0000
## PP.BehavInt1_GFFB 0.0000 0.2098 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.5594 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.1174 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.3261 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0396 0.0000 0.0000 0.3069
## PP.BehavInt2_GFPRB 0.0698 0.0000 0.0000 0.3322
## PP.BehavInt3_GFPRB 0.0233 0.0000 0.0000 0.4639
## PP.BehavInt4_GFPRB 0.0184 0.0000 0.0001 0.6058
## PP.BehavInt1_CBB 0.0002 0.0000 0.0536 0.6444
## PP.BehavInt2_CBB 0.0003 0.0000 0.0869 0.5397
## PP.BehavInt3_CBB 0.0002 0.0000 0.0743 0.5727
## PP.BehavInt4_CBB 0.0003 0.0000 0.0569 0.6339
## PP.BehavInt1_PBPB 0.0396 0.0000 0.0000 0.3069
## PP.BehavInt2_PBPB 0.0698 0.0000 0.0000 0.3322
## PP.BehavInt3_PBPB 0.0233 0.0000 0.0000 0.4639
## PP.BehavInt4_PBPB 0.0184 0.0000 0.0001 0.6058
## PP.BehavInt1_PBFB 0.0129 0.0000 0.0002 0.5451
## PP.BehavInt2_PBFB 0.0284 0.0000 0.0003 0.4922
## PP.BehavInt3_PBFB 0.0064 0.0000 0.0005 0.6802
## PP.BehavInt4_PBFB 0.0111 0.0000 0.0003 0.5125
## PP.BehavInt1_VB 0.0166 0.0000 0.0005 0.8003
## PP.BehavInt2_VB 0.2263 0.0000 0.0004 0.7411
## PP.BehavInt3_VB 0.0211 0.0000 0.0009 0.8488
## PP.BehavInt4_VB 0.0286 0.0000 0.0008 0.8307
## PP.CCB_48 0.0000 0.0023 0.5318 0.0141
## PP.CCB_49 0.0000 0.0013 0.6659 0.0085
## PP.CCB_50 0.0000 0.0004 0.6150 0.0067
## PP.CCB_51 0.0000 0.0000 0.4664 0.0076
## PP.CNS_1 0.0000 0.0000 0.8426 0.0007
## PP.CNS_2 0.0000 0.0063 0.2630 0.0000
## PP.CNS_3 0.0000 0.0020 0.5629 0.0003
## PP.ATNS_1 0.0009 0.5788 0.0000 0.0000
## PP.ATNS_2R 0.0010 0.0000 0.9186 0.0673
## PP.ATNS_3 0.0028 0.1152 0.0145 0.0000
## PP.ATNS_4 0.0002 0.0304 0.0696 0.0000
## PP.ATNS_5 0.0007 0.7314 0.0003 0.0000
## PP.Ind_3 0.0051 0.0044 0.1558 0.0002
## PP.Ind_4 0.0000 0.7513 0.0101 0.0000
## PP.Ind_7 0.0005 0.0013 0.1838 0.0001
## PP.Ind_8 0.0000 0.3163 0.0405 0.0000
## PP.Ind_1 0.0000 0.8717 0.0182 0.0000
## PP.Ind_2 0.0002 0.9220 0.0178 0.0000
## PP.Ind_5 0.0000 0.2275 0.0808 0.0000
## PP.Ind_6 0.0007 0.8578 0.0137 0.0000
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.0000 0.4088 0.0000 0.0000
## PP.Nat_4R_GFFB 0.5294 0.0000 0.0209 0.0009
## PP.Nat_2R_GFFB 0.0953 0.0000 0.0985 0.0054
## PP.Nat_3R_GFFB 0.0130 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0000 0.4852 0.5047 0.9601
## PP.Nat_4R_GFPRB 0.4908 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.8756 0.0000 0.0006 0.0000
## PP.Nat_3R_GFPRB 0.3336 0.0000 0.0001 0.0000
## PP.Nat_1_CBB 0.3766 0.0020 0.0000 0.0000
## PP.Nat_4R_CBB 0.0000 0.0426 0.4759 0.6403
## PP.Nat_2R_CBB 0.0000 0.0006 0.5536 0.7751
## PP.Nat_3R_CBB 0.0000 0.0000 0.6005 0.8863
## PP.Nat_1_PBPB 0.8514 0.0000 0.9911 0.0246
## PP.Nat_4R_PBPB 0.0000 0.0414 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.5126 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0349 0.0000 0.0000
## PP.Nat_1_PBFB 0.8390 0.0000 0.1053 0.0010
## PP.Nat_4R_PBFB 0.0000 0.0008 0.0000 0.0040
## PP.Nat_2R_PBFB 0.0000 0.7995 0.0000 0.0000
## PP.Nat_3R_PBFB 0.2946 0.0001 0.0002
## PP.Nat_1_VB 0.2946 0.0385 0.8168
## PP.Nat_4R_VB 0.0001 0.0385 0.0000
## PP.Nat_2R_VB 0.0002 0.8168 0.0000
## PP.Nat_3R_VB 0.0000 0.3023 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.6640 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.4795 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0001 0.7812 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.4956 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.7821 0.0000 0.2762 0.4225
## PP.BehavInt2_GFPRB 0.9536 0.0000 0.5107 0.2231
## PP.BehavInt3_GFPRB 0.5689 0.0000 0.5037 0.1925
## PP.BehavInt4_GFPRB 0.4068 0.0000 0.4147 0.2634
## PP.BehavInt1_CBB 0.3463 0.0001 0.0000 0.0000
## PP.BehavInt2_CBB 0.3348 0.0003 0.0000 0.0000
## PP.BehavInt3_CBB 0.3247 0.0002 0.0000 0.0000
## PP.BehavInt4_CBB 0.3518 0.0003 0.0000 0.0000
## PP.BehavInt1_PBPB 0.7821 0.0000 0.2762 0.4225
## PP.BehavInt2_PBPB 0.9536 0.0000 0.5107 0.2231
## PP.BehavInt3_PBPB 0.5689 0.0000 0.5037 0.1925
## PP.BehavInt4_PBPB 0.4068 0.0000 0.4147 0.2634
## PP.BehavInt1_PBFB 0.5976 0.0000 0.5388 0.0248
## PP.BehavInt2_PBFB 0.7570 0.0000 0.3384 0.0077
## PP.BehavInt3_PBFB 0.4411 0.0000 0.4616 0.0173
## PP.BehavInt4_PBFB 0.5755 0.0000 0.4858 0.0196
## PP.BehavInt1_VB 0.1772 0.0000 0.0872 0.8096
## PP.BehavInt2_VB 0.5317 0.0000 0.1168 0.5824
## PP.BehavInt3_VB 0.1873 0.0000 0.0572 0.9854
## PP.BehavInt4_VB 0.2192 0.0000 0.0900 0.7806
## PP.CCB_48 0.0001 0.0000 0.5742 0.9960
## PP.CCB_49 0.0000 0.0000 0.8025 0.8942
## PP.CCB_50 0.0000 0.0000 0.9716 0.4797
## PP.CCB_51 0.0000 0.0000 0.4994 0.1518
## PP.CNS_1 0.0010 0.0000 0.0034 0.0002
## PP.CNS_2 0.0000 0.0000 0.0735 0.0292
## PP.CNS_3 0.0000 0.0000 0.0443 0.0135
## PP.ATNS_1 0.0000 0.1299 0.0001 0.0001
## PP.ATNS_2R 0.1059 0.0010 0.0000 0.0000
## PP.ATNS_3 0.0000 0.0087 0.0075 0.0021
## PP.ATNS_4 0.0000 0.0001 0.0792 0.0179
## PP.ATNS_5 0.0000 0.0641 0.0124 0.0153
## PP.Ind_3 0.0060 0.0158 0.0003 0.0000
## PP.Ind_4 0.0000 0.0674 0.0213 0.0020
## PP.Ind_7 0.0018 0.0017 0.0006 0.0000
## PP.Ind_8 0.0000 0.0091 0.0312 0.0041
## PP.Ind_1 0.0000 0.0215 0.1741 0.1514
## PP.Ind_2 0.0000 0.0432 0.0788 0.1117
## PP.Ind_5 0.0000 0.0005 0.1253 0.0341
## PP.Ind_6 0.0000 0.1109 0.0343 0.0235
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.0007 0.6958 0.7999
## PP.Nat_2R_GFFB 0.0007 0.9854 0.6078
## PP.Nat_3R_GFFB 0.0000 0.0002 0.0039
## PP.Nat_1_GFPRB 0.7210 0.0017 0.0002
## PP.Nat_4R_GFPRB 0.0000 0.0142 0.1079
## PP.Nat_2R_GFPRB 0.0000 0.0546 0.2747
## PP.Nat_3R_GFPRB 0.0000 0.0062 0.0424
## PP.Nat_1_CBB 0.0000 0.0000 0.0005
## PP.Nat_4R_CBB 0.5774 0.0097 0.0032
## PP.Nat_2R_CBB 0.8438 0.1949 0.0957
## PP.Nat_3R_CBB 0.7252 0.1370 0.0553
## PP.Nat_1_PBPB 0.0013 0.7074 0.8096
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.0000 0.2098 0.5594
## PP.Nat_4R_PBFB 0.0148 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.3023 0.6640 0.4795
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0752 0.4678 0.2823
## PP.BehavInt2_GFPRB 0.0350 0.5077 0.2574
## PP.BehavInt3_GFPRB 0.0159 0.6042 0.3434
## PP.BehavInt4_GFPRB 0.0293 0.6208 0.3708
## PP.BehavInt1_CBB 0.0000 0.0010 0.0081
## PP.BehavInt2_CBB 0.0000 0.0002 0.0022
## PP.BehavInt3_CBB 0.0000 0.0006 0.0053
## PP.BehavInt4_CBB 0.0000 0.0006 0.0063
## PP.BehavInt1_PBPB 0.0752 0.4678 0.2823
## PP.BehavInt2_PBPB 0.0350 0.5077 0.2574
## PP.BehavInt3_PBPB 0.0159 0.6042 0.3434
## PP.BehavInt4_PBPB 0.0293 0.6208 0.3708
## PP.BehavInt1_PBFB 0.0032 0.7896 0.7934
## PP.BehavInt2_PBFB 0.0010 0.4489 0.8755
## PP.BehavInt3_PBFB 0.0014 0.5183 0.9012
## PP.BehavInt4_PBFB 0.0018 0.4849 0.8689
## PP.BehavInt1_VB 0.1363 0.4421 0.3103
## PP.BehavInt2_VB 0.1249 0.3915 0.2180
## PP.BehavInt3_VB 0.2100 0.4268 0.3195
## PP.BehavInt4_VB 0.1412 0.3789 0.2492
## PP.CCB_48 0.1082 0.2430 0.2231
## PP.CCB_49 0.0720 0.4182 0.4077
## PP.CCB_50 0.0154 0.3527 0.3066
## PP.CCB_51 0.0015 0.9205 0.9530
## PP.CNS_1 0.0000 0.0397 0.0706
## PP.CNS_2 0.0007 0.0456 0.0642
## PP.CNS_3 0.0002 0.0967 0.1444
## PP.ATNS_1 0.0001 0.0002 0.0003
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.0007 0.0290 0.0420
## PP.ATNS_4 0.0014 0.1226 0.1516
## PP.ATNS_5 0.0032 0.0344 0.0306
## PP.Ind_3 0.0000 0.0002 0.0009
## PP.Ind_4 0.0003 0.0007 0.0011
## PP.Ind_7 0.0000 0.0000 0.0000
## PP.Ind_8 0.0007 0.0000 0.0000
## PP.Ind_1 0.0344 0.0594 0.0389
## PP.Ind_2 0.0615 0.0572 0.0365
## PP.Ind_5 0.0039 0.0236 0.0217
## PP.Ind_6 0.0132 0.0090 0.0079
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.0000 0.0000 0.4558
## PP.Nat_4R_GFFB 0.4493 0.8577 0.0000
## PP.Nat_2R_GFFB 0.7700 0.8744 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0007 0.0000
## PP.Nat_1_GFPRB 0.0053 0.0017 0.1092
## PP.Nat_4R_GFPRB 0.0053 0.0204 0.0000
## PP.Nat_2R_GFPRB 0.0229 0.0740 0.0000
## PP.Nat_3R_GFPRB 0.0023 0.0181 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0145 0.0050 0.5091
## PP.Nat_2R_CBB 0.2588 0.1675 0.3064
## PP.Nat_3R_CBB 0.1818 0.1272 0.0378
## PP.Nat_1_PBPB 0.4798 0.9063 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0068
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0788
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0396
## PP.Nat_1_PBFB 0.1174 0.3261 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.0000 0.3069
## PP.Nat_3R_PBFB 0.0001 0.0000 0.7821
## PP.Nat_1_VB 0.7812 0.4956 0.0000
## PP.Nat_4R_VB 0.0000 0.0000 0.2762
## PP.Nat_2R_VB 0.0000 0.0000 0.4225
## PP.Nat_3R_VB 0.0000 0.0000 0.0752
## PP.BehavInt1_GFFB 0.0000 0.0000 0.4678
## PP.BehavInt2_GFFB 0.0000 0.0000 0.2823
## PP.BehavInt3_GFFB 0.0000 0.6567
## PP.BehavInt4_GFFB 0.0000 0.2929
## PP.BehavInt1_GFPRB 0.6567 0.2929
## PP.BehavInt2_GFPRB 0.7465 0.3110 0.0000
## PP.BehavInt3_GFPRB 0.8299 0.3991 0.0000
## PP.BehavInt4_GFPRB 0.8350 0.4001 0.0000
## PP.BehavInt1_CBB 0.0003 0.0033 0.0000
## PP.BehavInt2_CBB 0.0000 0.0006 0.0000
## PP.BehavInt3_CBB 0.0001 0.0019 0.0000
## PP.BehavInt4_CBB 0.0002 0.0020 0.0000
## PP.BehavInt1_PBPB 0.6567 0.2929 0.0000
## PP.BehavInt2_PBPB 0.7465 0.3110 0.0000
## PP.BehavInt3_PBPB 0.8299 0.3991 0.0000
## PP.BehavInt4_PBPB 0.8350 0.4001 0.0000
## PP.BehavInt1_PBFB 0.5847 0.9681 0.0000
## PP.BehavInt2_PBFB 0.2873 0.6779 0.0000
## PP.BehavInt3_PBFB 0.3584 0.7547 0.0000
## PP.BehavInt4_PBFB 0.3251 0.7337 0.0000
## PP.BehavInt1_VB 0.5511 0.3057 0.0000
## PP.BehavInt2_VB 0.5461 0.2702 0.0000
## PP.BehavInt3_VB 0.5303 0.2965 0.0000
## PP.BehavInt4_VB 0.4883 0.2498 0.0000
## PP.CCB_48 0.2245 0.3019 0.0002
## PP.CCB_49 0.3818 0.4759 0.0002
## PP.CCB_50 0.3601 0.4214 0.0000
## PP.CCB_51 0.8813 0.8424 0.0000
## PP.CNS_1 0.0285 0.0248 0.0083
## PP.CNS_2 0.0501 0.0222 0.0541
## PP.CNS_3 0.1058 0.0558 0.0517
## PP.ATNS_1 0.0002 0.0000 0.3720
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.0223 0.0139 0.7787
## PP.ATNS_4 0.1028 0.0654 0.1281
## PP.ATNS_5 0.0347 0.0136 0.5459
## PP.Ind_3 0.0001 0.0002 0.1219
## PP.Ind_4 0.0019 0.0004 0.7716
## PP.Ind_7 0.0000 0.0000 0.0734
## PP.Ind_8 0.0002 0.0000 0.5186
## PP.Ind_1 0.1150 0.0403 0.7170
## PP.Ind_2 0.1088 0.0488 0.5226
## PP.Ind_5 0.0405 0.0194 0.3201
## PP.Ind_6 0.0164 0.0060 0.4200
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB 0.4866 0.5389 0.5219
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0207 0.0642 0.0973
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.3501 0.5284 0.8186
## PP.Nat_2R_CBB 0.5338 0.3225 0.1499
## PP.Nat_3R_CBB 0.1173 0.0549 0.0186
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0110 0.0154 0.0193
## PP.Nat_2R_PBPB 0.0945 0.1231 0.1761
## PP.Nat_3R_PBPB 0.0698 0.0233 0.0184
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0001
## PP.Nat_2R_PBFB 0.3322 0.4639 0.6058
## PP.Nat_3R_PBFB 0.9536 0.5689 0.4068
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.5107 0.5037 0.4147
## PP.Nat_2R_VB 0.2231 0.1925 0.2634
## PP.Nat_3R_VB 0.0350 0.0159 0.0293
## PP.BehavInt1_GFFB 0.5077 0.6042 0.6208
## PP.BehavInt2_GFFB 0.2574 0.3434 0.3708
## PP.BehavInt3_GFFB 0.7465 0.8299 0.8350
## PP.BehavInt4_GFFB 0.3110 0.3991 0.4001
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0007 0.0000 0.0000
## PP.CCB_49 0.0007 0.0000 0.0000
## PP.CCB_50 0.0001 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0065 0.0047 0.0040
## PP.CNS_2 0.0748 0.0448 0.0337
## PP.CNS_3 0.0521 0.0277 0.0232
## PP.ATNS_1 0.4942 0.5269 0.6322
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.6279 0.6312 0.5006
## PP.ATNS_4 0.1261 0.0895 0.0640
## PP.ATNS_5 0.5960 0.7192 0.8689
## PP.Ind_3 0.0712 0.0710 0.0692
## PP.Ind_4 0.6162 0.8857 0.9744
## PP.Ind_7 0.0612 0.0419 0.0382
## PP.Ind_8 0.7217 0.4904 0.3679
## PP.Ind_1 0.4727 0.7401 0.8765
## PP.Ind_2 0.3806 0.5288 0.6327
## PP.Ind_5 0.4729 0.2779 0.2253
## PP.Ind_6 0.3575 0.4722 0.5916
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.0011 0.0002 0.0006
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0449 0.0486 0.0381
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0568 0.0637 0.0691
## PP.Nat_2R_CBB 0.2309 0.1704 0.2089
## PP.Nat_3R_CBB 0.9713 0.8531 0.9601
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.2162 0.1551 0.1858
## PP.Nat_2R_PBPB 0.1080 0.0624 0.0979
## PP.Nat_3R_PBPB 0.0002 0.0003 0.0002
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0536 0.0869 0.0743
## PP.Nat_2R_PBFB 0.6444 0.5397 0.5727
## PP.Nat_3R_PBFB 0.3463 0.3348 0.3247
## PP.Nat_1_VB 0.0001 0.0003 0.0002
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0010 0.0002 0.0006
## PP.BehavInt2_GFFB 0.0081 0.0022 0.0053
## PP.BehavInt3_GFFB 0.0003 0.0000 0.0001
## PP.BehavInt4_GFFB 0.0033 0.0006 0.0019
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0001 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.1039 0.1959 0.1100
## PP.CCB_49 0.0636 0.1247 0.0677
## PP.CCB_50 0.0254 0.0543 0.0268
## PP.CCB_51 0.0002 0.0006 0.0002
## PP.CNS_1 0.0002 0.0001 0.0002
## PP.CNS_2 0.0363 0.0414 0.0432
## PP.CNS_3 0.0175 0.0178 0.0205
## PP.ATNS_1 0.5605 0.3939 0.5134
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.5279 0.4236 0.4574
## PP.ATNS_4 0.2970 0.3082 0.2699
## PP.ATNS_5 0.6884 0.7899 0.7890
## PP.Ind_3 0.0025 0.0008 0.0016
## PP.Ind_4 0.8824 0.7066 0.8514
## PP.Ind_7 0.0028 0.0013 0.0015
## PP.Ind_8 0.3255 0.2416 0.3309
## PP.Ind_1 0.7604 0.7346 0.7288
## PP.Ind_2 0.7981 0.8079 0.7858
## PP.Ind_5 0.2901 0.3138 0.2844
## PP.Ind_6 0.8666 0.9528 0.8522
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.0006 0.4558 0.4866
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0447 0.1092 0.0207
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0489 0.5091 0.3501
## PP.Nat_2R_CBB 0.1902 0.3064 0.5338
## PP.Nat_3R_CBB 0.9044 0.0378 0.1173
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.2256 0.0068 0.0110
## PP.Nat_2R_PBPB 0.1088 0.0788 0.0945
## PP.Nat_3R_PBPB 0.0003 0.0396 0.0698
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0569 0.0000 0.0000
## PP.Nat_2R_PBFB 0.6339 0.3069 0.3322
## PP.Nat_3R_PBFB 0.3518 0.7821 0.9536
## PP.Nat_1_VB 0.0003 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.2762 0.5107
## PP.Nat_2R_VB 0.0000 0.4225 0.2231
## PP.Nat_3R_VB 0.0000 0.0752 0.0350
## PP.BehavInt1_GFFB 0.0006 0.4678 0.5077
## PP.BehavInt2_GFFB 0.0063 0.2823 0.2574
## PP.BehavInt3_GFFB 0.0002 0.6567 0.7465
## PP.BehavInt4_GFFB 0.0020 0.2929 0.3110
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.1212 0.0002 0.0007
## PP.CCB_49 0.0815 0.0002 0.0007
## PP.CCB_50 0.0303 0.0000 0.0001
## PP.CCB_51 0.0003 0.0000 0.0000
## PP.CNS_1 0.0002 0.0083 0.0065
## PP.CNS_2 0.0451 0.0541 0.0748
## PP.CNS_3 0.0203 0.0517 0.0521
## PP.ATNS_1 0.5740 0.3720 0.4942
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.5258 0.7787 0.6279
## PP.ATNS_4 0.3061 0.1281 0.1261
## PP.ATNS_5 0.7145 0.5459 0.5960
## PP.Ind_3 0.0021 0.1219 0.0712
## PP.Ind_4 0.8645 0.7716 0.6162
## PP.Ind_7 0.0025 0.0734 0.0612
## PP.Ind_8 0.3651 0.5186 0.7217
## PP.Ind_1 0.7020 0.7170 0.4727
## PP.Ind_2 0.7596 0.5226 0.3806
## PP.Ind_5 0.3060 0.3201 0.4729
## PP.Ind_6 0.8506 0.4200 0.3575
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB 0.5389 0.5219 0.9221
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0642 0.0973 0.0107
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.5284 0.8186 0.4389
## PP.Nat_2R_CBB 0.3225 0.1499 0.6407
## PP.Nat_3R_CBB 0.0549 0.0186 0.1434
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0154 0.0193 0.1972
## PP.Nat_2R_PBPB 0.1231 0.1761 0.5137
## PP.Nat_3R_PBPB 0.0233 0.0184 0.0129
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0001 0.0002
## PP.Nat_2R_PBFB 0.4639 0.6058 0.5451
## PP.Nat_3R_PBFB 0.5689 0.4068 0.5976
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.5037 0.4147 0.5388
## PP.Nat_2R_VB 0.1925 0.2634 0.0248
## PP.Nat_3R_VB 0.0159 0.0293 0.0032
## PP.BehavInt1_GFFB 0.6042 0.6208 0.7896
## PP.BehavInt2_GFFB 0.3434 0.3708 0.7934
## PP.BehavInt3_GFFB 0.8299 0.8350 0.5847
## PP.BehavInt4_GFFB 0.3991 0.4001 0.9681
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0000 0.0000 0.0001
## PP.CCB_49 0.0000 0.0000 0.0000
## PP.CCB_50 0.0000 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0047 0.0040 0.0004
## PP.CNS_2 0.0448 0.0337 0.0123
## PP.CNS_3 0.0277 0.0232 0.0050
## PP.ATNS_1 0.5269 0.6322 0.9126
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.6312 0.5006 0.3613
## PP.ATNS_4 0.0895 0.0640 0.0564
## PP.ATNS_5 0.7192 0.8689 0.9410
## PP.Ind_3 0.0710 0.0692 0.0376
## PP.Ind_4 0.8857 0.9744 0.9785
## PP.Ind_7 0.0419 0.0382 0.0099
## PP.Ind_8 0.4904 0.3679 0.4878
## PP.Ind_1 0.7401 0.8765 0.8368
## PP.Ind_2 0.5288 0.6327 0.7076
## PP.Ind_5 0.2779 0.2253 0.2813
## PP.Ind_6 0.4722 0.5916 0.6013
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.4798 0.6266 0.5611
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0084 0.0267 0.0291
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.2491 0.5382 0.3441
## PP.Nat_2R_CBB 0.9360 0.5527 0.8124
## PP.Nat_3R_CBB 0.4022 0.1239 0.2259
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.2147 0.3248 0.2377
## PP.Nat_2R_PBPB 0.5560 0.7166 0.5291
## PP.Nat_3R_PBPB 0.0284 0.0064 0.0111
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0003 0.0005 0.0003
## PP.Nat_2R_PBFB 0.4922 0.6802 0.5125
## PP.Nat_3R_PBFB 0.7570 0.4411 0.5755
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.3384 0.4616 0.4858
## PP.Nat_2R_VB 0.0077 0.0173 0.0196
## PP.Nat_3R_VB 0.0010 0.0014 0.0018
## PP.BehavInt1_GFFB 0.4489 0.5183 0.4849
## PP.BehavInt2_GFFB 0.8755 0.9012 0.8689
## PP.BehavInt3_GFFB 0.2873 0.3584 0.3251
## PP.BehavInt4_GFFB 0.6779 0.7547 0.7337
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0021 0.0002 0.0007
## PP.CCB_49 0.0017 0.0001 0.0005
## PP.CCB_50 0.0004 0.0000 0.0001
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0014 0.0003 0.0011
## PP.CNS_2 0.0431 0.0099 0.0264
## PP.CNS_3 0.0188 0.0041 0.0132
## PP.ATNS_1 0.8475 0.9246 0.8386
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.4259 0.2782 0.4693
## PP.ATNS_4 0.1141 0.0412 0.0931
## PP.ATNS_5 0.7678 0.9393 0.7664
## PP.Ind_3 0.0167 0.0313 0.0382
## PP.Ind_4 0.8681 0.8692 0.9129
## PP.Ind_7 0.0056 0.0059 0.0107
## PP.Ind_8 0.5845 0.4130 0.5571
## PP.Ind_1 0.4682 0.8318 0.6013
## PP.Ind_2 0.4219 0.7483 0.5272
## PP.Ind_5 0.5113 0.2552 0.3938
## PP.Ind_6 0.4090 0.6262 0.4196
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB 0.3418 0.2906 0.3024
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.4447 0.1199 0.6061
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0003
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0012 0.0003 0.0027
## PP.Nat_4R_CBB 0.1152 0.2370 0.0723
## PP.Nat_2R_CBB 0.0010 0.0097 0.0003
## PP.Nat_3R_CBB 0.0000 0.0015 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0222 0.0043 0.0239
## PP.Nat_2R_PBPB 0.3927 0.1284 0.3608
## PP.Nat_3R_PBPB 0.0166 0.2263 0.0211
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0005 0.0004 0.0009
## PP.Nat_2R_PBFB 0.8003 0.7411 0.8488
## PP.Nat_3R_PBFB 0.1772 0.5317 0.1873
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0872 0.1168 0.0572
## PP.Nat_2R_VB 0.8096 0.5824 0.9854
## PP.Nat_3R_VB 0.1363 0.1249 0.2100
## PP.BehavInt1_GFFB 0.4421 0.3915 0.4268
## PP.BehavInt2_GFFB 0.3103 0.2180 0.3195
## PP.BehavInt3_GFFB 0.5511 0.5461 0.5303
## PP.BehavInt4_GFFB 0.3057 0.2702 0.2965
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0001
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0000 0.0000 0.0000
## PP.CCB_49 0.0000 0.0000 0.0000
## PP.CCB_50 0.0000 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0000 0.0001 0.0000
## PP.CNS_2 0.0002 0.0017 0.0001
## PP.CNS_3 0.0000 0.0005 0.0000
## PP.ATNS_1 0.5499 0.5164 0.5079
## PP.ATNS_2R 0.0002 0.0000 0.0005
## PP.ATNS_3 0.0455 0.0520 0.0419
## PP.ATNS_4 0.0012 0.0025 0.0008
## PP.ATNS_5 0.2041 0.2513 0.1838
## PP.Ind_3 0.0110 0.0058 0.0203
## PP.Ind_4 0.0834 0.1760 0.0923
## PP.Ind_7 0.0010 0.0018 0.0020
## PP.Ind_8 0.0223 0.0588 0.0274
## PP.Ind_1 0.0871 0.3395 0.0835
## PP.Ind_2 0.1976 0.5038 0.1901
## PP.Ind_5 0.0030 0.0284 0.0032
## PP.Ind_6 0.2923 0.5868 0.3084
## PP.BehavInt4_VB PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.Nat_1_GFFB 0.2989 0.1575 0.2762 0.3391 0.9993
## PP.Nat_4R_GFFB 0.0000 0.0008 0.0005 0.0002 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0351 0.0243 0.0095 0.0003
## PP.Nat_1_GFPRB 0.4630 0.7977 0.6970 0.9745 0.9558
## PP.Nat_4R_GFPRB 0.0000 0.0660 0.0458 0.0159 0.0009
## PP.Nat_2R_GFPRB 0.0000 0.0329 0.0308 0.0085 0.0010
## PP.Nat_3R_GFPRB 0.0000 0.0416 0.0269 0.0107 0.0004
## PP.Nat_1_CBB 0.0016 0.4049 0.2777 0.1500 0.0051
## PP.Nat_4R_CBB 0.1051 0.0012 0.0009 0.0033 0.0054
## PP.Nat_2R_CBB 0.0011 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_CBB 0.0001 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0013 0.0014 0.0002 0.0000
## PP.Nat_4R_PBPB 0.0188 0.9701 0.7033 0.8303 0.5316
## PP.Nat_2R_PBPB 0.2822 0.3137 0.1682 0.2353 0.1070
## PP.Nat_3R_PBPB 0.0286 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.0000 0.0023 0.0013 0.0004 0.0000
## PP.Nat_4R_PBFB 0.0008 0.5318 0.6659 0.6150 0.4664
## PP.Nat_2R_PBFB 0.8307 0.0141 0.0085 0.0067 0.0076
## PP.Nat_3R_PBFB 0.2192 0.0001 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0900 0.5742 0.8025 0.9716 0.4994
## PP.Nat_2R_VB 0.7806 0.9960 0.8942 0.4797 0.1518
## PP.Nat_3R_VB 0.1412 0.1082 0.0720 0.0154 0.0015
## PP.BehavInt1_GFFB 0.3789 0.2430 0.4182 0.3527 0.9205
## PP.BehavInt2_GFFB 0.2492 0.2231 0.4077 0.3066 0.9530
## PP.BehavInt3_GFFB 0.4883 0.2245 0.3818 0.3601 0.8813
## PP.BehavInt4_GFFB 0.2498 0.3019 0.4759 0.4214 0.8424
## PP.BehavInt1_GFPRB 0.0000 0.0002 0.0002 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0007 0.0007 0.0001 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.1039 0.0636 0.0254 0.0002
## PP.BehavInt2_CBB 0.0000 0.1959 0.1247 0.0543 0.0006
## PP.BehavInt3_CBB 0.0000 0.1100 0.0677 0.0268 0.0002
## PP.BehavInt4_CBB 0.0000 0.1212 0.0815 0.0303 0.0003
## PP.BehavInt1_PBPB 0.0000 0.0002 0.0002 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0007 0.0007 0.0001 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0001 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0021 0.0017 0.0004 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0002 0.0001 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0007 0.0005 0.0001 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000 0.0000
## PP.CCB_48 0.0000 0.0000 0.0000 0.0000
## PP.CCB_49 0.0000 0.0000 0.0000 0.0000
## PP.CCB_50 0.0000 0.0000 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000 0.0000
## PP.CNS_1 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.CNS_2 0.0003 0.0000 0.0000 0.0000 0.0000
## PP.CNS_3 0.0001 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_1 0.5795 0.0375 0.0208 0.0242 0.0258
## PP.ATNS_2R 0.0003 0.3555 0.2537 0.1264 0.0070
## PP.ATNS_3 0.0543 0.0014 0.0005 0.0005 0.0008
## PP.ATNS_4 0.0014 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_5 0.2390 0.0005 0.0002 0.0003 0.0008
## PP.Ind_3 0.0109 0.1913 0.1541 0.0847 0.0343
## PP.Ind_4 0.0950 0.0036 0.0029 0.0032 0.0052
## PP.Ind_7 0.0016 0.0152 0.0102 0.0071 0.0021
## PP.Ind_8 0.0319 0.0030 0.0020 0.0026 0.0020
## PP.Ind_1 0.1202 0.0000 0.0000 0.0000 0.0000
## PP.Ind_2 0.2504 0.0000 0.0000 0.0001 0.0006
## PP.Ind_5 0.0054 0.0000 0.0000 0.0000 0.0000
## PP.Ind_6 0.3326 0.0006 0.0003 0.0009 0.0021
## PP.CNS_1 PP.CNS_2 PP.CNS_3 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3
## PP.Nat_1_GFFB 0.0452 0.0636 0.1556 0.0004 0.0000 0.0531
## PP.Nat_4R_GFFB 0.0000 0.0025 0.0009 0.0398 0.0000 0.0039
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000 0.0348 0.0000 0.0035
## PP.Nat_3R_GFFB 0.0000 0.0008 0.0012 0.0021 0.0000 0.0015
## PP.Nat_1_GFPRB 0.5228 0.0208 0.2428 0.0316 0.1120 0.2982
## PP.Nat_4R_GFPRB 0.0000 0.0079 0.0010 0.0059 0.0000 0.0004
## PP.Nat_2R_GFPRB 0.0000 0.0132 0.0012 0.0250 0.0000 0.0049
## PP.Nat_3R_GFPRB 0.0000 0.0074 0.0024 0.0772 0.0000 0.0223
## PP.Nat_1_CBB 0.0000 0.0299 0.0133 0.0938 0.0000 0.1135
## PP.Nat_4R_CBB 0.0025 0.0000 0.0000 0.0000 0.7531 0.0000
## PP.Nat_2R_CBB 0.0002 0.0000 0.0000 0.0000 0.6518 0.0000
## PP.Nat_3R_CBB 0.0001 0.0000 0.0000 0.0000 0.7356 0.0000
## PP.Nat_1_PBPB 0.0004 0.0181 0.0121 0.8487 0.0000 0.2018
## PP.Nat_4R_PBPB 0.0141 0.0052 0.0119 0.0000 0.0227 0.0002
## PP.Nat_2R_PBPB 0.0005 0.0001 0.0005 0.0000 0.0068 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000 0.0009 0.0010 0.0028
## PP.Nat_1_PBFB 0.0000 0.0063 0.0020 0.5788 0.0000 0.1152
## PP.Nat_4R_PBFB 0.8426 0.2630 0.5629 0.0000 0.9186 0.0145
## PP.Nat_2R_PBFB 0.0007 0.0000 0.0003 0.0000 0.0673 0.0000
## PP.Nat_3R_PBFB 0.0010 0.0000 0.0000 0.0000 0.1059 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0000 0.1299 0.0010 0.0087
## PP.Nat_4R_VB 0.0034 0.0735 0.0443 0.0001 0.0000 0.0075
## PP.Nat_2R_VB 0.0002 0.0292 0.0135 0.0001 0.0000 0.0021
## PP.Nat_3R_VB 0.0000 0.0007 0.0002 0.0001 0.0000 0.0007
## PP.BehavInt1_GFFB 0.0397 0.0456 0.0967 0.0002 0.0000 0.0290
## PP.BehavInt2_GFFB 0.0706 0.0642 0.1444 0.0003 0.0000 0.0420
## PP.BehavInt3_GFFB 0.0285 0.0501 0.1058 0.0002 0.0000 0.0223
## PP.BehavInt4_GFFB 0.0248 0.0222 0.0558 0.0000 0.0000 0.0139
## PP.BehavInt1_GFPRB 0.0083 0.0541 0.0517 0.3720 0.0000 0.7787
## PP.BehavInt2_GFPRB 0.0065 0.0748 0.0521 0.4942 0.0000 0.6279
## PP.BehavInt3_GFPRB 0.0047 0.0448 0.0277 0.5269 0.0000 0.6312
## PP.BehavInt4_GFPRB 0.0040 0.0337 0.0232 0.6322 0.0000 0.5006
## PP.BehavInt1_CBB 0.0002 0.0363 0.0175 0.5605 0.0000 0.5279
## PP.BehavInt2_CBB 0.0001 0.0414 0.0178 0.3939 0.0000 0.4236
## PP.BehavInt3_CBB 0.0002 0.0432 0.0205 0.5134 0.0000 0.4574
## PP.BehavInt4_CBB 0.0002 0.0451 0.0203 0.5740 0.0000 0.5258
## PP.BehavInt1_PBPB 0.0083 0.0541 0.0517 0.3720 0.0000 0.7787
## PP.BehavInt2_PBPB 0.0065 0.0748 0.0521 0.4942 0.0000 0.6279
## PP.BehavInt3_PBPB 0.0047 0.0448 0.0277 0.5269 0.0000 0.6312
## PP.BehavInt4_PBPB 0.0040 0.0337 0.0232 0.6322 0.0000 0.5006
## PP.BehavInt1_PBFB 0.0004 0.0123 0.0050 0.9126 0.0000 0.3613
## PP.BehavInt2_PBFB 0.0014 0.0431 0.0188 0.8475 0.0000 0.4259
## PP.BehavInt3_PBFB 0.0003 0.0099 0.0041 0.9246 0.0000 0.2782
## PP.BehavInt4_PBFB 0.0011 0.0264 0.0132 0.8386 0.0000 0.4693
## PP.BehavInt1_VB 0.0000 0.0002 0.0000 0.5499 0.0002 0.0455
## PP.BehavInt2_VB 0.0001 0.0017 0.0005 0.5164 0.0000 0.0520
## PP.BehavInt3_VB 0.0000 0.0001 0.0000 0.5079 0.0005 0.0419
## PP.BehavInt4_VB 0.0000 0.0003 0.0001 0.5795 0.0003 0.0543
## PP.CCB_48 0.0000 0.0000 0.0000 0.0375 0.3555 0.0014
## PP.CCB_49 0.0000 0.0000 0.0000 0.0208 0.2537 0.0005
## PP.CCB_50 0.0000 0.0000 0.0000 0.0242 0.1264 0.0005
## PP.CCB_51 0.0000 0.0000 0.0000 0.0258 0.0070 0.0008
## PP.CNS_1 0.0000 0.0000 0.0000 0.0007 0.0000
## PP.CNS_2 0.0000 0.0000 0.0000 0.0547 0.0000
## PP.CNS_3 0.0000 0.0000 0.0000 0.0361 0.0000
## PP.ATNS_1 0.0000 0.0000 0.0000 0.0447 0.0000
## PP.ATNS_2R 0.0007 0.0547 0.0361 0.0447 0.1253
## PP.ATNS_3 0.0000 0.0000 0.0000 0.0000 0.1253
## PP.ATNS_4 0.0000 0.0000 0.0000 0.0000 0.1596 0.0000
## PP.ATNS_5 0.0000 0.0000 0.0000 0.0000 0.4737 0.0000
## PP.Ind_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_4 0.0000 0.0000 0.0000 0.0000 0.2908 0.0000
## PP.Ind_7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_8 0.0000 0.0000 0.0000 0.0000 0.1037 0.0000
## PP.Ind_1 0.0000 0.0000 0.0000 0.0000 0.8249 0.0000
## PP.Ind_2 0.0000 0.0000 0.0000 0.0000 0.8826 0.0000
## PP.Ind_5 0.0000 0.0000 0.0000 0.0000 0.3117 0.0000
## PP.Ind_6 0.0000 0.0000 0.0000 0.0000 0.8007 0.0000
## PP.ATNS_4 PP.ATNS_5 PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8
## PP.Nat_1_GFFB 0.2079 0.0595 0.0001 0.0010 0.0002 0.0003
## PP.Nat_4R_GFFB 0.0040 0.0709 0.0002 0.4363 0.0001 0.2254
## PP.Nat_2R_GFFB 0.0007 0.0383 0.0008 0.1926 0.0005 0.0883
## PP.Nat_3R_GFFB 0.0024 0.0317 0.0000 0.0389 0.0000 0.0087
## PP.Nat_1_GFPRB 0.1755 0.0546 0.2126 0.0000 0.1717 0.0000
## PP.Nat_4R_GFPRB 0.0026 0.0261 0.0000 0.1399 0.0000 0.0829
## PP.Nat_2R_GFPRB 0.0118 0.1322 0.0000 0.2646 0.0000 0.1874
## PP.Nat_3R_GFPRB 0.0218 0.3213 0.0000 0.2684 0.0000 0.1217
## PP.Nat_1_CBB 0.1937 0.6879 0.0000 0.3737 0.0001 0.1332
## PP.Nat_4R_CBB 0.0000 0.0000 0.0034 0.0000 0.0002 0.0000
## PP.Nat_2R_CBB 0.0000 0.0000 0.0093 0.0000 0.0007 0.0000
## PP.Nat_3R_CBB 0.0000 0.0000 0.0292 0.0000 0.0034 0.0000
## PP.Nat_1_PBPB 0.0416 0.9729 0.0043 0.7243 0.0029 0.2272
## PP.Nat_4R_PBPB 0.0095 0.0000 0.0054 0.0004 0.0010 0.0006
## PP.Nat_2R_PBPB 0.0005 0.0000 0.0003 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0002 0.0007 0.0051 0.0000 0.0005 0.0000
## PP.Nat_1_PBFB 0.0304 0.7314 0.0044 0.7513 0.0013 0.3163
## PP.Nat_4R_PBFB 0.0696 0.0003 0.1558 0.0101 0.1838 0.0405
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0060 0.0000 0.0018 0.0000
## PP.Nat_1_VB 0.0001 0.0641 0.0158 0.0674 0.0017 0.0091
## PP.Nat_4R_VB 0.0792 0.0124 0.0003 0.0213 0.0006 0.0312
## PP.Nat_2R_VB 0.0179 0.0153 0.0000 0.0020 0.0000 0.0041
## PP.Nat_3R_VB 0.0014 0.0032 0.0000 0.0003 0.0000 0.0007
## PP.BehavInt1_GFFB 0.1226 0.0344 0.0002 0.0007 0.0000 0.0000
## PP.BehavInt2_GFFB 0.1516 0.0306 0.0009 0.0011 0.0000 0.0000
## PP.BehavInt3_GFFB 0.1028 0.0347 0.0001 0.0019 0.0000 0.0002
## PP.BehavInt4_GFFB 0.0654 0.0136 0.0002 0.0004 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.1281 0.5459 0.1219 0.7716 0.0734 0.5186
## PP.BehavInt2_GFPRB 0.1261 0.5960 0.0712 0.6162 0.0612 0.7217
## PP.BehavInt3_GFPRB 0.0895 0.7192 0.0710 0.8857 0.0419 0.4904
## PP.BehavInt4_GFPRB 0.0640 0.8689 0.0692 0.9744 0.0382 0.3679
## PP.BehavInt1_CBB 0.2970 0.6884 0.0025 0.8824 0.0028 0.3255
## PP.BehavInt2_CBB 0.3082 0.7899 0.0008 0.7066 0.0013 0.2416
## PP.BehavInt3_CBB 0.2699 0.7890 0.0016 0.8514 0.0015 0.3309
## PP.BehavInt4_CBB 0.3061 0.7145 0.0021 0.8645 0.0025 0.3651
## PP.BehavInt1_PBPB 0.1281 0.5459 0.1219 0.7716 0.0734 0.5186
## PP.BehavInt2_PBPB 0.1261 0.5960 0.0712 0.6162 0.0612 0.7217
## PP.BehavInt3_PBPB 0.0895 0.7192 0.0710 0.8857 0.0419 0.4904
## PP.BehavInt4_PBPB 0.0640 0.8689 0.0692 0.9744 0.0382 0.3679
## PP.BehavInt1_PBFB 0.0564 0.9410 0.0376 0.9785 0.0099 0.4878
## PP.BehavInt2_PBFB 0.1141 0.7678 0.0167 0.8681 0.0056 0.5845
## PP.BehavInt3_PBFB 0.0412 0.9393 0.0313 0.8692 0.0059 0.4130
## PP.BehavInt4_PBFB 0.0931 0.7664 0.0382 0.9129 0.0107 0.5571
## PP.BehavInt1_VB 0.0012 0.2041 0.0110 0.0834 0.0010 0.0223
## PP.BehavInt2_VB 0.0025 0.2513 0.0058 0.1760 0.0018 0.0588
## PP.BehavInt3_VB 0.0008 0.1838 0.0203 0.0923 0.0020 0.0274
## PP.BehavInt4_VB 0.0014 0.2390 0.0109 0.0950 0.0016 0.0319
## PP.CCB_48 0.0000 0.0005 0.1913 0.0036 0.0152 0.0030
## PP.CCB_49 0.0000 0.0002 0.1541 0.0029 0.0102 0.0020
## PP.CCB_50 0.0000 0.0003 0.0847 0.0032 0.0071 0.0026
## PP.CCB_51 0.0000 0.0008 0.0343 0.0052 0.0021 0.0020
## PP.CNS_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.CNS_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.CNS_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_2R 0.1596 0.4737 0.0000 0.2908 0.0000 0.1037
## PP.ATNS_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_4 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_5 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_3 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_4 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_7 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_8 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_1 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## PP.Ind_2 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000
## PP.Ind_5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB 0.1021 0.0852 0.0512 0.0261
## PP.Nat_4R_GFFB 0.6618 0.5195 0.0719 0.4567
## PP.Nat_2R_GFFB 0.1830 0.1549 0.0051 0.2028
## PP.Nat_3R_GFFB 0.2610 0.2347 0.0122 0.1224
## PP.Nat_1_GFPRB 0.0000 0.0003 0.0009 0.0001
## PP.Nat_4R_GFPRB 0.6318 0.3962 0.0967 0.2829
## PP.Nat_2R_GFPRB 0.7991 0.5704 0.1752 0.4690
## PP.Nat_3R_GFPRB 0.6965 0.5355 0.0752 0.5155
## PP.Nat_1_CBB 0.8438 0.9307 0.2848 0.6812
## PP.Nat_4R_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_2R_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_PBPB 0.8164 0.7555 0.1826 0.8031
## PP.Nat_4R_PBPB 0.0016 0.0002 0.0023 0.0005
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0002 0.0000 0.0007
## PP.Nat_1_PBFB 0.8717 0.9220 0.2275 0.8578
## PP.Nat_4R_PBFB 0.0182 0.0178 0.0808 0.0137
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.0215 0.0432 0.0005 0.1109
## PP.Nat_4R_VB 0.1741 0.0788 0.1253 0.0343
## PP.Nat_2R_VB 0.1514 0.1117 0.0341 0.0235
## PP.Nat_3R_VB 0.0344 0.0615 0.0039 0.0132
## PP.BehavInt1_GFFB 0.0594 0.0572 0.0236 0.0090
## PP.BehavInt2_GFFB 0.0389 0.0365 0.0217 0.0079
## PP.BehavInt3_GFFB 0.1150 0.1088 0.0405 0.0164
## PP.BehavInt4_GFFB 0.0403 0.0488 0.0194 0.0060
## PP.BehavInt1_GFPRB 0.7170 0.5226 0.3201 0.4200
## PP.BehavInt2_GFPRB 0.4727 0.3806 0.4729 0.3575
## PP.BehavInt3_GFPRB 0.7401 0.5288 0.2779 0.4722
## PP.BehavInt4_GFPRB 0.8765 0.6327 0.2253 0.5916
## PP.BehavInt1_CBB 0.7604 0.7981 0.2901 0.8666
## PP.BehavInt2_CBB 0.7346 0.8079 0.3138 0.9528
## PP.BehavInt3_CBB 0.7288 0.7858 0.2844 0.8522
## PP.BehavInt4_CBB 0.7020 0.7596 0.3060 0.8506
## PP.BehavInt1_PBPB 0.7170 0.5226 0.3201 0.4200
## PP.BehavInt2_PBPB 0.4727 0.3806 0.4729 0.3575
## PP.BehavInt3_PBPB 0.7401 0.5288 0.2779 0.4722
## PP.BehavInt4_PBPB 0.8765 0.6327 0.2253 0.5916
## PP.BehavInt1_PBFB 0.8368 0.7076 0.2813 0.6013
## PP.BehavInt2_PBFB 0.4682 0.4219 0.5113 0.4090
## PP.BehavInt3_PBFB 0.8318 0.7483 0.2552 0.6262
## PP.BehavInt4_PBFB 0.6013 0.5272 0.3938 0.4196
## PP.BehavInt1_VB 0.0871 0.1976 0.0030 0.2923
## PP.BehavInt2_VB 0.3395 0.5038 0.0284 0.5868
## PP.BehavInt3_VB 0.0835 0.1901 0.0032 0.3084
## PP.BehavInt4_VB 0.1202 0.2504 0.0054 0.3326
## PP.CCB_48 0.0000 0.0000 0.0000 0.0006
## PP.CCB_49 0.0000 0.0000 0.0000 0.0003
## PP.CCB_50 0.0000 0.0001 0.0000 0.0009
## PP.CCB_51 0.0000 0.0006 0.0000 0.0021
## PP.CNS_1 0.0000 0.0000 0.0000 0.0000
## PP.CNS_2 0.0000 0.0000 0.0000 0.0000
## PP.CNS_3 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_1 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_2R 0.8249 0.8826 0.3117 0.8007
## PP.ATNS_3 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_4 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_5 0.0000 0.0000 0.0000 0.0000
## PP.Ind_3 0.0001 0.0004 0.0000 0.0000
## PP.Ind_4 0.0000 0.0000 0.0000 0.0000
## PP.Ind_7 0.0000 0.0000 0.0000 0.0000
## PP.Ind_8 0.0000 0.0000 0.0000 0.0000
## PP.Ind_1 0.0000 0.0000 0.0000
## PP.Ind_2 0.0000 0.0000 0.0000
## PP.Ind_5 0.0000 0.0000 0.0000
## PP.Ind_6 0.0000 0.0000 0.0000
library(corrplot)
corrplot(mydata.cor6, method="color")

corrplot(mydata.cor6, addCoef.col = 1, number.cex = 0.3, method = 'number')

#Naturalness (TOTAL SCALE), Risk, Benefit, Support
PP$corGroup <- data.frame(PP$Risk_Score_GFFB, PP$Risk_Score_GFPRB, PP$Risk_Score_CBB, PP$Risk_Score_PBFB, PP$Risk_Score_PBPB, PP$Risk_Score_VB, PP$Ben_Score_GFFB, PP$Ben_Score_GFPRB, PP$Ben_Score_CBB, PP$Ben_Score_PBFB, PP$Ben_Score_PBPB, PP$Ben_Score_VB, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB, PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot)
mydata.cor7 = cor(PP$corGroup, use = "pairwise.complete.obs")
head(round(mydata.cor7,2))
## PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB 1.00 0.59 0.31
## PP.Risk_Score_GFPRB 0.59 1.00 0.35
## PP.Risk_Score_CBB 0.31 0.35 1.00
## PP.Risk_Score_PBFB 0.21 0.18 0.37
## PP.Risk_Score_PBPB 0.27 0.28 0.32
## PP.Risk_Score_VB 0.33 0.59 0.26
## PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB 0.21 0.27 0.33
## PP.Risk_Score_GFPRB 0.18 0.28 0.59
## PP.Risk_Score_CBB 0.37 0.32 0.26
## PP.Risk_Score_PBFB 1.00 0.97 0.42
## PP.Risk_Score_PBPB 0.97 1.00 0.61
## PP.Risk_Score_VB 0.42 0.61 1.00
## PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB -0.16 -0.16 0.28
## PP.Risk_Score_GFPRB 0.05 -0.21 0.36
## PP.Risk_Score_CBB 0.21 0.02 -0.17
## PP.Risk_Score_PBFB 0.23 0.20 0.03
## PP.Risk_Score_PBPB 0.33 0.13 0.22
## PP.Risk_Score_VB 0.28 0.11 0.39
## PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB 0.32 0.30 0.15
## PP.Risk_Score_GFPRB 0.37 0.22 0.14
## PP.Risk_Score_CBB -0.07 -0.02 0.16
## PP.Risk_Score_PBFB -0.32 -0.25 -0.20
## PP.Risk_Score_PBPB -0.23 -0.28 -0.24
## PP.Risk_Score_VB 0.08 -0.13 -0.21
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB -0.26 -0.24 -0.22
## PP.Risk_Score_GFPRB -0.06 -0.11 -0.02
## PP.Risk_Score_CBB 0.24 0.23 0.26
## PP.Risk_Score_PBFB 0.23 0.15 0.22
## PP.Risk_Score_PBPB 0.30 0.15 0.31
## PP.Risk_Score_VB 0.26 0.20 0.27
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB -0.26 0.29 0.29
## PP.Risk_Score_GFPRB -0.08 0.21 0.27
## PP.Risk_Score_CBB 0.25 -0.04 0.02
## PP.Risk_Score_PBFB 0.22 -0.32 -0.22
## PP.Risk_Score_PBPB 0.27 -0.33 -0.24
## PP.Risk_Score_VB 0.26 -0.12 -0.06
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB 0.29 0.28 0.30
## PP.Risk_Score_GFPRB 0.25 0.20 0.29
## PP.Risk_Score_CBB -0.04 -0.02 -0.25
## PP.Risk_Score_PBFB -0.28 -0.27 0.00
## PP.Risk_Score_PBPB -0.31 -0.29 0.16
## PP.Risk_Score_VB -0.05 -0.07 0.30
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB 0.28 0.31 0.32
## PP.Risk_Score_GFPRB 0.30 0.35 0.30
## PP.Risk_Score_CBB -0.21 -0.24 -0.23
## PP.Risk_Score_PBFB 0.02 -0.01 0.00
## PP.Risk_Score_PBPB 0.14 0.15 0.17
## PP.Risk_Score_VB 0.40 0.34 0.31
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB 0.29 0.29 0.29
## PP.Risk_Score_GFPRB 0.21 0.27 0.25
## PP.Risk_Score_CBB -0.04 0.02 -0.04
## PP.Risk_Score_PBFB -0.32 -0.22 -0.28
## PP.Risk_Score_PBPB -0.33 -0.24 -0.31
## PP.Risk_Score_VB -0.12 -0.06 -0.05
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB 0.28 0.40 0.37
## PP.Risk_Score_GFPRB 0.20 0.47 0.45
## PP.Risk_Score_CBB -0.02 -0.04 -0.04
## PP.Risk_Score_PBFB -0.27 -0.31 -0.26
## PP.Risk_Score_PBPB -0.29 -0.14 -0.10
## PP.Risk_Score_VB -0.07 0.15 0.12
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB 0.37 0.38 0.18
## PP.Risk_Score_GFPRB 0.35 0.37 0.20
## PP.Risk_Score_CBB -0.07 -0.08 0.09
## PP.Risk_Score_PBFB -0.30 -0.30 -0.22
## PP.Risk_Score_PBPB -0.11 -0.16 -0.30
## PP.Risk_Score_VB 0.06 0.11 -0.17
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB 0.23 0.16 0.17
## PP.Risk_Score_GFPRB 0.31 0.13 0.19
## PP.Risk_Score_CBB 0.18 0.18 0.14
## PP.Risk_Score_PBFB -0.17 -0.26 -0.20
## PP.Risk_Score_PBPB -0.26 -0.33 -0.28
## PP.Risk_Score_VB -0.06 -0.21 -0.15
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB -0.20 -0.58 -0.54 -0.35
## PP.Risk_Score_GFPRB -0.10 -0.45 -0.31 -0.35
## PP.Risk_Score_CBB 0.14 -0.12 -0.09 -0.14
## PP.Risk_Score_PBFB 0.18 -0.07 -0.02 -0.12
## PP.Risk_Score_PBPB 0.25 -0.14 -0.10 -0.22
## PP.Risk_Score_VB 0.27 -0.32 -0.25 -0.39
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB -0.17 -0.46 -0.50
## PP.Risk_Score_GFPRB -0.35 -0.64 -0.60
## PP.Risk_Score_CBB -0.04 -0.25 -0.27
## PP.Risk_Score_PBFB -0.07 -0.27 -0.18
## PP.Risk_Score_PBPB -0.26 -0.39 -0.33
## PP.Risk_Score_VB -0.16 -0.67 -0.48
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB -0.40 0.34 -0.02 -0.09
## PP.Risk_Score_GFPRB -0.43 0.33 -0.12 0.01
## PP.Risk_Score_CBB -0.13 -0.10 -0.48 -0.36
## PP.Risk_Score_PBFB -0.09 0.22 -0.19 -0.02
## PP.Risk_Score_PBPB -0.15 0.30 -0.12 0.05
## PP.Risk_Score_VB -0.45 0.45 0.00 0.16
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB -0.08 0.24 -0.06 -0.03
## PP.Risk_Score_GFPRB -0.04 0.33 0.03 -0.02
## PP.Risk_Score_CBB -0.20 -0.05 -0.28 -0.23
## PP.Risk_Score_PBFB 0.07 -0.09 -0.38 -0.32
## PP.Risk_Score_PBPB 0.16 -0.12 -0.41 -0.36
## PP.Risk_Score_VB 0.15 0.02 -0.30 -0.27
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB -0.12 0.33 0.06 0.09
## PP.Risk_Score_GFPRB 0.08 0.42 0.00 0.10
## PP.Risk_Score_CBB -0.08 -0.10 0.27 0.24
## PP.Risk_Score_PBFB 0.05 -0.21 0.39 0.30
## PP.Risk_Score_PBPB 0.02 -0.10 0.29 0.12
## PP.Risk_Score_VB -0.04 0.22 0.17 0.25
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB 0.07 0.11 -0.21 -0.13
## PP.Risk_Score_GFPRB 0.04 0.14 -0.27 -0.21
## PP.Risk_Score_CBB 0.09 0.13 -0.12 -0.09
## PP.Risk_Score_PBFB 0.12 -0.13 -0.26 -0.24
## PP.Risk_Score_PBPB -0.05 -0.24 -0.44 -0.35
## PP.Risk_Score_VB 0.02 -0.11 -0.55 -0.47
## PP.Nat_3R_VB
## PP.Risk_Score_GFFB -0.07
## PP.Risk_Score_GFPRB -0.20
## PP.Risk_Score_CBB 0.00
## PP.Risk_Score_PBFB -0.05
## PP.Risk_Score_PBPB -0.07
## PP.Risk_Score_VB -0.23
library("Hmisc")
mydata.rcorr7 = rcorr(as.matrix(mydata.cor7))
mydata.rcorr7
## PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB 1.00 0.92 0.22
## PP.Risk_Score_GFPRB 0.92 1.00 0.30
## PP.Risk_Score_CBB 0.22 0.30 1.00
## PP.Risk_Score_PBFB 0.00 0.09 0.57
## PP.Risk_Score_PBPB 0.15 0.27 0.48
## PP.Risk_Score_VB 0.51 0.67 0.39
## PP.Ben_Score_GFFB 0.05 0.23 0.35
## PP.Ben_Score_GFPRB -0.24 -0.19 0.32
## PP.Ben_Score_CBB 0.66 0.71 -0.06
## PP.Ben_Score_PBFB 0.69 0.67 -0.09
## PP.Ben_Score_PBPB 0.63 0.55 -0.09
## PP.Ben_Score_VB 0.46 0.39 0.14
## PP.BehavInt1_GFFB -0.16 0.01 0.37
## PP.BehavInt2_GFFB -0.23 -0.08 0.35
## PP.BehavInt3_GFFB -0.12 0.06 0.38
## PP.BehavInt4_GFFB -0.19 -0.01 0.37
## PP.BehavInt1_GFPRB 0.60 0.51 -0.15
## PP.BehavInt2_GFPRB 0.66 0.58 -0.13
## PP.BehavInt3_GFPRB 0.63 0.56 -0.13
## PP.BehavInt4_GFPRB 0.63 0.54 -0.10
## PP.BehavInt1_CBB 0.65 0.67 -0.15
## PP.BehavInt2_CBB 0.63 0.68 -0.11
## PP.BehavInt3_CBB 0.65 0.69 -0.13
## PP.BehavInt4_CBB 0.65 0.67 -0.14
## PP.BehavInt1_PBPB 0.60 0.51 -0.15
## PP.BehavInt2_PBPB 0.66 0.58 -0.13
## PP.BehavInt3_PBPB 0.63 0.56 -0.13
## PP.BehavInt4_PBPB 0.63 0.54 -0.10
## PP.BehavInt1_PBFB 0.75 0.72 -0.07
## PP.BehavInt2_PBFB 0.74 0.73 -0.07
## PP.BehavInt3_PBFB 0.72 0.69 -0.07
## PP.BehavInt4_PBFB 0.72 0.68 -0.09
## PP.BehavInt1_VB 0.52 0.45 0.05
## PP.BehavInt2_VB 0.58 0.55 0.09
## PP.BehavInt3_VB 0.49 0.41 0.05
## PP.BehavInt4_VB 0.52 0.45 0.06
## PP.Nat_1_GFFB -0.16 -0.03 0.27
## PP.Nat_4R_GFFB -0.94 -0.90 -0.20
## PP.Nat_2R_GFFB -0.90 -0.80 -0.13
## PP.Nat_3R_GFFB -0.77 -0.80 -0.26
## PP.Nat_1_GFPRB -0.49 -0.59 0.02
## PP.Nat_4R_GFPRB -0.81 -0.93 -0.35
## PP.Nat_2R_GFPRB -0.82 -0.92 -0.33
## PP.Nat_3R_GFPRB -0.79 -0.87 -0.19
## PP.Nat_1_CBB 0.64 0.71 0.01
## PP.Nat_4R_CBB -0.02 -0.07 -0.82
## PP.Nat_2R_CBB -0.10 -0.03 -0.60
## PP.Nat_3R_CBB -0.16 -0.08 -0.44
## PP.Nat_1_PBPB 0.67 0.66 -0.06
## PP.Nat_4R_PBPB -0.06 -0.12 -0.51
## PP.Nat_2R_PBPB -0.02 -0.10 -0.54
## PP.Nat_3R_PBPB -0.21 -0.14 -0.18
## PP.Nat_1_PBFB 0.73 0.75 -0.10
## PP.Nat_4R_PBFB -0.19 -0.16 0.57
## PP.Nat_2R_PBFB 0.07 0.10 0.59
## PP.Nat_3R_PBFB 0.08 0.06 0.40
## PP.Nat_1_VB 0.46 0.41 0.07
## PP.Nat_4R_VB -0.32 -0.43 -0.32
## PP.Nat_2R_VB -0.40 -0.53 -0.30
## PP.Nat_3R_VB -0.39 -0.50 -0.16
## PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB 0.00 0.15 0.51
## PP.Risk_Score_GFPRB 0.09 0.27 0.67
## PP.Risk_Score_CBB 0.57 0.48 0.39
## PP.Risk_Score_PBFB 1.00 0.94 0.66
## PP.Risk_Score_PBPB 0.94 1.00 0.82
## PP.Risk_Score_VB 0.66 0.82 1.00
## PP.Ben_Score_GFFB 0.41 0.52 0.62
## PP.Ben_Score_GFPRB 0.36 0.31 0.25
## PP.Ben_Score_CBB -0.03 0.22 0.62
## PP.Ben_Score_PBFB -0.50 -0.31 0.17
## PP.Ben_Score_PBPB -0.60 -0.48 -0.05
## PP.Ben_Score_VB -0.55 -0.53 -0.21
## PP.BehavInt1_GFFB 0.48 0.53 0.52
## PP.BehavInt2_GFFB 0.41 0.45 0.42
## PP.BehavInt3_GFFB 0.48 0.54 0.55
## PP.BehavInt4_GFFB 0.47 0.53 0.51
## PP.BehavInt1_GFPRB -0.66 -0.54 -0.11
## PP.BehavInt2_GFPRB -0.59 -0.46 -0.03
## PP.BehavInt3_GFPRB -0.61 -0.49 -0.05
## PP.BehavInt4_GFPRB -0.61 -0.49 -0.07
## PP.BehavInt1_CBB -0.12 0.13 0.54
## PP.BehavInt2_CBB -0.06 0.19 0.60
## PP.BehavInt3_CBB -0.09 0.16 0.57
## PP.BehavInt4_CBB -0.09 0.16 0.56
## PP.BehavInt1_PBPB -0.66 -0.54 -0.11
## PP.BehavInt2_PBPB -0.59 -0.46 -0.03
## PP.BehavInt3_PBPB -0.61 -0.49 -0.05
## PP.BehavInt4_PBPB -0.61 -0.49 -0.07
## PP.BehavInt1_PBFB -0.49 -0.29 0.18
## PP.BehavInt2_PBFB -0.45 -0.24 0.23
## PP.BehavInt3_PBFB -0.48 -0.29 0.18
## PP.BehavInt4_PBFB -0.49 -0.30 0.18
## PP.BehavInt1_VB -0.60 -0.55 -0.19
## PP.BehavInt2_VB -0.56 -0.49 -0.11
## PP.BehavInt3_VB -0.63 -0.58 -0.23
## PP.BehavInt4_VB -0.59 -0.55 -0.19
## PP.Nat_1_GFFB 0.45 0.51 0.52
## PP.Nat_4R_GFFB 0.03 -0.15 -0.54
## PP.Nat_2R_GFFB 0.14 -0.01 -0.39
## PP.Nat_3R_GFFB -0.14 -0.32 -0.69
## PP.Nat_1_GFPRB -0.12 -0.27 -0.36
## PP.Nat_4R_GFPRB -0.32 -0.51 -0.83
## PP.Nat_2R_GFPRB -0.20 -0.39 -0.74
## PP.Nat_3R_GFPRB -0.09 -0.29 -0.71
## PP.Nat_1_CBB 0.15 0.38 0.73
## PP.Nat_4R_CBB -0.36 -0.21 -0.08
## PP.Nat_2R_CBB -0.01 0.14 0.18
## PP.Nat_3R_CBB 0.12 0.24 0.18
## PP.Nat_1_PBPB -0.47 -0.33 0.12
## PP.Nat_4R_PBPB -0.76 -0.79 -0.65
## PP.Nat_2R_PBPB -0.67 -0.68 -0.58
## PP.Nat_3R_PBPB -0.04 -0.06 -0.22
## PP.Nat_1_PBFB -0.38 -0.16 0.33
## PP.Nat_4R_PBFB 0.73 0.60 0.36
## PP.Nat_2R_PBFB 0.51 0.41 0.39
## PP.Nat_3R_PBFB 0.20 0.12 0.18
## PP.Nat_1_VB -0.56 -0.52 -0.19
## PP.Nat_4R_VB -0.68 -0.81 -0.89
## PP.Nat_2R_VB -0.56 -0.70 -0.88
## PP.Nat_3R_VB -0.27 -0.41 -0.67
## PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB 0.05 -0.24 0.66
## PP.Risk_Score_GFPRB 0.23 -0.19 0.71
## PP.Risk_Score_CBB 0.35 0.32 -0.06
## PP.Risk_Score_PBFB 0.41 0.36 -0.03
## PP.Risk_Score_PBPB 0.52 0.31 0.22
## PP.Risk_Score_VB 0.62 0.25 0.62
## PP.Ben_Score_GFFB 1.00 0.72 0.60
## PP.Ben_Score_GFPRB 0.72 1.00 0.19
## PP.Ben_Score_CBB 0.60 0.19 1.00
## PP.Ben_Score_PBFB 0.24 -0.04 0.78
## PP.Ben_Score_PBPB 0.09 -0.07 0.63
## PP.Ben_Score_VB 0.06 0.08 0.36
## PP.BehavInt1_GFFB 0.96 0.78 0.42
## PP.BehavInt2_GFFB 0.92 0.78 0.35
## PP.BehavInt3_GFFB 0.97 0.77 0.45
## PP.BehavInt4_GFFB 0.95 0.78 0.39
## PP.BehavInt1_GFPRB 0.02 -0.13 0.59
## PP.BehavInt2_GFPRB 0.04 -0.15 0.63
## PP.BehavInt3_GFPRB 0.05 -0.11 0.63
## PP.BehavInt4_GFPRB 0.05 -0.10 0.60
## PP.BehavInt1_CBB 0.52 0.12 0.98
## PP.BehavInt2_CBB 0.58 0.16 0.98
## PP.BehavInt3_CBB 0.54 0.13 0.99
## PP.BehavInt4_CBB 0.54 0.14 0.99
## PP.BehavInt1_PBPB 0.02 -0.13 0.59
## PP.BehavInt2_PBPB 0.04 -0.15 0.63
## PP.BehavInt3_PBPB 0.05 -0.11 0.63
## PP.BehavInt4_PBPB 0.05 -0.10 0.60
## PP.BehavInt1_PBFB 0.17 -0.12 0.76
## PP.BehavInt2_PBFB 0.23 -0.09 0.79
## PP.BehavInt3_PBFB 0.23 -0.05 0.77
## PP.BehavInt4_PBFB 0.23 -0.06 0.78
## PP.BehavInt1_VB 0.00 -0.01 0.41
## PP.BehavInt2_VB 0.01 -0.07 0.43
## PP.BehavInt3_VB 0.00 0.00 0.40
## PP.BehavInt4_VB 0.00 -0.01 0.41
## PP.Nat_1_GFFB 0.89 0.77 0.41
## PP.Nat_4R_GFFB -0.20 0.07 -0.73
## PP.Nat_2R_GFFB -0.15 0.05 -0.72
## PP.Nat_3R_GFFB -0.56 -0.24 -0.84
## PP.Nat_1_GFPRB 0.23 0.63 -0.20
## PP.Nat_4R_GFPRB -0.41 0.00 -0.72
## PP.Nat_2R_GFPRB -0.37 0.01 -0.70
## PP.Nat_3R_GFPRB -0.46 -0.09 -0.84
## PP.Nat_1_CBB 0.64 0.21 0.94
## PP.Nat_4R_CBB -0.31 -0.41 0.15
## PP.Nat_2R_CBB -0.13 -0.34 0.10
## PP.Nat_3R_CBB -0.16 -0.31 -0.06
## PP.Nat_1_PBPB 0.18 -0.06 0.70
## PP.Nat_4R_PBPB -0.60 -0.44 -0.23
## PP.Nat_2R_PBPB -0.73 -0.60 -0.28
## PP.Nat_3R_PBPB -0.52 -0.45 -0.48
## PP.Nat_1_PBFB 0.32 -0.04 0.85
## PP.Nat_4R_PBFB 0.41 0.50 -0.16
## PP.Nat_2R_PBFB 0.52 0.52 0.15
## PP.Nat_3R_PBFB 0.48 0.51 0.21
## PP.Nat_1_VB 0.04 0.02 0.38
## PP.Nat_4R_VB -0.63 -0.35 -0.54
## PP.Nat_2R_VB -0.71 -0.39 -0.67
## PP.Nat_3R_VB -0.71 -0.37 -0.74
## PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB 0.69 0.63 0.46
## PP.Risk_Score_GFPRB 0.67 0.55 0.39
## PP.Risk_Score_CBB -0.09 -0.09 0.14
## PP.Risk_Score_PBFB -0.50 -0.60 -0.55
## PP.Risk_Score_PBPB -0.31 -0.48 -0.53
## PP.Risk_Score_VB 0.17 -0.05 -0.21
## PP.Ben_Score_GFFB 0.24 0.09 0.06
## PP.Ben_Score_GFPRB -0.04 -0.07 0.08
## PP.Ben_Score_CBB 0.78 0.63 0.36
## PP.Ben_Score_PBFB 1.00 0.95 0.79
## PP.Ben_Score_PBPB 0.95 1.00 0.89
## PP.Ben_Score_VB 0.79 0.89 1.00
## PP.BehavInt1_GFFB 0.04 -0.10 -0.08
## PP.BehavInt2_GFFB 0.00 -0.11 -0.07
## PP.BehavInt3_GFFB 0.07 -0.07 -0.06
## PP.BehavInt4_GFFB 0.01 -0.12 -0.09
## PP.BehavInt1_GFPRB 0.94 0.98 0.86
## PP.BehavInt2_GFPRB 0.94 0.98 0.84
## PP.BehavInt3_GFPRB 0.95 0.99 0.86
## PP.BehavInt4_GFPRB 0.94 0.99 0.88
## PP.BehavInt1_CBB 0.81 0.67 0.39
## PP.BehavInt2_CBB 0.77 0.62 0.34
## PP.BehavInt3_CBB 0.80 0.65 0.37
## PP.BehavInt4_CBB 0.79 0.65 0.37
## PP.BehavInt1_PBPB 0.94 0.98 0.86
## PP.BehavInt2_PBPB 0.94 0.98 0.84
## PP.BehavInt3_PBPB 0.95 0.99 0.86
## PP.BehavInt4_PBPB 0.94 0.99 0.88
## PP.BehavInt1_PBFB 0.99 0.94 0.78
## PP.BehavInt2_PBFB 0.98 0.91 0.75
## PP.BehavInt3_PBFB 0.99 0.94 0.79
## PP.BehavInt4_PBFB 0.99 0.94 0.78
## PP.BehavInt1_VB 0.84 0.93 0.98
## PP.BehavInt2_VB 0.85 0.92 0.93
## PP.BehavInt3_VB 0.84 0.93 0.98
## PP.BehavInt4_VB 0.85 0.93 0.98
## PP.Nat_1_GFFB 0.02 -0.12 -0.12
## PP.Nat_4R_GFFB -0.75 -0.66 -0.49
## PP.Nat_2R_GFFB -0.80 -0.76 -0.59
## PP.Nat_3R_GFFB -0.71 -0.58 -0.38
## PP.Nat_1_GFPRB -0.14 -0.06 0.11
## PP.Nat_4R_GFPRB -0.53 -0.37 -0.21
## PP.Nat_2R_GFPRB -0.59 -0.43 -0.31
## PP.Nat_3R_GFPRB -0.69 -0.55 -0.36
## PP.Nat_1_CBB 0.66 0.49 0.22
## PP.Nat_4R_CBB 0.08 0.02 -0.27
## PP.Nat_2R_CBB -0.13 -0.27 -0.55
## PP.Nat_3R_CBB -0.27 -0.40 -0.62
## PP.Nat_1_PBPB 0.94 0.94 0.82
## PP.Nat_4R_PBPB 0.19 0.34 0.34
## PP.Nat_2R_PBPB 0.09 0.20 0.12
## PP.Nat_3R_PBPB -0.39 -0.36 -0.35
## PP.Nat_1_PBFB 0.96 0.87 0.67
## PP.Nat_4R_PBFB -0.48 -0.50 -0.40
## PP.Nat_2R_PBFB -0.06 -0.05 0.06
## PP.Nat_3R_PBFB 0.15 0.18 0.26
## PP.Nat_1_VB 0.78 0.88 0.93
## PP.Nat_4R_VB -0.03 0.17 0.33
## PP.Nat_2R_VB -0.23 -0.06 0.11
## PP.Nat_3R_VB -0.42 -0.30 -0.13
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB -0.16 -0.23 -0.12
## PP.Risk_Score_GFPRB 0.01 -0.08 0.06
## PP.Risk_Score_CBB 0.37 0.35 0.38
## PP.Risk_Score_PBFB 0.48 0.41 0.48
## PP.Risk_Score_PBPB 0.53 0.45 0.54
## PP.Risk_Score_VB 0.52 0.42 0.55
## PP.Ben_Score_GFFB 0.96 0.92 0.97
## PP.Ben_Score_GFPRB 0.78 0.78 0.77
## PP.Ben_Score_CBB 0.42 0.35 0.45
## PP.Ben_Score_PBFB 0.04 0.00 0.07
## PP.Ben_Score_PBPB -0.10 -0.11 -0.07
## PP.Ben_Score_VB -0.08 -0.07 -0.06
## PP.BehavInt1_GFFB 1.00 0.98 0.99
## PP.BehavInt2_GFFB 0.98 1.00 0.97
## PP.BehavInt3_GFFB 0.99 0.97 1.00
## PP.BehavInt4_GFFB 0.99 0.97 0.99
## PP.BehavInt1_GFPRB -0.16 -0.17 -0.14
## PP.BehavInt2_GFPRB -0.16 -0.19 -0.13
## PP.BehavInt3_GFPRB -0.14 -0.15 -0.10
## PP.BehavInt4_GFPRB -0.13 -0.15 -0.10
## PP.BehavInt1_CBB 0.34 0.28 0.38
## PP.BehavInt2_CBB 0.40 0.33 0.43
## PP.BehavInt3_CBB 0.36 0.30 0.39
## PP.BehavInt4_CBB 0.36 0.29 0.39
## PP.BehavInt1_PBPB -0.16 -0.17 -0.14
## PP.BehavInt2_PBPB -0.16 -0.19 -0.13
## PP.BehavInt3_PBPB -0.14 -0.15 -0.10
## PP.BehavInt4_PBPB -0.13 -0.15 -0.10
## PP.BehavInt1_PBFB -0.04 -0.08 -0.01
## PP.BehavInt2_PBFB 0.01 -0.04 0.05
## PP.BehavInt3_PBFB 0.01 -0.03 0.04
## PP.BehavInt4_PBFB 0.01 -0.03 0.04
## PP.BehavInt1_VB -0.16 -0.15 -0.14
## PP.BehavInt2_VB -0.17 -0.19 -0.14
## PP.BehavInt3_VB -0.15 -0.14 -0.13
## PP.BehavInt4_VB -0.16 -0.16 -0.14
## PP.Nat_1_GFFB 0.92 0.90 0.92
## PP.Nat_4R_GFFB 0.02 0.10 -0.03
## PP.Nat_2R_GFFB 0.06 0.12 0.01
## PP.Nat_3R_GFFB -0.38 -0.29 -0.41
## PP.Nat_1_GFPRB 0.36 0.45 0.33
## PP.Nat_4R_GFPRB -0.22 -0.11 -0.26
## PP.Nat_2R_GFPRB -0.16 -0.06 -0.20
## PP.Nat_3R_GFPRB -0.26 -0.18 -0.30
## PP.Nat_1_CBB 0.46 0.37 0.50
## PP.Nat_4R_CBB -0.35 -0.37 -0.35
## PP.Nat_2R_CBB -0.16 -0.21 -0.15
## PP.Nat_3R_CBB -0.16 -0.23 -0.16
## PP.Nat_1_PBPB -0.03 -0.08 0.01
## PP.Nat_4R_PBPB -0.64 -0.60 -0.63
## PP.Nat_2R_PBPB -0.78 -0.77 -0.77
## PP.Nat_3R_PBPB -0.51 -0.54 -0.50
## PP.Nat_1_PBFB 0.09 0.03 0.12
## PP.Nat_4R_PBFB 0.53 0.54 0.52
## PP.Nat_2R_PBFB 0.57 0.59 0.56
## PP.Nat_3R_PBFB 0.51 0.54 0.49
## PP.Nat_1_VB -0.10 -0.10 -0.08
## PP.Nat_4R_VB -0.60 -0.54 -0.62
## PP.Nat_2R_VB -0.63 -0.54 -0.66
## PP.Nat_3R_VB -0.61 -0.55 -0.63
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB -0.19 0.60 0.66
## PP.Risk_Score_GFPRB -0.01 0.51 0.58
## PP.Risk_Score_CBB 0.37 -0.15 -0.13
## PP.Risk_Score_PBFB 0.47 -0.66 -0.59
## PP.Risk_Score_PBPB 0.53 -0.54 -0.46
## PP.Risk_Score_VB 0.51 -0.11 -0.03
## PP.Ben_Score_GFFB 0.95 0.02 0.04
## PP.Ben_Score_GFPRB 0.78 -0.13 -0.15
## PP.Ben_Score_CBB 0.39 0.59 0.63
## PP.Ben_Score_PBFB 0.01 0.94 0.94
## PP.Ben_Score_PBPB -0.12 0.98 0.98
## PP.Ben_Score_VB -0.09 0.86 0.84
## PP.BehavInt1_GFFB 0.99 -0.16 -0.16
## PP.BehavInt2_GFFB 0.97 -0.17 -0.19
## PP.BehavInt3_GFFB 0.99 -0.14 -0.13
## PP.BehavInt4_GFFB 1.00 -0.18 -0.18
## PP.BehavInt1_GFPRB -0.18 1.00 0.98
## PP.BehavInt2_GFPRB -0.18 0.98 1.00
## PP.BehavInt3_GFPRB -0.15 0.99 0.98
## PP.BehavInt4_GFPRB -0.15 0.99 0.98
## PP.BehavInt1_CBB 0.31 0.65 0.69
## PP.BehavInt2_CBB 0.37 0.60 0.65
## PP.BehavInt3_CBB 0.33 0.63 0.66
## PP.BehavInt4_CBB 0.33 0.62 0.67
## PP.BehavInt1_PBPB -0.18 1.00 0.98
## PP.BehavInt2_PBPB -0.18 0.98 1.00
## PP.BehavInt3_PBPB -0.15 0.99 0.98
## PP.BehavInt4_PBPB -0.15 0.99 0.98
## PP.BehavInt1_PBFB -0.07 0.94 0.95
## PP.BehavInt2_PBFB -0.01 0.91 0.94
## PP.BehavInt3_PBFB -0.01 0.93 0.94
## PP.BehavInt4_PBFB -0.01 0.93 0.94
## PP.BehavInt1_VB -0.17 0.92 0.91
## PP.BehavInt2_VB -0.19 0.91 0.91
## PP.BehavInt3_VB -0.17 0.92 0.89
## PP.BehavInt4_VB -0.18 0.92 0.91
## PP.Nat_1_GFFB 0.92 -0.17 -0.17
## PP.Nat_4R_GFFB 0.04 -0.63 -0.69
## PP.Nat_2R_GFFB 0.08 -0.73 -0.77
## PP.Nat_3R_GFFB -0.35 -0.52 -0.57
## PP.Nat_1_GFPRB 0.37 -0.05 -0.14
## PP.Nat_4R_GFPRB -0.20 -0.31 -0.40
## PP.Nat_2R_GFPRB -0.15 -0.38 -0.46
## PP.Nat_3R_GFPRB -0.23 -0.50 -0.56
## PP.Nat_1_CBB 0.44 0.45 0.51
## PP.Nat_4R_CBB -0.35 0.07 0.09
## PP.Nat_2R_CBB -0.15 -0.23 -0.19
## PP.Nat_3R_CBB -0.15 -0.37 -0.32
## PP.Nat_1_PBPB -0.05 0.92 0.93
## PP.Nat_4R_PBPB -0.63 0.40 0.37
## PP.Nat_2R_PBPB -0.77 0.27 0.25
## PP.Nat_3R_PBPB -0.48 -0.31 -0.29
## PP.Nat_1_PBFB 0.07 0.85 0.87
## PP.Nat_4R_PBFB 0.52 -0.57 -0.56
## PP.Nat_2R_PBFB 0.55 -0.14 -0.12
## PP.Nat_3R_PBFB 0.49 0.10 0.08
## PP.Nat_1_VB -0.12 0.85 0.84
## PP.Nat_4R_VB -0.59 0.23 0.17
## PP.Nat_2R_VB -0.62 0.01 -0.05
## PP.Nat_3R_VB -0.59 -0.22 -0.26
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB 0.63 0.63 0.65
## PP.Risk_Score_GFPRB 0.56 0.54 0.67
## PP.Risk_Score_CBB -0.13 -0.10 -0.15
## PP.Risk_Score_PBFB -0.61 -0.61 -0.12
## PP.Risk_Score_PBPB -0.49 -0.49 0.13
## PP.Risk_Score_VB -0.05 -0.07 0.54
## PP.Ben_Score_GFFB 0.05 0.05 0.52
## PP.Ben_Score_GFPRB -0.11 -0.10 0.12
## PP.Ben_Score_CBB 0.63 0.60 0.98
## PP.Ben_Score_PBFB 0.95 0.94 0.81
## PP.Ben_Score_PBPB 0.99 0.99 0.67
## PP.Ben_Score_VB 0.86 0.88 0.39
## PP.BehavInt1_GFFB -0.14 -0.13 0.34
## PP.BehavInt2_GFFB -0.15 -0.15 0.28
## PP.BehavInt3_GFFB -0.10 -0.10 0.38
## PP.BehavInt4_GFFB -0.15 -0.15 0.31
## PP.BehavInt1_GFPRB 0.99 0.99 0.65
## PP.BehavInt2_GFPRB 0.98 0.98 0.69
## PP.BehavInt3_GFPRB 1.00 0.99 0.68
## PP.BehavInt4_GFPRB 0.99 1.00 0.66
## PP.BehavInt1_CBB 0.68 0.66 1.00
## PP.BehavInt2_CBB 0.63 0.61 0.99
## PP.BehavInt3_CBB 0.66 0.63 0.99
## PP.BehavInt4_CBB 0.66 0.63 0.99
## PP.BehavInt1_PBPB 0.99 0.99 0.65
## PP.BehavInt2_PBPB 0.98 0.98 0.69
## PP.BehavInt3_PBPB 1.00 0.99 0.68
## PP.BehavInt4_PBPB 0.99 1.00 0.66
## PP.BehavInt1_PBFB 0.95 0.94 0.79
## PP.BehavInt2_PBFB 0.92 0.91 0.82
## PP.BehavInt3_PBFB 0.94 0.94 0.80
## PP.BehavInt4_PBFB 0.95 0.94 0.81
## PP.BehavInt1_VB 0.92 0.93 0.45
## PP.BehavInt2_VB 0.91 0.92 0.47
## PP.BehavInt3_VB 0.92 0.93 0.43
## PP.BehavInt4_VB 0.92 0.93 0.45
## PP.Nat_1_GFFB -0.15 -0.15 0.34
## PP.Nat_4R_GFFB -0.66 -0.66 -0.71
## PP.Nat_2R_GFFB -0.76 -0.76 -0.71
## PP.Nat_3R_GFFB -0.56 -0.56 -0.79
## PP.Nat_1_GFPRB -0.08 -0.06 -0.20
## PP.Nat_4R_GFPRB -0.37 -0.35 -0.66
## PP.Nat_2R_GFPRB -0.44 -0.41 -0.64
## PP.Nat_3R_GFPRB -0.54 -0.52 -0.79
## PP.Nat_1_CBB 0.49 0.47 0.92
## PP.Nat_4R_CBB 0.07 0.02 0.23
## PP.Nat_2R_CBB -0.22 -0.27 0.13
## PP.Nat_3R_CBB -0.34 -0.39 -0.04
## PP.Nat_1_PBPB 0.94 0.93 0.72
## PP.Nat_4R_PBPB 0.36 0.35 -0.15
## PP.Nat_2R_PBPB 0.24 0.22 -0.21
## PP.Nat_3R_PBPB -0.33 -0.34 -0.48
## PP.Nat_1_PBFB 0.87 0.85 0.87
## PP.Nat_4R_PBFB -0.54 -0.51 -0.24
## PP.Nat_2R_PBFB -0.10 -0.08 0.07
## PP.Nat_3R_PBFB 0.13 0.16 0.16
## PP.Nat_1_VB 0.86 0.87 0.42
## PP.Nat_4R_VB 0.18 0.20 -0.46
## PP.Nat_2R_VB -0.06 -0.04 -0.59
## PP.Nat_3R_VB -0.29 -0.26 -0.70
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB 0.63 0.65 0.65
## PP.Risk_Score_GFPRB 0.68 0.69 0.67
## PP.Risk_Score_CBB -0.11 -0.13 -0.14
## PP.Risk_Score_PBFB -0.06 -0.09 -0.09
## PP.Risk_Score_PBPB 0.19 0.16 0.16
## PP.Risk_Score_VB 0.60 0.57 0.56
## PP.Ben_Score_GFFB 0.58 0.54 0.54
## PP.Ben_Score_GFPRB 0.16 0.13 0.14
## PP.Ben_Score_CBB 0.98 0.99 0.99
## PP.Ben_Score_PBFB 0.77 0.80 0.79
## PP.Ben_Score_PBPB 0.62 0.65 0.65
## PP.Ben_Score_VB 0.34 0.37 0.37
## PP.BehavInt1_GFFB 0.40 0.36 0.36
## PP.BehavInt2_GFFB 0.33 0.30 0.29
## PP.BehavInt3_GFFB 0.43 0.39 0.39
## PP.BehavInt4_GFFB 0.37 0.33 0.33
## PP.BehavInt1_GFPRB 0.60 0.63 0.62
## PP.BehavInt2_GFPRB 0.65 0.66 0.67
## PP.BehavInt3_GFPRB 0.63 0.66 0.66
## PP.BehavInt4_GFPRB 0.61 0.63 0.63
## PP.BehavInt1_CBB 0.99 0.99 0.99
## PP.BehavInt2_CBB 1.00 0.99 0.99
## PP.BehavInt3_CBB 0.99 1.00 0.99
## PP.BehavInt4_CBB 0.99 0.99 1.00
## PP.BehavInt1_PBPB 0.60 0.63 0.62
## PP.BehavInt2_PBPB 0.65 0.66 0.67
## PP.BehavInt3_PBPB 0.63 0.66 0.66
## PP.BehavInt4_PBPB 0.61 0.63 0.63
## PP.BehavInt1_PBFB 0.76 0.78 0.77
## PP.BehavInt2_PBFB 0.79 0.81 0.80
## PP.BehavInt3_PBFB 0.76 0.79 0.78
## PP.BehavInt4_PBFB 0.77 0.79 0.79
## PP.BehavInt1_VB 0.40 0.43 0.43
## PP.BehavInt2_VB 0.43 0.45 0.44
## PP.BehavInt3_VB 0.38 0.41 0.41
## PP.BehavInt4_VB 0.40 0.43 0.43
## PP.Nat_1_GFFB 0.40 0.36 0.36
## PP.Nat_4R_GFFB -0.70 -0.72 -0.71
## PP.Nat_2R_GFFB -0.69 -0.71 -0.71
## PP.Nat_3R_GFFB -0.81 -0.81 -0.81
## PP.Nat_1_GFPRB -0.21 -0.22 -0.21
## PP.Nat_4R_GFPRB -0.70 -0.69 -0.68
## PP.Nat_2R_GFPRB -0.67 -0.66 -0.65
## PP.Nat_3R_GFPRB -0.81 -0.81 -0.80
## PP.Nat_1_CBB 0.95 0.93 0.93
## PP.Nat_4R_CBB 0.22 0.22 0.23
## PP.Nat_2R_CBB 0.16 0.14 0.14
## PP.Nat_3R_CBB -0.01 -0.02 -0.02
## PP.Nat_1_PBPB 0.70 0.71 0.72
## PP.Nat_4R_PBPB -0.19 -0.17 -0.16
## PP.Nat_2R_PBPB -0.25 -0.22 -0.22
## PP.Nat_3R_PBPB -0.46 -0.47 -0.47
## PP.Nat_1_PBFB 0.85 0.86 0.85
## PP.Nat_4R_PBFB -0.21 -0.22 -0.23
## PP.Nat_2R_PBFB 0.10 0.09 0.08
## PP.Nat_3R_PBFB 0.16 0.16 0.16
## PP.Nat_1_VB 0.38 0.39 0.39
## PP.Nat_4R_VB -0.51 -0.50 -0.48
## PP.Nat_2R_VB -0.65 -0.63 -0.63
## PP.Nat_3R_VB -0.73 -0.72 -0.72
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB 0.60 0.66 0.63
## PP.Risk_Score_GFPRB 0.51 0.58 0.56
## PP.Risk_Score_CBB -0.15 -0.13 -0.13
## PP.Risk_Score_PBFB -0.66 -0.59 -0.61
## PP.Risk_Score_PBPB -0.54 -0.46 -0.49
## PP.Risk_Score_VB -0.11 -0.03 -0.05
## PP.Ben_Score_GFFB 0.02 0.04 0.05
## PP.Ben_Score_GFPRB -0.13 -0.15 -0.11
## PP.Ben_Score_CBB 0.59 0.63 0.63
## PP.Ben_Score_PBFB 0.94 0.94 0.95
## PP.Ben_Score_PBPB 0.98 0.98 0.99
## PP.Ben_Score_VB 0.86 0.84 0.86
## PP.BehavInt1_GFFB -0.16 -0.16 -0.14
## PP.BehavInt2_GFFB -0.17 -0.19 -0.15
## PP.BehavInt3_GFFB -0.14 -0.13 -0.10
## PP.BehavInt4_GFFB -0.18 -0.18 -0.15
## PP.BehavInt1_GFPRB 1.00 0.98 0.99
## PP.BehavInt2_GFPRB 0.98 1.00 0.98
## PP.BehavInt3_GFPRB 0.99 0.98 1.00
## PP.BehavInt4_GFPRB 0.99 0.98 0.99
## PP.BehavInt1_CBB 0.65 0.69 0.68
## PP.BehavInt2_CBB 0.60 0.65 0.63
## PP.BehavInt3_CBB 0.63 0.66 0.66
## PP.BehavInt4_CBB 0.62 0.67 0.66
## PP.BehavInt1_PBPB 1.00 0.98 0.99
## PP.BehavInt2_PBPB 0.98 1.00 0.98
## PP.BehavInt3_PBPB 0.99 0.98 1.00
## PP.BehavInt4_PBPB 0.99 0.98 0.99
## PP.BehavInt1_PBFB 0.94 0.95 0.95
## PP.BehavInt2_PBFB 0.91 0.94 0.92
## PP.BehavInt3_PBFB 0.93 0.94 0.94
## PP.BehavInt4_PBFB 0.93 0.94 0.95
## PP.BehavInt1_VB 0.92 0.91 0.92
## PP.BehavInt2_VB 0.91 0.91 0.91
## PP.BehavInt3_VB 0.92 0.89 0.92
## PP.BehavInt4_VB 0.92 0.91 0.92
## PP.Nat_1_GFFB -0.17 -0.17 -0.15
## PP.Nat_4R_GFFB -0.63 -0.69 -0.66
## PP.Nat_2R_GFFB -0.73 -0.77 -0.76
## PP.Nat_3R_GFFB -0.52 -0.57 -0.56
## PP.Nat_1_GFPRB -0.05 -0.14 -0.08
## PP.Nat_4R_GFPRB -0.31 -0.40 -0.37
## PP.Nat_2R_GFPRB -0.38 -0.46 -0.44
## PP.Nat_3R_GFPRB -0.50 -0.56 -0.54
## PP.Nat_1_CBB 0.45 0.51 0.49
## PP.Nat_4R_CBB 0.07 0.09 0.07
## PP.Nat_2R_CBB -0.23 -0.19 -0.22
## PP.Nat_3R_CBB -0.37 -0.32 -0.34
## PP.Nat_1_PBPB 0.92 0.93 0.94
## PP.Nat_4R_PBPB 0.40 0.37 0.36
## PP.Nat_2R_PBPB 0.27 0.25 0.24
## PP.Nat_3R_PBPB -0.31 -0.29 -0.33
## PP.Nat_1_PBFB 0.85 0.87 0.87
## PP.Nat_4R_PBFB -0.57 -0.56 -0.54
## PP.Nat_2R_PBFB -0.14 -0.12 -0.10
## PP.Nat_3R_PBFB 0.10 0.08 0.13
## PP.Nat_1_VB 0.85 0.84 0.86
## PP.Nat_4R_VB 0.23 0.17 0.18
## PP.Nat_2R_VB 0.01 -0.05 -0.06
## PP.Nat_3R_VB -0.22 -0.26 -0.29
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB 0.63 0.75 0.74
## PP.Risk_Score_GFPRB 0.54 0.72 0.73
## PP.Risk_Score_CBB -0.10 -0.07 -0.07
## PP.Risk_Score_PBFB -0.61 -0.49 -0.45
## PP.Risk_Score_PBPB -0.49 -0.29 -0.24
## PP.Risk_Score_VB -0.07 0.18 0.23
## PP.Ben_Score_GFFB 0.05 0.17 0.23
## PP.Ben_Score_GFPRB -0.10 -0.12 -0.09
## PP.Ben_Score_CBB 0.60 0.76 0.79
## PP.Ben_Score_PBFB 0.94 0.99 0.98
## PP.Ben_Score_PBPB 0.99 0.94 0.91
## PP.Ben_Score_VB 0.88 0.78 0.75
## PP.BehavInt1_GFFB -0.13 -0.04 0.01
## PP.BehavInt2_GFFB -0.15 -0.08 -0.04
## PP.BehavInt3_GFFB -0.10 -0.01 0.05
## PP.BehavInt4_GFFB -0.15 -0.07 -0.01
## PP.BehavInt1_GFPRB 0.99 0.94 0.91
## PP.BehavInt2_GFPRB 0.98 0.95 0.94
## PP.BehavInt3_GFPRB 0.99 0.95 0.92
## PP.BehavInt4_GFPRB 1.00 0.94 0.91
## PP.BehavInt1_CBB 0.66 0.79 0.82
## PP.BehavInt2_CBB 0.61 0.76 0.79
## PP.BehavInt3_CBB 0.63 0.78 0.81
## PP.BehavInt4_CBB 0.63 0.77 0.80
## PP.BehavInt1_PBPB 0.99 0.94 0.91
## PP.BehavInt2_PBPB 0.98 0.95 0.94
## PP.BehavInt3_PBPB 0.99 0.95 0.92
## PP.BehavInt4_PBPB 1.00 0.94 0.91
## PP.BehavInt1_PBFB 0.94 1.00 0.99
## PP.BehavInt2_PBFB 0.91 0.99 1.00
## PP.BehavInt3_PBFB 0.94 0.99 0.98
## PP.BehavInt4_PBFB 0.94 0.99 0.98
## PP.BehavInt1_VB 0.93 0.84 0.81
## PP.BehavInt2_VB 0.92 0.86 0.84
## PP.BehavInt3_VB 0.93 0.83 0.80
## PP.BehavInt4_VB 0.93 0.84 0.81
## PP.Nat_1_GFFB -0.15 -0.06 0.00
## PP.Nat_4R_GFFB -0.66 -0.79 -0.79
## PP.Nat_2R_GFFB -0.76 -0.83 -0.80
## PP.Nat_3R_GFFB -0.56 -0.71 -0.74
## PP.Nat_1_GFPRB -0.06 -0.23 -0.23
## PP.Nat_4R_GFPRB -0.35 -0.56 -0.60
## PP.Nat_2R_GFPRB -0.41 -0.62 -0.66
## PP.Nat_3R_GFPRB -0.52 -0.70 -0.74
## PP.Nat_1_CBB 0.47 0.64 0.69
## PP.Nat_4R_CBB 0.02 0.08 0.11
## PP.Nat_2R_CBB -0.27 -0.13 -0.07
## PP.Nat_3R_CBB -0.39 -0.26 -0.20
## PP.Nat_1_PBPB 0.93 0.93 0.93
## PP.Nat_4R_PBPB 0.35 0.21 0.19
## PP.Nat_2R_PBPB 0.22 0.12 0.09
## PP.Nat_3R_PBPB -0.34 -0.34 -0.32
## PP.Nat_1_PBFB 0.85 0.95 0.96
## PP.Nat_4R_PBFB -0.51 -0.49 -0.48
## PP.Nat_2R_PBFB -0.08 -0.09 -0.08
## PP.Nat_3R_PBFB 0.16 0.10 0.09
## PP.Nat_1_VB 0.87 0.77 0.74
## PP.Nat_4R_VB 0.20 -0.02 -0.06
## PP.Nat_2R_VB -0.04 -0.21 -0.26
## PP.Nat_3R_VB -0.26 -0.37 -0.42
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB 0.72 0.72 0.52
## PP.Risk_Score_GFPRB 0.69 0.68 0.45
## PP.Risk_Score_CBB -0.07 -0.09 0.05
## PP.Risk_Score_PBFB -0.48 -0.49 -0.60
## PP.Risk_Score_PBPB -0.29 -0.30 -0.55
## PP.Risk_Score_VB 0.18 0.18 -0.19
## PP.Ben_Score_GFFB 0.23 0.23 0.00
## PP.Ben_Score_GFPRB -0.05 -0.06 -0.01
## PP.Ben_Score_CBB 0.77 0.78 0.41
## PP.Ben_Score_PBFB 0.99 0.99 0.84
## PP.Ben_Score_PBPB 0.94 0.94 0.93
## PP.Ben_Score_VB 0.79 0.78 0.98
## PP.BehavInt1_GFFB 0.01 0.01 -0.16
## PP.BehavInt2_GFFB -0.03 -0.03 -0.15
## PP.BehavInt3_GFFB 0.04 0.04 -0.14
## PP.BehavInt4_GFFB -0.01 -0.01 -0.17
## PP.BehavInt1_GFPRB 0.93 0.93 0.92
## PP.BehavInt2_GFPRB 0.94 0.94 0.91
## PP.BehavInt3_GFPRB 0.94 0.95 0.92
## PP.BehavInt4_GFPRB 0.94 0.94 0.93
## PP.BehavInt1_CBB 0.80 0.81 0.45
## PP.BehavInt2_CBB 0.76 0.77 0.40
## PP.BehavInt3_CBB 0.79 0.79 0.43
## PP.BehavInt4_CBB 0.78 0.79 0.43
## PP.BehavInt1_PBPB 0.93 0.93 0.92
## PP.BehavInt2_PBPB 0.94 0.94 0.91
## PP.BehavInt3_PBPB 0.94 0.95 0.92
## PP.BehavInt4_PBPB 0.94 0.94 0.93
## PP.BehavInt1_PBFB 0.99 0.99 0.84
## PP.BehavInt2_PBFB 0.98 0.98 0.81
## PP.BehavInt3_PBFB 1.00 1.00 0.85
## PP.BehavInt4_PBFB 1.00 1.00 0.84
## PP.BehavInt1_VB 0.85 0.84 1.00
## PP.BehavInt2_VB 0.86 0.85 0.97
## PP.BehavInt3_VB 0.84 0.84 0.99
## PP.BehavInt4_VB 0.85 0.84 0.99
## PP.Nat_1_GFFB -0.01 0.00 -0.18
## PP.Nat_4R_GFFB -0.78 -0.77 -0.54
## PP.Nat_2R_GFFB -0.81 -0.80 -0.63
## PP.Nat_3R_GFFB -0.72 -0.72 -0.42
## PP.Nat_1_GFPRB -0.17 -0.16 0.03
## PP.Nat_4R_GFPRB -0.54 -0.54 -0.26
## PP.Nat_2R_GFPRB -0.61 -0.61 -0.35
## PP.Nat_3R_GFPRB -0.70 -0.71 -0.42
## PP.Nat_1_CBB 0.65 0.66 0.27
## PP.Nat_4R_CBB 0.07 0.09 -0.15
## PP.Nat_2R_CBB -0.14 -0.12 -0.44
## PP.Nat_3R_CBB -0.28 -0.25 -0.51
## PP.Nat_1_PBPB 0.93 0.93 0.86
## PP.Nat_4R_PBPB 0.17 0.19 0.40
## PP.Nat_2R_PBPB 0.08 0.10 0.21
## PP.Nat_3R_PBPB -0.38 -0.37 -0.30
## PP.Nat_1_PBFB 0.95 0.96 0.73
## PP.Nat_4R_PBFB -0.47 -0.48 -0.49
## PP.Nat_2R_PBFB -0.06 -0.08 -0.04
## PP.Nat_3R_PBFB 0.14 0.13 0.18
## PP.Nat_1_VB 0.78 0.78 0.93
## PP.Nat_4R_VB -0.02 -0.02 0.33
## PP.Nat_2R_VB -0.22 -0.22 0.10
## PP.Nat_3R_VB -0.40 -0.40 -0.13
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB 0.58 0.49 0.52
## PP.Risk_Score_GFPRB 0.55 0.41 0.45
## PP.Risk_Score_CBB 0.09 0.05 0.06
## PP.Risk_Score_PBFB -0.56 -0.63 -0.59
## PP.Risk_Score_PBPB -0.49 -0.58 -0.55
## PP.Risk_Score_VB -0.11 -0.23 -0.19
## PP.Ben_Score_GFFB 0.01 0.00 0.00
## PP.Ben_Score_GFPRB -0.07 0.00 -0.01
## PP.Ben_Score_CBB 0.43 0.40 0.41
## PP.Ben_Score_PBFB 0.85 0.84 0.85
## PP.Ben_Score_PBPB 0.92 0.93 0.93
## PP.Ben_Score_VB 0.93 0.98 0.98
## PP.BehavInt1_GFFB -0.17 -0.15 -0.16
## PP.BehavInt2_GFFB -0.19 -0.14 -0.16
## PP.BehavInt3_GFFB -0.14 -0.13 -0.14
## PP.BehavInt4_GFFB -0.19 -0.17 -0.18
## PP.BehavInt1_GFPRB 0.91 0.92 0.92
## PP.BehavInt2_GFPRB 0.91 0.89 0.91
## PP.BehavInt3_GFPRB 0.91 0.92 0.92
## PP.BehavInt4_GFPRB 0.92 0.93 0.93
## PP.BehavInt1_CBB 0.47 0.43 0.45
## PP.BehavInt2_CBB 0.43 0.38 0.40
## PP.BehavInt3_CBB 0.45 0.41 0.43
## PP.BehavInt4_CBB 0.44 0.41 0.43
## PP.BehavInt1_PBPB 0.91 0.92 0.92
## PP.BehavInt2_PBPB 0.91 0.89 0.91
## PP.BehavInt3_PBPB 0.91 0.92 0.92
## PP.BehavInt4_PBPB 0.92 0.93 0.93
## PP.BehavInt1_PBFB 0.86 0.83 0.84
## PP.BehavInt2_PBFB 0.84 0.80 0.81
## PP.BehavInt3_PBFB 0.86 0.84 0.85
## PP.BehavInt4_PBFB 0.85 0.84 0.84
## PP.BehavInt1_VB 0.97 0.99 0.99
## PP.BehavInt2_VB 1.00 0.95 0.97
## PP.BehavInt3_VB 0.95 1.00 0.99
## PP.BehavInt4_VB 0.97 0.99 1.00
## PP.Nat_1_GFFB -0.20 -0.18 -0.18
## PP.Nat_4R_GFFB -0.61 -0.53 -0.56
## PP.Nat_2R_GFFB -0.66 -0.63 -0.64
## PP.Nat_3R_GFFB -0.47 -0.40 -0.42
## PP.Nat_1_GFPRB -0.08 0.07 0.03
## PP.Nat_4R_GFPRB -0.37 -0.22 -0.27
## PP.Nat_2R_GFPRB -0.47 -0.32 -0.36
## PP.Nat_3R_GFPRB -0.51 -0.38 -0.42
## PP.Nat_1_CBB 0.32 0.25 0.27
## PP.Nat_4R_CBB -0.13 -0.17 -0.17
## PP.Nat_2R_CBB -0.38 -0.47 -0.45
## PP.Nat_3R_CBB -0.46 -0.55 -0.52
## PP.Nat_1_PBPB 0.88 0.85 0.86
## PP.Nat_4R_PBPB 0.43 0.40 0.39
## PP.Nat_2R_PBPB 0.26 0.22 0.22
## PP.Nat_3R_PBPB -0.18 -0.29 -0.28
## PP.Nat_1_PBFB 0.76 0.72 0.72
## PP.Nat_4R_PBFB -0.48 -0.48 -0.47
## PP.Nat_2R_PBFB -0.09 -0.05 -0.03
## PP.Nat_3R_PBFB 0.11 0.17 0.17
## PP.Nat_1_VB 0.91 0.93 0.93
## PP.Nat_4R_VB 0.29 0.35 0.32
## PP.Nat_2R_VB 0.05 0.13 0.09
## PP.Nat_3R_VB -0.15 -0.10 -0.13
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB -0.16 -0.94 -0.90 -0.77
## PP.Risk_Score_GFPRB -0.03 -0.90 -0.80 -0.80
## PP.Risk_Score_CBB 0.27 -0.20 -0.13 -0.26
## PP.Risk_Score_PBFB 0.45 0.03 0.14 -0.14
## PP.Risk_Score_PBPB 0.51 -0.15 -0.01 -0.32
## PP.Risk_Score_VB 0.52 -0.54 -0.39 -0.69
## PP.Ben_Score_GFFB 0.89 -0.20 -0.15 -0.56
## PP.Ben_Score_GFPRB 0.77 0.07 0.05 -0.24
## PP.Ben_Score_CBB 0.41 -0.73 -0.72 -0.84
## PP.Ben_Score_PBFB 0.02 -0.75 -0.80 -0.71
## PP.Ben_Score_PBPB -0.12 -0.66 -0.76 -0.58
## PP.Ben_Score_VB -0.12 -0.49 -0.59 -0.38
## PP.BehavInt1_GFFB 0.92 0.02 0.06 -0.38
## PP.BehavInt2_GFFB 0.90 0.10 0.12 -0.29
## PP.BehavInt3_GFFB 0.92 -0.03 0.01 -0.41
## PP.BehavInt4_GFFB 0.92 0.04 0.08 -0.35
## PP.BehavInt1_GFPRB -0.17 -0.63 -0.73 -0.52
## PP.BehavInt2_GFPRB -0.17 -0.69 -0.77 -0.57
## PP.BehavInt3_GFPRB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt4_GFPRB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt1_CBB 0.34 -0.71 -0.71 -0.79
## PP.BehavInt2_CBB 0.40 -0.70 -0.69 -0.81
## PP.BehavInt3_CBB 0.36 -0.72 -0.71 -0.81
## PP.BehavInt4_CBB 0.36 -0.71 -0.71 -0.81
## PP.BehavInt1_PBPB -0.17 -0.63 -0.73 -0.52
## PP.BehavInt2_PBPB -0.17 -0.69 -0.77 -0.57
## PP.BehavInt3_PBPB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt4_PBPB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt1_PBFB -0.06 -0.79 -0.83 -0.71
## PP.BehavInt2_PBFB 0.00 -0.79 -0.80 -0.74
## PP.BehavInt3_PBFB -0.01 -0.78 -0.81 -0.72
## PP.BehavInt4_PBFB 0.00 -0.77 -0.80 -0.72
## PP.BehavInt1_VB -0.18 -0.54 -0.63 -0.42
## PP.BehavInt2_VB -0.20 -0.61 -0.66 -0.47
## PP.BehavInt3_VB -0.18 -0.53 -0.63 -0.40
## PP.BehavInt4_VB -0.18 -0.56 -0.64 -0.42
## PP.Nat_1_GFFB 1.00 0.05 0.07 -0.36
## PP.Nat_4R_GFFB 0.05 1.00 0.93 0.85
## PP.Nat_2R_GFFB 0.07 0.93 1.00 0.80
## PP.Nat_3R_GFFB -0.36 0.85 0.80 1.00
## PP.Nat_1_GFPRB 0.45 0.41 0.28 0.19
## PP.Nat_4R_GFPRB -0.18 0.82 0.66 0.79
## PP.Nat_2R_GFPRB -0.13 0.84 0.69 0.79
## PP.Nat_3R_GFPRB -0.24 0.83 0.71 0.88
## PP.Nat_1_CBB 0.45 -0.72 -0.67 -0.85
## PP.Nat_4R_CBB -0.24 0.07 0.08 0.10
## PP.Nat_2R_CBB -0.08 0.11 0.23 0.09
## PP.Nat_3R_CBB -0.10 0.16 0.30 0.14
## PP.Nat_1_PBPB -0.04 -0.72 -0.77 -0.68
## PP.Nat_4R_PBPB -0.65 0.06 0.03 0.27
## PP.Nat_2R_PBPB -0.74 0.03 0.03 0.31
## PP.Nat_3R_PBPB -0.54 0.19 0.32 0.40
## PP.Nat_1_PBFB 0.07 -0.80 -0.81 -0.78
## PP.Nat_4R_PBFB 0.53 0.19 0.23 -0.03
## PP.Nat_2R_PBFB 0.58 -0.05 -0.12 -0.28
## PP.Nat_3R_PBFB 0.54 -0.06 -0.17 -0.31
## PP.Nat_1_VB -0.15 -0.51 -0.57 -0.39
## PP.Nat_4R_VB -0.63 0.34 0.24 0.54
## PP.Nat_2R_VB -0.66 0.42 0.35 0.65
## PP.Nat_3R_VB -0.64 0.41 0.40 0.65
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB -0.49 -0.81 -0.82
## PP.Risk_Score_GFPRB -0.59 -0.93 -0.92
## PP.Risk_Score_CBB 0.02 -0.35 -0.33
## PP.Risk_Score_PBFB -0.12 -0.32 -0.20
## PP.Risk_Score_PBPB -0.27 -0.51 -0.39
## PP.Risk_Score_VB -0.36 -0.83 -0.74
## PP.Ben_Score_GFFB 0.23 -0.41 -0.37
## PP.Ben_Score_GFPRB 0.63 0.00 0.01
## PP.Ben_Score_CBB -0.20 -0.72 -0.70
## PP.Ben_Score_PBFB -0.14 -0.53 -0.59
## PP.Ben_Score_PBPB -0.06 -0.37 -0.43
## PP.Ben_Score_VB 0.11 -0.21 -0.31
## PP.BehavInt1_GFFB 0.36 -0.22 -0.16
## PP.BehavInt2_GFFB 0.45 -0.11 -0.06
## PP.BehavInt3_GFFB 0.33 -0.26 -0.20
## PP.BehavInt4_GFFB 0.37 -0.20 -0.15
## PP.BehavInt1_GFPRB -0.05 -0.31 -0.38
## PP.BehavInt2_GFPRB -0.14 -0.40 -0.46
## PP.BehavInt3_GFPRB -0.08 -0.37 -0.44
## PP.BehavInt4_GFPRB -0.06 -0.35 -0.41
## PP.BehavInt1_CBB -0.20 -0.66 -0.64
## PP.BehavInt2_CBB -0.21 -0.70 -0.67
## PP.BehavInt3_CBB -0.22 -0.69 -0.66
## PP.BehavInt4_CBB -0.21 -0.68 -0.65
## PP.BehavInt1_PBPB -0.05 -0.31 -0.38
## PP.BehavInt2_PBPB -0.14 -0.40 -0.46
## PP.BehavInt3_PBPB -0.08 -0.37 -0.44
## PP.BehavInt4_PBPB -0.06 -0.35 -0.41
## PP.BehavInt1_PBFB -0.23 -0.56 -0.62
## PP.BehavInt2_PBFB -0.23 -0.60 -0.66
## PP.BehavInt3_PBFB -0.17 -0.54 -0.61
## PP.BehavInt4_PBFB -0.16 -0.54 -0.61
## PP.BehavInt1_VB 0.03 -0.26 -0.35
## PP.BehavInt2_VB -0.08 -0.37 -0.47
## PP.BehavInt3_VB 0.07 -0.22 -0.32
## PP.BehavInt4_VB 0.03 -0.27 -0.36
## PP.Nat_1_GFFB 0.45 -0.18 -0.13
## PP.Nat_4R_GFFB 0.41 0.82 0.84
## PP.Nat_2R_GFFB 0.28 0.66 0.69
## PP.Nat_3R_GFFB 0.19 0.79 0.79
## PP.Nat_1_GFPRB 1.00 0.57 0.53
## PP.Nat_4R_GFPRB 0.57 1.00 0.95
## PP.Nat_2R_GFPRB 0.53 0.95 1.00
## PP.Nat_3R_GFPRB 0.38 0.89 0.90
## PP.Nat_1_CBB -0.28 -0.77 -0.74
## PP.Nat_4R_CBB -0.29 0.07 0.03
## PP.Nat_2R_CBB -0.39 -0.07 -0.06
## PP.Nat_3R_CBB -0.39 -0.05 -0.04
## PP.Nat_1_PBPB -0.19 -0.52 -0.60
## PP.Nat_4R_PBPB -0.08 0.31 0.18
## PP.Nat_2R_PBPB -0.19 0.26 0.15
## PP.Nat_3R_PBPB -0.45 0.12 0.06
## PP.Nat_1_PBFB -0.26 -0.65 -0.70
## PP.Nat_4R_PBFB 0.36 0.01 0.11
## PP.Nat_2R_PBFB 0.37 -0.16 -0.06
## PP.Nat_3R_PBFB 0.51 -0.05 0.00
## PP.Nat_1_VB 0.04 -0.25 -0.34
## PP.Nat_4R_VB 0.12 0.60 0.49
## PP.Nat_2R_VB 0.14 0.70 0.61
## PP.Nat_3R_VB 0.02 0.59 0.54
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB -0.79 0.64 -0.02 -0.10
## PP.Risk_Score_GFPRB -0.87 0.71 -0.07 -0.03
## PP.Risk_Score_CBB -0.19 0.01 -0.82 -0.60
## PP.Risk_Score_PBFB -0.09 0.15 -0.36 -0.01
## PP.Risk_Score_PBPB -0.29 0.38 -0.21 0.14
## PP.Risk_Score_VB -0.71 0.73 -0.08 0.18
## PP.Ben_Score_GFFB -0.46 0.64 -0.31 -0.13
## PP.Ben_Score_GFPRB -0.09 0.21 -0.41 -0.34
## PP.Ben_Score_CBB -0.84 0.94 0.15 0.10
## PP.Ben_Score_PBFB -0.69 0.66 0.08 -0.13
## PP.Ben_Score_PBPB -0.55 0.49 0.02 -0.27
## PP.Ben_Score_VB -0.36 0.22 -0.27 -0.55
## PP.BehavInt1_GFFB -0.26 0.46 -0.35 -0.16
## PP.BehavInt2_GFFB -0.18 0.37 -0.37 -0.21
## PP.BehavInt3_GFFB -0.30 0.50 -0.35 -0.15
## PP.BehavInt4_GFFB -0.23 0.44 -0.35 -0.15
## PP.BehavInt1_GFPRB -0.50 0.45 0.07 -0.23
## PP.BehavInt2_GFPRB -0.56 0.51 0.09 -0.19
## PP.BehavInt3_GFPRB -0.54 0.49 0.07 -0.22
## PP.BehavInt4_GFPRB -0.52 0.47 0.02 -0.27
## PP.BehavInt1_CBB -0.79 0.92 0.23 0.13
## PP.BehavInt2_CBB -0.81 0.95 0.22 0.16
## PP.BehavInt3_CBB -0.81 0.93 0.22 0.14
## PP.BehavInt4_CBB -0.80 0.93 0.23 0.14
## PP.BehavInt1_PBPB -0.50 0.45 0.07 -0.23
## PP.BehavInt2_PBPB -0.56 0.51 0.09 -0.19
## PP.BehavInt3_PBPB -0.54 0.49 0.07 -0.22
## PP.BehavInt4_PBPB -0.52 0.47 0.02 -0.27
## PP.BehavInt1_PBFB -0.70 0.64 0.08 -0.13
## PP.BehavInt2_PBFB -0.74 0.69 0.11 -0.07
## PP.BehavInt3_PBFB -0.70 0.65 0.07 -0.14
## PP.BehavInt4_PBFB -0.71 0.66 0.09 -0.12
## PP.BehavInt1_VB -0.42 0.27 -0.15 -0.44
## PP.BehavInt2_VB -0.51 0.32 -0.13 -0.38
## PP.BehavInt3_VB -0.38 0.25 -0.17 -0.47
## PP.BehavInt4_VB -0.42 0.27 -0.17 -0.45
## PP.Nat_1_GFFB -0.24 0.45 -0.24 -0.08
## PP.Nat_4R_GFFB 0.83 -0.72 0.07 0.11
## PP.Nat_2R_GFFB 0.71 -0.67 0.08 0.23
## PP.Nat_3R_GFFB 0.88 -0.85 0.10 0.09
## PP.Nat_1_GFPRB 0.38 -0.28 -0.29 -0.39
## PP.Nat_4R_GFPRB 0.89 -0.77 0.07 -0.07
## PP.Nat_2R_GFPRB 0.90 -0.74 0.03 -0.06
## PP.Nat_3R_GFPRB 1.00 -0.84 -0.03 -0.06
## PP.Nat_1_CBB -0.84 1.00 0.18 0.19
## PP.Nat_4R_CBB -0.03 0.18 1.00 0.85
## PP.Nat_2R_CBB -0.06 0.19 0.85 1.00
## PP.Nat_3R_CBB 0.04 0.07 0.73 0.91
## PP.Nat_1_PBPB -0.68 0.62 0.07 -0.15
## PP.Nat_4R_PBPB 0.14 -0.29 0.36 0.10
## PP.Nat_2R_PBPB 0.17 -0.33 0.47 0.33
## PP.Nat_3R_PBPB 0.25 -0.37 0.24 0.38
## PP.Nat_1_PBFB -0.78 0.78 0.16 0.00
## PP.Nat_4R_PBFB 0.12 -0.12 -0.56 -0.33
## PP.Nat_2R_PBFB -0.12 0.14 -0.65 -0.58
## PP.Nat_3R_PBFB -0.12 0.14 -0.49 -0.56
## PP.Nat_1_VB -0.41 0.28 -0.17 -0.42
## PP.Nat_4R_VB 0.50 -0.61 0.10 -0.15
## PP.Nat_2R_VB 0.63 -0.74 0.07 -0.10
## PP.Nat_3R_VB 0.63 -0.74 0.01 -0.06
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB -0.16 0.67 -0.06 -0.02
## PP.Risk_Score_GFPRB -0.08 0.66 -0.12 -0.10
## PP.Risk_Score_CBB -0.44 -0.06 -0.51 -0.54
## PP.Risk_Score_PBFB 0.12 -0.47 -0.76 -0.67
## PP.Risk_Score_PBPB 0.24 -0.33 -0.79 -0.68
## PP.Risk_Score_VB 0.18 0.12 -0.65 -0.58
## PP.Ben_Score_GFFB -0.16 0.18 -0.60 -0.73
## PP.Ben_Score_GFPRB -0.31 -0.06 -0.44 -0.60
## PP.Ben_Score_CBB -0.06 0.70 -0.23 -0.28
## PP.Ben_Score_PBFB -0.27 0.94 0.19 0.09
## PP.Ben_Score_PBPB -0.40 0.94 0.34 0.20
## PP.Ben_Score_VB -0.62 0.82 0.34 0.12
## PP.BehavInt1_GFFB -0.16 -0.03 -0.64 -0.78
## PP.BehavInt2_GFFB -0.23 -0.08 -0.60 -0.77
## PP.BehavInt3_GFFB -0.16 0.01 -0.63 -0.77
## PP.BehavInt4_GFFB -0.15 -0.05 -0.63 -0.77
## PP.BehavInt1_GFPRB -0.37 0.92 0.40 0.27
## PP.BehavInt2_GFPRB -0.32 0.93 0.37 0.25
## PP.BehavInt3_GFPRB -0.34 0.94 0.36 0.24
## PP.BehavInt4_GFPRB -0.39 0.93 0.35 0.22
## PP.BehavInt1_CBB -0.04 0.72 -0.15 -0.21
## PP.BehavInt2_CBB -0.01 0.70 -0.19 -0.25
## PP.BehavInt3_CBB -0.02 0.71 -0.17 -0.22
## PP.BehavInt4_CBB -0.02 0.72 -0.16 -0.22
## PP.BehavInt1_PBPB -0.37 0.92 0.40 0.27
## PP.BehavInt2_PBPB -0.32 0.93 0.37 0.25
## PP.BehavInt3_PBPB -0.34 0.94 0.36 0.24
## PP.BehavInt4_PBPB -0.39 0.93 0.35 0.22
## PP.BehavInt1_PBFB -0.26 0.93 0.21 0.12
## PP.BehavInt2_PBFB -0.20 0.93 0.19 0.09
## PP.BehavInt3_PBFB -0.28 0.93 0.17 0.08
## PP.BehavInt4_PBFB -0.25 0.93 0.19 0.10
## PP.BehavInt1_VB -0.51 0.86 0.40 0.21
## PP.BehavInt2_VB -0.46 0.88 0.43 0.26
## PP.BehavInt3_VB -0.55 0.85 0.40 0.22
## PP.BehavInt4_VB -0.52 0.86 0.39 0.22
## PP.Nat_1_GFFB -0.10 -0.04 -0.65 -0.74
## PP.Nat_4R_GFFB 0.16 -0.72 0.06 0.03
## PP.Nat_2R_GFFB 0.30 -0.77 0.03 0.03
## PP.Nat_3R_GFFB 0.14 -0.68 0.27 0.31
## PP.Nat_1_GFPRB -0.39 -0.19 -0.08 -0.19
## PP.Nat_4R_GFPRB -0.05 -0.52 0.31 0.26
## PP.Nat_2R_GFPRB -0.04 -0.60 0.18 0.15
## PP.Nat_3R_GFPRB 0.04 -0.68 0.14 0.17
## PP.Nat_1_CBB 0.07 0.62 -0.29 -0.33
## PP.Nat_4R_CBB 0.73 0.07 0.36 0.47
## PP.Nat_2R_CBB 0.91 -0.15 0.10 0.33
## PP.Nat_3R_CBB 1.00 -0.27 0.01 0.28
## PP.Nat_1_PBPB -0.27 1.00 0.33 0.19
## PP.Nat_4R_PBPB 0.01 0.33 1.00 0.85
## PP.Nat_2R_PBPB 0.28 0.19 0.85 1.00
## PP.Nat_3R_PBPB 0.44 -0.25 0.49 0.63
## PP.Nat_1_PBFB -0.12 0.93 0.13 0.06
## PP.Nat_4R_PBFB -0.22 -0.54 -0.71 -0.67
## PP.Nat_2R_PBFB -0.54 -0.09 -0.63 -0.78
## PP.Nat_3R_PBFB -0.54 0.09 -0.45 -0.62
## PP.Nat_1_VB -0.50 0.84 0.39 0.20
## PP.Nat_4R_VB -0.16 0.08 0.79 0.69
## PP.Nat_2R_VB -0.09 -0.18 0.63 0.63
## PP.Nat_3R_VB -0.01 -0.39 0.47 0.51
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB -0.21 0.73 -0.19 0.07
## PP.Risk_Score_GFPRB -0.14 0.75 -0.16 0.10
## PP.Risk_Score_CBB -0.18 -0.10 0.57 0.59
## PP.Risk_Score_PBFB -0.04 -0.38 0.73 0.51
## PP.Risk_Score_PBPB -0.06 -0.16 0.60 0.41
## PP.Risk_Score_VB -0.22 0.33 0.36 0.39
## PP.Ben_Score_GFFB -0.52 0.32 0.41 0.52
## PP.Ben_Score_GFPRB -0.45 -0.04 0.50 0.52
## PP.Ben_Score_CBB -0.48 0.85 -0.16 0.15
## PP.Ben_Score_PBFB -0.39 0.96 -0.48 -0.06
## PP.Ben_Score_PBPB -0.36 0.87 -0.50 -0.05
## PP.Ben_Score_VB -0.35 0.67 -0.40 0.06
## PP.BehavInt1_GFFB -0.51 0.09 0.53 0.57
## PP.BehavInt2_GFFB -0.54 0.03 0.54 0.59
## PP.BehavInt3_GFFB -0.50 0.12 0.52 0.56
## PP.BehavInt4_GFFB -0.48 0.07 0.52 0.55
## PP.BehavInt1_GFPRB -0.31 0.85 -0.57 -0.14
## PP.BehavInt2_GFPRB -0.29 0.87 -0.56 -0.12
## PP.BehavInt3_GFPRB -0.33 0.87 -0.54 -0.10
## PP.BehavInt4_GFPRB -0.34 0.85 -0.51 -0.08
## PP.BehavInt1_CBB -0.48 0.87 -0.24 0.07
## PP.BehavInt2_CBB -0.46 0.85 -0.21 0.10
## PP.BehavInt3_CBB -0.47 0.86 -0.22 0.09
## PP.BehavInt4_CBB -0.47 0.85 -0.23 0.08
## PP.BehavInt1_PBPB -0.31 0.85 -0.57 -0.14
## PP.BehavInt2_PBPB -0.29 0.87 -0.56 -0.12
## PP.BehavInt3_PBPB -0.33 0.87 -0.54 -0.10
## PP.BehavInt4_PBPB -0.34 0.85 -0.51 -0.08
## PP.BehavInt1_PBFB -0.34 0.95 -0.49 -0.09
## PP.BehavInt2_PBFB -0.32 0.96 -0.48 -0.08
## PP.BehavInt3_PBFB -0.38 0.95 -0.47 -0.06
## PP.BehavInt4_PBFB -0.37 0.96 -0.48 -0.08
## PP.BehavInt1_VB -0.30 0.73 -0.49 -0.04
## PP.BehavInt2_VB -0.18 0.76 -0.48 -0.09
## PP.BehavInt3_VB -0.29 0.72 -0.48 -0.05
## PP.BehavInt4_VB -0.28 0.72 -0.47 -0.03
## PP.Nat_1_GFFB -0.54 0.07 0.53 0.58
## PP.Nat_4R_GFFB 0.19 -0.80 0.19 -0.05
## PP.Nat_2R_GFFB 0.32 -0.81 0.23 -0.12
## PP.Nat_3R_GFFB 0.40 -0.78 -0.03 -0.28
## PP.Nat_1_GFPRB -0.45 -0.26 0.36 0.37
## PP.Nat_4R_GFPRB 0.12 -0.65 0.01 -0.16
## PP.Nat_2R_GFPRB 0.06 -0.70 0.11 -0.06
## PP.Nat_3R_GFPRB 0.25 -0.78 0.12 -0.12
## PP.Nat_1_CBB -0.37 0.78 -0.12 0.14
## PP.Nat_4R_CBB 0.24 0.16 -0.56 -0.65
## PP.Nat_2R_CBB 0.38 0.00 -0.33 -0.58
## PP.Nat_3R_CBB 0.44 -0.12 -0.22 -0.54
## PP.Nat_1_PBPB -0.25 0.93 -0.54 -0.09
## PP.Nat_4R_PBPB 0.49 0.13 -0.71 -0.63
## PP.Nat_2R_PBPB 0.63 0.06 -0.67 -0.78
## PP.Nat_3R_PBPB 1.00 -0.31 -0.33 -0.66
## PP.Nat_1_PBFB -0.31 1.00 -0.49 -0.10
## PP.Nat_4R_PBFB -0.33 -0.49 1.00 0.78
## PP.Nat_2R_PBFB -0.66 -0.10 0.78 1.00
## PP.Nat_3R_PBFB -0.80 0.06 0.62 0.84
## PP.Nat_1_VB -0.26 0.72 -0.49 -0.05
## PP.Nat_4R_VB 0.40 -0.14 -0.56 -0.54
## PP.Nat_2R_VB 0.43 -0.33 -0.40 -0.52
## PP.Nat_3R_VB 0.62 -0.49 -0.27 -0.49
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB 0.08 0.46 -0.32 -0.40
## PP.Risk_Score_GFPRB 0.06 0.41 -0.43 -0.53
## PP.Risk_Score_CBB 0.40 0.07 -0.32 -0.30
## PP.Risk_Score_PBFB 0.20 -0.56 -0.68 -0.56
## PP.Risk_Score_PBPB 0.12 -0.52 -0.81 -0.70
## PP.Risk_Score_VB 0.18 -0.19 -0.89 -0.88
## PP.Ben_Score_GFFB 0.48 0.04 -0.63 -0.71
## PP.Ben_Score_GFPRB 0.51 0.02 -0.35 -0.39
## PP.Ben_Score_CBB 0.21 0.38 -0.54 -0.67
## PP.Ben_Score_PBFB 0.15 0.78 -0.03 -0.23
## PP.Ben_Score_PBPB 0.18 0.88 0.17 -0.06
## PP.Ben_Score_VB 0.26 0.93 0.33 0.11
## PP.BehavInt1_GFFB 0.51 -0.10 -0.60 -0.63
## PP.BehavInt2_GFFB 0.54 -0.10 -0.54 -0.54
## PP.BehavInt3_GFFB 0.49 -0.08 -0.62 -0.66
## PP.BehavInt4_GFFB 0.49 -0.12 -0.59 -0.62
## PP.BehavInt1_GFPRB 0.10 0.85 0.23 0.01
## PP.BehavInt2_GFPRB 0.08 0.84 0.17 -0.05
## PP.BehavInt3_GFPRB 0.13 0.86 0.18 -0.06
## PP.BehavInt4_GFPRB 0.16 0.87 0.20 -0.04
## PP.BehavInt1_CBB 0.16 0.42 -0.46 -0.59
## PP.BehavInt2_CBB 0.16 0.38 -0.51 -0.65
## PP.BehavInt3_CBB 0.16 0.39 -0.50 -0.63
## PP.BehavInt4_CBB 0.16 0.39 -0.48 -0.63
## PP.BehavInt1_PBPB 0.10 0.85 0.23 0.01
## PP.BehavInt2_PBPB 0.08 0.84 0.17 -0.05
## PP.BehavInt3_PBPB 0.13 0.86 0.18 -0.06
## PP.BehavInt4_PBPB 0.16 0.87 0.20 -0.04
## PP.BehavInt1_PBFB 0.10 0.77 -0.02 -0.21
## PP.BehavInt2_PBFB 0.09 0.74 -0.06 -0.26
## PP.BehavInt3_PBFB 0.14 0.78 -0.02 -0.22
## PP.BehavInt4_PBFB 0.13 0.78 -0.02 -0.22
## PP.BehavInt1_VB 0.18 0.93 0.33 0.10
## PP.BehavInt2_VB 0.11 0.91 0.29 0.05
## PP.BehavInt3_VB 0.17 0.93 0.35 0.13
## PP.BehavInt4_VB 0.17 0.93 0.32 0.09
## PP.Nat_1_GFFB 0.54 -0.15 -0.63 -0.66
## PP.Nat_4R_GFFB -0.06 -0.51 0.34 0.42
## PP.Nat_2R_GFFB -0.17 -0.57 0.24 0.35
## PP.Nat_3R_GFFB -0.31 -0.39 0.54 0.65
## PP.Nat_1_GFPRB 0.51 0.04 0.12 0.14
## PP.Nat_4R_GFPRB -0.05 -0.25 0.60 0.70
## PP.Nat_2R_GFPRB 0.00 -0.34 0.49 0.61
## PP.Nat_3R_GFPRB -0.12 -0.41 0.50 0.63
## PP.Nat_1_CBB 0.14 0.28 -0.61 -0.74
## PP.Nat_4R_CBB -0.49 -0.17 0.10 0.07
## PP.Nat_2R_CBB -0.56 -0.42 -0.15 -0.10
## PP.Nat_3R_CBB -0.54 -0.50 -0.16 -0.09
## PP.Nat_1_PBPB 0.09 0.84 0.08 -0.18
## PP.Nat_4R_PBPB -0.45 0.39 0.79 0.63
## PP.Nat_2R_PBPB -0.62 0.20 0.69 0.63
## PP.Nat_3R_PBPB -0.80 -0.26 0.40 0.43
## PP.Nat_1_PBFB 0.06 0.72 -0.14 -0.33
## PP.Nat_4R_PBFB 0.62 -0.49 -0.56 -0.40
## PP.Nat_2R_PBFB 0.84 -0.05 -0.54 -0.52
## PP.Nat_3R_PBFB 1.00 0.13 -0.36 -0.40
## PP.Nat_1_VB 0.13 1.00 0.38 0.16
## PP.Nat_4R_VB -0.36 0.38 1.00 0.91
## PP.Nat_2R_VB -0.40 0.16 0.91 1.00
## PP.Nat_3R_VB -0.54 -0.08 0.73 0.85
## PP.Nat_3R_VB
## PP.Risk_Score_GFFB -0.39
## PP.Risk_Score_GFPRB -0.50
## PP.Risk_Score_CBB -0.16
## PP.Risk_Score_PBFB -0.27
## PP.Risk_Score_PBPB -0.41
## PP.Risk_Score_VB -0.67
## PP.Ben_Score_GFFB -0.71
## PP.Ben_Score_GFPRB -0.37
## PP.Ben_Score_CBB -0.74
## PP.Ben_Score_PBFB -0.42
## PP.Ben_Score_PBPB -0.30
## PP.Ben_Score_VB -0.13
## PP.BehavInt1_GFFB -0.61
## PP.BehavInt2_GFFB -0.55
## PP.BehavInt3_GFFB -0.63
## PP.BehavInt4_GFFB -0.59
## PP.BehavInt1_GFPRB -0.22
## PP.BehavInt2_GFPRB -0.26
## PP.BehavInt3_GFPRB -0.29
## PP.BehavInt4_GFPRB -0.26
## PP.BehavInt1_CBB -0.70
## PP.BehavInt2_CBB -0.73
## PP.BehavInt3_CBB -0.72
## PP.BehavInt4_CBB -0.72
## PP.BehavInt1_PBPB -0.22
## PP.BehavInt2_PBPB -0.26
## PP.BehavInt3_PBPB -0.29
## PP.BehavInt4_PBPB -0.26
## PP.BehavInt1_PBFB -0.37
## PP.BehavInt2_PBFB -0.42
## PP.BehavInt3_PBFB -0.40
## PP.BehavInt4_PBFB -0.40
## PP.BehavInt1_VB -0.13
## PP.BehavInt2_VB -0.15
## PP.BehavInt3_VB -0.10
## PP.BehavInt4_VB -0.13
## PP.Nat_1_GFFB -0.64
## PP.Nat_4R_GFFB 0.41
## PP.Nat_2R_GFFB 0.40
## PP.Nat_3R_GFFB 0.65
## PP.Nat_1_GFPRB 0.02
## PP.Nat_4R_GFPRB 0.59
## PP.Nat_2R_GFPRB 0.54
## PP.Nat_3R_GFPRB 0.63
## PP.Nat_1_CBB -0.74
## PP.Nat_4R_CBB 0.01
## PP.Nat_2R_CBB -0.06
## PP.Nat_3R_CBB -0.01
## PP.Nat_1_PBPB -0.39
## PP.Nat_4R_PBPB 0.47
## PP.Nat_2R_PBPB 0.51
## PP.Nat_3R_PBPB 0.62
## PP.Nat_1_PBFB -0.49
## PP.Nat_4R_PBFB -0.27
## PP.Nat_2R_PBFB -0.49
## PP.Nat_3R_PBFB -0.54
## PP.Nat_1_VB -0.08
## PP.Nat_4R_VB 0.73
## PP.Nat_2R_VB 0.85
## PP.Nat_3R_VB 1.00
##
## n= 60
##
##
## P
## PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB 0.0000 0.0850
## PP.Risk_Score_GFPRB 0.0000 0.0182
## PP.Risk_Score_CBB 0.0850 0.0182
## PP.Risk_Score_PBFB 0.9821 0.5112 0.0000
## PP.Risk_Score_PBPB 0.2574 0.0351 0.0001
## PP.Risk_Score_VB 0.0000 0.0000 0.0020
## PP.Ben_Score_GFFB 0.7029 0.0810 0.0056
## PP.Ben_Score_GFPRB 0.0669 0.1499 0.0138
## PP.Ben_Score_CBB 0.0000 0.0000 0.6545
## PP.Ben_Score_PBFB 0.0000 0.0000 0.5142
## PP.Ben_Score_PBPB 0.0000 0.0000 0.4770
## PP.Ben_Score_VB 0.0003 0.0021 0.3022
## PP.BehavInt1_GFFB 0.2286 0.9218 0.0035
## PP.BehavInt2_GFFB 0.0769 0.5498 0.0059
## PP.BehavInt3_GFFB 0.3799 0.6576 0.0026
## PP.BehavInt4_GFFB 0.1559 0.9468 0.0038
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.2457
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.3409
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.3261
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.4484
## PP.BehavInt1_CBB 0.0000 0.0000 0.2472
## PP.BehavInt2_CBB 0.0000 0.0000 0.3981
## PP.BehavInt3_CBB 0.0000 0.0000 0.3185
## PP.BehavInt4_CBB 0.0000 0.0000 0.2825
## PP.BehavInt1_PBPB 0.0000 0.0000 0.2457
## PP.BehavInt2_PBPB 0.0000 0.0000 0.3409
## PP.BehavInt3_PBPB 0.0000 0.0000 0.3261
## PP.BehavInt4_PBPB 0.0000 0.0000 0.4484
## PP.BehavInt1_PBFB 0.0000 0.0000 0.6023
## PP.BehavInt2_PBFB 0.0000 0.0000 0.6184
## PP.BehavInt3_PBFB 0.0000 0.0000 0.6188
## PP.BehavInt4_PBFB 0.0000 0.0000 0.5135
## PP.BehavInt1_VB 0.0000 0.0004 0.7257
## PP.BehavInt2_VB 0.0000 0.0000 0.5083
## PP.BehavInt3_VB 0.0000 0.0011 0.7201
## PP.BehavInt4_VB 0.0000 0.0003 0.6442
## PP.Nat_1_GFFB 0.2088 0.8478 0.0353
## PP.Nat_4R_GFFB 0.0000 0.0000 0.1352
## PP.Nat_2R_GFFB 0.0000 0.0000 0.3218
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0484
## PP.Nat_1_GFPRB 0.0000 0.0000 0.8521
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0057
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0108
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.1453
## PP.Nat_1_CBB 0.0000 0.0000 0.9157
## PP.Nat_4R_CBB 0.8636 0.6037 0.0000
## PP.Nat_2R_CBB 0.4251 0.8339 0.0000
## PP.Nat_3R_CBB 0.2271 0.5230 0.0004
## PP.Nat_1_PBPB 0.0000 0.0000 0.6335
## PP.Nat_4R_PBPB 0.6265 0.3733 0.0000
## PP.Nat_2R_PBPB 0.8776 0.4392 0.0000
## PP.Nat_3R_PBPB 0.1019 0.2990 0.1800
## PP.Nat_1_PBFB 0.0000 0.0000 0.4682
## PP.Nat_4R_PBFB 0.1378 0.2253 0.0000
## PP.Nat_2R_PBFB 0.5756 0.4337 0.0000
## PP.Nat_3R_PBFB 0.5479 0.6713 0.0017
## PP.Nat_1_VB 0.0002 0.0013 0.5774
## PP.Nat_4R_VB 0.0125 0.0005 0.0137
## PP.Nat_2R_VB 0.0016 0.0000 0.0219
## PP.Nat_3R_VB 0.0022 0.0000 0.2097
## PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB 0.9821 0.2574 0.0000
## PP.Risk_Score_GFPRB 0.5112 0.0351 0.0000
## PP.Risk_Score_CBB 0.0000 0.0001 0.0020
## PP.Risk_Score_PBFB 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0000
## PP.Risk_Score_VB 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0010 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0046 0.0146 0.0557
## PP.Ben_Score_CBB 0.8295 0.0913 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0161 0.2005
## PP.Ben_Score_PBPB 0.0000 0.0001 0.7114
## PP.Ben_Score_VB 0.0000 0.0000 0.0999
## PP.BehavInt1_GFFB 0.0001 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0011 0.0003 0.0007
## PP.BehavInt3_GFFB 0.0001 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0001 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.4229
## PP.BehavInt2_GFPRB 0.0000 0.0002 0.8407
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.7309
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.6202
## PP.BehavInt1_CBB 0.3667 0.3304 0.0000
## PP.BehavInt2_CBB 0.6533 0.1449 0.0000
## PP.BehavInt3_CBB 0.4927 0.2182 0.0000
## PP.BehavInt4_CBB 0.4877 0.2278 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.4229
## PP.BehavInt2_PBPB 0.0000 0.0002 0.8407
## PP.BehavInt3_PBPB 0.0000 0.0000 0.7309
## PP.BehavInt4_PBPB 0.0000 0.0000 0.6202
## PP.BehavInt1_PBFB 0.0000 0.0227 0.1635
## PP.BehavInt2_PBFB 0.0003 0.0593 0.0744
## PP.BehavInt3_PBFB 0.0001 0.0244 0.1804
## PP.BehavInt4_PBFB 0.0000 0.0200 0.1759
## PP.BehavInt1_VB 0.0000 0.0000 0.1356
## PP.BehavInt2_VB 0.0000 0.0000 0.4135
## PP.BehavInt3_VB 0.0000 0.0000 0.0771
## PP.BehavInt4_VB 0.0000 0.0000 0.1527
## PP.Nat_1_GFFB 0.0003 0.0000 0.0000
## PP.Nat_4R_GFFB 0.8430 0.2627 0.0000
## PP.Nat_2R_GFFB 0.2865 0.9675 0.0020
## PP.Nat_3R_GFFB 0.3020 0.0127 0.0000
## PP.Nat_1_GFPRB 0.3628 0.0403 0.0052
## PP.Nat_4R_GFPRB 0.0131 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.1221 0.0019 0.0000
## PP.Nat_3R_GFPRB 0.4855 0.0225 0.0000
## PP.Nat_1_CBB 0.2620 0.0025 0.0000
## PP.Nat_4R_CBB 0.0053 0.1092 0.5515
## PP.Nat_2R_CBB 0.9177 0.2782 0.1624
## PP.Nat_3R_CBB 0.3603 0.0706 0.1652
## PP.Nat_1_PBPB 0.0001 0.0107 0.3741
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.7587 0.6297 0.0845
## PP.Nat_1_PBFB 0.0025 0.2233 0.0113
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0049
## PP.Nat_2R_PBFB 0.0000 0.0011 0.0021
## PP.Nat_3R_PBFB 0.1244 0.3723 0.1618
## PP.Nat_1_VB 0.0000 0.0000 0.1547
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0347 0.0011 0.0000
## PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB 0.7029 0.0669 0.0000
## PP.Risk_Score_GFPRB 0.0810 0.1499 0.0000
## PP.Risk_Score_CBB 0.0056 0.0138 0.6545
## PP.Risk_Score_PBFB 0.0010 0.0046 0.8295
## PP.Risk_Score_PBPB 0.0000 0.0146 0.0913
## PP.Risk_Score_VB 0.0000 0.0557 0.0000
## PP.Ben_Score_GFFB 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.1485
## PP.Ben_Score_CBB 0.0000 0.1485
## PP.Ben_Score_PBFB 0.0596 0.7790 0.0000
## PP.Ben_Score_PBPB 0.5108 0.6169 0.0000
## PP.Ben_Score_VB 0.6509 0.5244 0.0045
## PP.BehavInt1_GFFB 0.0000 0.0000 0.0009
## PP.BehavInt2_GFFB 0.0000 0.0000 0.0057
## PP.BehavInt3_GFFB 0.0000 0.0000 0.0003
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0020
## PP.BehavInt1_GFPRB 0.9020 0.3180 0.0000
## PP.BehavInt2_GFPRB 0.7788 0.2634 0.0000
## PP.BehavInt3_GFPRB 0.6865 0.3986 0.0000
## PP.BehavInt4_GFPRB 0.6972 0.4528 0.0000
## PP.BehavInt1_CBB 0.0000 0.3743 0.0000
## PP.BehavInt2_CBB 0.0000 0.2289 0.0000
## PP.BehavInt3_CBB 0.0000 0.3160 0.0000
## PP.BehavInt4_CBB 0.0000 0.2794 0.0000
## PP.BehavInt1_PBPB 0.9020 0.3180 0.0000
## PP.BehavInt2_PBPB 0.7788 0.2634 0.0000
## PP.BehavInt3_PBPB 0.6865 0.3986 0.0000
## PP.BehavInt4_PBPB 0.6972 0.4528 0.0000
## PP.BehavInt1_PBFB 0.1836 0.3730 0.0000
## PP.BehavInt2_PBFB 0.0733 0.4840 0.0000
## PP.BehavInt3_PBFB 0.0828 0.6822 0.0000
## PP.BehavInt4_PBFB 0.0810 0.6609 0.0000
## PP.BehavInt1_VB 0.9987 0.9208 0.0013
## PP.BehavInt2_VB 0.9566 0.6204 0.0006
## PP.BehavInt3_VB 0.9799 0.9790 0.0017
## PP.BehavInt4_VB 0.9818 0.9238 0.0011
## PP.Nat_1_GFFB 0.0000 0.0000 0.0011
## PP.Nat_4R_GFFB 0.1226 0.6213 0.0000
## PP.Nat_2R_GFFB 0.2595 0.7109 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0675 0.0000
## PP.Nat_1_GFPRB 0.0812 0.0000 0.1332
## PP.Nat_4R_GFPRB 0.0011 0.9838 0.0000
## PP.Nat_2R_GFPRB 0.0037 0.9652 0.0000
## PP.Nat_3R_GFPRB 0.0002 0.5055 0.0000
## PP.Nat_1_CBB 0.0000 0.1103 0.0000
## PP.Nat_4R_CBB 0.0170 0.0010 0.2598
## PP.Nat_2R_CBB 0.3101 0.0073 0.4670
## PP.Nat_3R_CBB 0.2343 0.0172 0.6493
## PP.Nat_1_PBPB 0.1599 0.6674 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0005 0.0818
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0301
## PP.Nat_3R_PBPB 0.0000 0.0003 0.0000
## PP.Nat_1_PBFB 0.0139 0.7514 0.0000
## PP.Nat_4R_PBFB 0.0012 0.0000 0.2333
## PP.Nat_2R_PBFB 0.0000 0.0000 0.2638
## PP.Nat_3R_PBFB 0.0001 0.0000 0.1156
## PP.Nat_1_VB 0.7350 0.8506 0.0024
## PP.Nat_4R_VB 0.0000 0.0067 0.0000
## PP.Nat_2R_VB 0.0000 0.0021 0.0000
## PP.Nat_3R_VB 0.0000 0.0032 0.0000
## PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0003
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0021
## PP.Risk_Score_CBB 0.5142 0.4770 0.3022
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0161 0.0001 0.0000
## PP.Risk_Score_VB 0.2005 0.7114 0.0999
## PP.Ben_Score_GFFB 0.0596 0.5108 0.6509
## PP.Ben_Score_GFPRB 0.7790 0.6169 0.5244
## PP.Ben_Score_CBB 0.0000 0.0000 0.0045
## PP.Ben_Score_PBFB 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000
## PP.BehavInt1_GFFB 0.7878 0.4463 0.5565
## PP.BehavInt2_GFFB 0.9941 0.3899 0.6206
## PP.BehavInt3_GFFB 0.6174 0.6117 0.6441
## PP.BehavInt4_GFFB 0.9165 0.3658 0.4877
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0024
## PP.BehavInt2_CBB 0.0000 0.0000 0.0074
## PP.BehavInt3_CBB 0.0000 0.0000 0.0041
## PP.BehavInt4_CBB 0.0000 0.0000 0.0038
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.8793 0.3782 0.3730
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0024
## PP.Nat_1_GFPRB 0.2850 0.6691 0.3935
## PP.Nat_4R_GFPRB 0.0000 0.0039 0.1014
## PP.Nat_2R_GFPRB 0.0000 0.0005 0.0163
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0046
## PP.Nat_1_CBB 0.0000 0.0000 0.0909
## PP.Nat_4R_CBB 0.5185 0.8768 0.0358
## PP.Nat_2R_CBB 0.3302 0.0368 0.0000
## PP.Nat_3R_CBB 0.0403 0.0017 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1504 0.0070 0.0087
## PP.Nat_2R_PBPB 0.5027 0.1216 0.3696
## PP.Nat_3R_PBPB 0.0023 0.0044 0.0054
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0001 0.0000 0.0017
## PP.Nat_2R_PBFB 0.6257 0.6953 0.6752
## PP.Nat_3R_PBFB 0.2406 0.1721 0.0429
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.8458 0.1904 0.0103
## PP.Nat_2R_VB 0.0745 0.6529 0.4038
## PP.Nat_3R_VB 0.0008 0.0191 0.3392
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB 0.2286 0.0769 0.3799
## PP.Risk_Score_GFPRB 0.9218 0.5498 0.6576
## PP.Risk_Score_CBB 0.0035 0.0059 0.0026
## PP.Risk_Score_PBFB 0.0001 0.0011 0.0001
## PP.Risk_Score_PBPB 0.0000 0.0003 0.0000
## PP.Risk_Score_VB 0.0000 0.0007 0.0000
## PP.Ben_Score_GFFB 0.0000 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Ben_Score_CBB 0.0009 0.0057 0.0003
## PP.Ben_Score_PBFB 0.7878 0.9941 0.6174
## PP.Ben_Score_PBPB 0.4463 0.3899 0.6117
## PP.Ben_Score_VB 0.5565 0.6206 0.6441
## PP.BehavInt1_GFFB 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.2090 0.1871 0.3010
## PP.BehavInt2_GFPRB 0.2228 0.1568 0.3410
## PP.BehavInt3_GFPRB 0.3022 0.2398 0.4331
## PP.BehavInt4_GFPRB 0.3149 0.2603 0.4390
## PP.BehavInt1_CBB 0.0079 0.0304 0.0031
## PP.BehavInt2_CBB 0.0017 0.0100 0.0006
## PP.BehavInt3_CBB 0.0051 0.0215 0.0018
## PP.BehavInt4_CBB 0.0051 0.0233 0.0019
## PP.BehavInt1_PBPB 0.2090 0.1871 0.3010
## PP.BehavInt2_PBPB 0.2228 0.1568 0.3410
## PP.BehavInt3_PBPB 0.3022 0.2398 0.4331
## PP.BehavInt4_PBPB 0.3149 0.2603 0.4390
## PP.BehavInt1_PBFB 0.7510 0.5318 0.9436
## PP.BehavInt2_PBFB 0.9283 0.7740 0.7280
## PP.BehavInt3_PBFB 0.9262 0.8388 0.7525
## PP.BehavInt4_PBFB 0.9185 0.8476 0.7381
## PP.BehavInt1_VB 0.2341 0.2450 0.3031
## PP.BehavInt2_VB 0.1880 0.1495 0.2718
## PP.BehavInt3_VB 0.2598 0.2946 0.3244
## PP.BehavInt4_VB 0.2163 0.2161 0.2845
## PP.Nat_1_GFFB 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.8948 0.4505 0.8385
## PP.Nat_2R_GFFB 0.6689 0.3811 0.9097
## PP.Nat_3R_GFFB 0.0029 0.0248 0.0010
## PP.Nat_1_GFPRB 0.0042 0.0003 0.0101
## PP.Nat_4R_GFPRB 0.0953 0.4118 0.0471
## PP.Nat_2R_GFPRB 0.2157 0.6737 0.1164
## PP.Nat_3R_GFPRB 0.0416 0.1654 0.0195
## PP.Nat_1_CBB 0.0002 0.0035 0.0000
## PP.Nat_4R_CBB 0.0066 0.0034 0.0069
## PP.Nat_2R_CBB 0.2326 0.1122 0.2550
## PP.Nat_3R_CBB 0.2136 0.0809 0.2281
## PP.Nat_1_PBPB 0.8175 0.5478 0.9598
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.4976 0.8139 0.3449
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.4431 0.4383 0.5397
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB 0.1559 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.9468 0.0000 0.0000
## PP.Risk_Score_CBB 0.0038 0.2457 0.3409
## PP.Risk_Score_PBFB 0.0001 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0000 0.0002
## PP.Risk_Score_VB 0.0000 0.4229 0.8407
## PP.Ben_Score_GFFB 0.0000 0.9020 0.7788
## PP.Ben_Score_GFPRB 0.0000 0.3180 0.2634
## PP.Ben_Score_CBB 0.0020 0.0000 0.0000
## PP.Ben_Score_PBFB 0.9165 0.0000 0.0000
## PP.Ben_Score_PBPB 0.3658 0.0000 0.0000
## PP.Ben_Score_VB 0.4877 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.2090 0.2228
## PP.BehavInt2_GFFB 0.0000 0.1871 0.1568
## PP.BehavInt3_GFFB 0.0000 0.3010 0.3410
## PP.BehavInt4_GFFB 0.1617 0.1642
## PP.BehavInt1_GFPRB 0.1617 0.0000
## PP.BehavInt2_GFPRB 0.1642 0.0000
## PP.BehavInt3_GFPRB 0.2370 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.2391 0.0000 0.0000
## PP.BehavInt1_CBB 0.0154 0.0000 0.0000
## PP.BehavInt2_CBB 0.0036 0.0000 0.0000
## PP.BehavInt3_CBB 0.0098 0.0000 0.0000
## PP.BehavInt4_CBB 0.0097 0.0000 0.0000
## PP.BehavInt1_PBPB 0.1617 0.0000 0.0000
## PP.BehavInt2_PBPB 0.1642 0.0000 0.0000
## PP.BehavInt3_PBPB 0.2370 0.0000 0.0000
## PP.BehavInt4_PBPB 0.2391 0.0000 0.0000
## PP.BehavInt1_PBFB 0.6208 0.0000 0.0000
## PP.BehavInt2_PBFB 0.9204 0.0000 0.0000
## PP.BehavInt3_PBFB 0.9174 0.0000 0.0000
## PP.BehavInt4_PBFB 0.9253 0.0000 0.0000
## PP.BehavInt1_VB 0.1829 0.0000 0.0000
## PP.BehavInt2_VB 0.1472 0.0000 0.0000
## PP.BehavInt3_VB 0.2063 0.0000 0.0000
## PP.BehavInt4_VB 0.1664 0.0000 0.0000
## PP.Nat_1_GFFB 0.0000 0.2043 0.2038
## PP.Nat_4R_GFFB 0.7437 0.0000 0.0000
## PP.Nat_2R_GFFB 0.5602 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0059 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0041 0.7029 0.2913
## PP.Nat_4R_GFPRB 0.1290 0.0156 0.0016
## PP.Nat_2R_GFPRB 0.2664 0.0029 0.0002
## PP.Nat_3R_GFPRB 0.0820 0.0000 0.0000
## PP.Nat_1_CBB 0.0005 0.0003 0.0000
## PP.Nat_4R_CBB 0.0062 0.5735 0.4954
## PP.Nat_2R_CBB 0.2592 0.0832 0.1512
## PP.Nat_3R_CBB 0.2408 0.0041 0.0137
## PP.Nat_1_PBPB 0.7319 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0014 0.0036
## PP.Nat_2R_PBPB 0.0000 0.0346 0.0536
## PP.Nat_3R_PBPB 0.0001 0.0164 0.0257
## PP.Nat_1_PBFB 0.6127 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.2879 0.3486
## PP.Nat_3R_PBFB 0.0000 0.4519 0.5515
## PP.Nat_1_VB 0.3530 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.0725 0.1831
## PP.Nat_2R_VB 0.0000 0.9355 0.7131
## PP.Nat_3R_VB 0.0000 0.0951 0.0421
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.3261 0.4484 0.2472
## PP.Risk_Score_PBFB 0.0000 0.0000 0.3667
## PP.Risk_Score_PBPB 0.0000 0.0000 0.3304
## PP.Risk_Score_VB 0.7309 0.6202 0.0000
## PP.Ben_Score_GFFB 0.6865 0.6972 0.0000
## PP.Ben_Score_GFPRB 0.3986 0.4528 0.3743
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0024
## PP.BehavInt1_GFFB 0.3022 0.3149 0.0079
## PP.BehavInt2_GFFB 0.2398 0.2603 0.0304
## PP.BehavInt3_GFFB 0.4331 0.4390 0.0031
## PP.BehavInt4_GFFB 0.2370 0.2391 0.0154
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0003
## PP.BehavInt2_VB 0.0000 0.0000 0.0002
## PP.BehavInt3_VB 0.0000 0.0000 0.0006
## PP.BehavInt4_VB 0.0000 0.0000 0.0004
## PP.Nat_1_GFFB 0.2665 0.2605 0.0079
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.5228 0.6308 0.1183
## PP.Nat_4R_GFPRB 0.0035 0.0063 0.0000
## PP.Nat_2R_GFPRB 0.0005 0.0010 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0001 0.0000
## PP.Nat_4R_CBB 0.5976 0.8537 0.0770
## PP.Nat_2R_CBB 0.0938 0.0372 0.3182
## PP.Nat_3R_CBB 0.0070 0.0020 0.7783
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0044 0.0054 0.2491
## PP.Nat_2R_PBPB 0.0636 0.0870 0.1132
## PP.Nat_3R_PBPB 0.0095 0.0078 0.0001
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0604
## PP.Nat_2R_PBFB 0.4354 0.5432 0.5720
## PP.Nat_3R_PBFB 0.3199 0.2242 0.2249
## PP.Nat_1_VB 0.0000 0.0000 0.0009
## PP.Nat_4R_VB 0.1789 0.1348 0.0002
## PP.Nat_2R_VB 0.6584 0.7905 0.0000
## PP.Nat_3R_VB 0.0224 0.0419 0.0000
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.3981 0.3185 0.2825
## PP.Risk_Score_PBFB 0.6533 0.4927 0.4877
## PP.Risk_Score_PBPB 0.1449 0.2182 0.2278
## PP.Risk_Score_VB 0.0000 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0000 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.2289 0.3160 0.2794
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0074 0.0041 0.0038
## PP.BehavInt1_GFFB 0.0017 0.0051 0.0051
## PP.BehavInt2_GFFB 0.0100 0.0215 0.0233
## PP.BehavInt3_GFFB 0.0006 0.0018 0.0019
## PP.BehavInt4_GFFB 0.0036 0.0098 0.0097
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0013 0.0007 0.0006
## PP.BehavInt2_VB 0.0005 0.0004 0.0004
## PP.BehavInt3_VB 0.0026 0.0011 0.0010
## PP.BehavInt4_VB 0.0015 0.0007 0.0006
## PP.Nat_1_GFFB 0.0016 0.0051 0.0044
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1092 0.0969 0.1140
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0955 0.0973 0.0780
## PP.Nat_2R_CBB 0.2337 0.2849 0.2842
## PP.Nat_3R_CBB 0.9660 0.8506 0.8796
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1566 0.2007 0.2233
## PP.Nat_2R_PBPB 0.0572 0.0940 0.0972
## PP.Nat_3R_PBPB 0.0002 0.0002 0.0002
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.1103 0.0891 0.0727
## PP.Nat_2R_PBFB 0.4418 0.4966 0.5380
## PP.Nat_3R_PBFB 0.2120 0.2171 0.2291
## PP.Nat_1_VB 0.0026 0.0019 0.0022
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.2457 0.3409 0.3261
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0002 0.0000
## PP.Risk_Score_VB 0.4229 0.8407 0.7309
## PP.Ben_Score_GFFB 0.9020 0.7788 0.6865
## PP.Ben_Score_GFPRB 0.3180 0.2634 0.3986
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.2090 0.2228 0.3022
## PP.BehavInt2_GFFB 0.1871 0.1568 0.2398
## PP.BehavInt3_GFFB 0.3010 0.3410 0.4331
## PP.BehavInt4_GFFB 0.1617 0.1642 0.2370
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.2043 0.2038 0.2665
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.7029 0.2913 0.5228
## PP.Nat_4R_GFPRB 0.0156 0.0016 0.0035
## PP.Nat_2R_GFPRB 0.0029 0.0002 0.0005
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0003 0.0000 0.0000
## PP.Nat_4R_CBB 0.5735 0.4954 0.5976
## PP.Nat_2R_CBB 0.0832 0.1512 0.0938
## PP.Nat_3R_CBB 0.0041 0.0137 0.0070
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0014 0.0036 0.0044
## PP.Nat_2R_PBPB 0.0346 0.0536 0.0636
## PP.Nat_3R_PBPB 0.0164 0.0257 0.0095
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.2879 0.3486 0.4354
## PP.Nat_3R_PBFB 0.4519 0.5515 0.3199
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0725 0.1831 0.1789
## PP.Nat_2R_VB 0.9355 0.7131 0.6584
## PP.Nat_3R_VB 0.0951 0.0421 0.0224
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.4484 0.6023 0.6184
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0003
## PP.Risk_Score_PBPB 0.0000 0.0227 0.0593
## PP.Risk_Score_VB 0.6202 0.1635 0.0744
## PP.Ben_Score_GFFB 0.6972 0.1836 0.0733
## PP.Ben_Score_GFPRB 0.4528 0.3730 0.4840
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.3149 0.7510 0.9283
## PP.BehavInt2_GFFB 0.2603 0.5318 0.7740
## PP.BehavInt3_GFFB 0.4390 0.9436 0.7280
## PP.BehavInt4_GFFB 0.2391 0.6208 0.9204
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.2605 0.6248 0.9935
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.6308 0.0820 0.0736
## PP.Nat_4R_GFPRB 0.0063 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0010 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0001 0.0000 0.0000
## PP.Nat_4R_CBB 0.8537 0.5238 0.3935
## PP.Nat_2R_CBB 0.0372 0.3391 0.5701
## PP.Nat_3R_CBB 0.0020 0.0435 0.1175
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0054 0.1156 0.1529
## PP.Nat_2R_PBPB 0.0870 0.3742 0.4743
## PP.Nat_3R_PBPB 0.0078 0.0081 0.0122
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0001
## PP.Nat_2R_PBFB 0.5432 0.5157 0.5244
## PP.Nat_3R_PBFB 0.2242 0.4289 0.4733
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.1348 0.8756 0.6219
## PP.Nat_2R_VB 0.7905 0.1024 0.0431
## PP.Nat_3R_VB 0.0419 0.0032 0.0008
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0004
## PP.Risk_Score_CBB 0.6188 0.5135 0.7257
## PP.Risk_Score_PBFB 0.0001 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0244 0.0200 0.0000
## PP.Risk_Score_VB 0.1804 0.1759 0.1356
## PP.Ben_Score_GFFB 0.0828 0.0810 0.9987
## PP.Ben_Score_GFPRB 0.6822 0.6609 0.9208
## PP.Ben_Score_CBB 0.0000 0.0000 0.0013
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.9262 0.9185 0.2341
## PP.BehavInt2_GFFB 0.8388 0.8476 0.2450
## PP.BehavInt3_GFFB 0.7525 0.7381 0.3031
## PP.BehavInt4_GFFB 0.9174 0.9253 0.1829
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0003
## PP.BehavInt2_CBB 0.0000 0.0000 0.0013
## PP.BehavInt3_CBB 0.0000 0.0000 0.0007
## PP.BehavInt4_CBB 0.0000 0.0000 0.0006
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.9479 0.9800 0.1772
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0009
## PP.Nat_1_GFPRB 0.1965 0.2226 0.8204
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0472
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0055
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0009
## PP.Nat_1_CBB 0.0000 0.0000 0.0344
## PP.Nat_4R_CBB 0.6149 0.4770 0.2576
## PP.Nat_2R_CBB 0.2702 0.3768 0.0005
## PP.Nat_3R_CBB 0.0332 0.0531 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1862 0.1454 0.0016
## PP.Nat_2R_PBPB 0.5406 0.4251 0.1046
## PP.Nat_3R_PBPB 0.0030 0.0040 0.0211
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0002 0.0001 0.0000
## PP.Nat_2R_PBFB 0.6281 0.5338 0.7690
## PP.Nat_3R_PBFB 0.2791 0.3244 0.1786
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.8524 0.8594 0.0097
## PP.Nat_2R_VB 0.0899 0.0928 0.4262
## PP.Nat_3R_VB 0.0015 0.0014 0.3345
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0011 0.0003
## PP.Risk_Score_CBB 0.5083 0.7201 0.6442
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0000 0.0000
## PP.Risk_Score_VB 0.4135 0.0771 0.1527
## PP.Ben_Score_GFFB 0.9566 0.9799 0.9818
## PP.Ben_Score_GFPRB 0.6204 0.9790 0.9238
## PP.Ben_Score_CBB 0.0006 0.0017 0.0011
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.1880 0.2598 0.2163
## PP.BehavInt2_GFFB 0.1495 0.2946 0.2161
## PP.BehavInt3_GFFB 0.2718 0.3244 0.2845
## PP.BehavInt4_GFFB 0.1472 0.2063 0.1664
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0002 0.0006 0.0004
## PP.BehavInt2_CBB 0.0005 0.0026 0.0015
## PP.BehavInt3_CBB 0.0004 0.0011 0.0007
## PP.BehavInt4_CBB 0.0004 0.0010 0.0006
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000
## PP.Nat_1_GFFB 0.1188 0.1809 0.1631
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0002 0.0014 0.0008
## PP.Nat_1_GFPRB 0.5376 0.5971 0.8229
## PP.Nat_4R_GFPRB 0.0041 0.0949 0.0375
## PP.Nat_2R_GFPRB 0.0001 0.0118 0.0044
## PP.Nat_3R_GFPRB 0.0000 0.0027 0.0009
## PP.Nat_1_CBB 0.0128 0.0586 0.0388
## PP.Nat_4R_CBB 0.3045 0.1891 0.2000
## PP.Nat_2R_CBB 0.0029 0.0001 0.0004
## PP.Nat_3R_CBB 0.0003 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0007 0.0018 0.0020
## PP.Nat_2R_PBPB 0.0423 0.0939 0.0866
## PP.Nat_3R_PBPB 0.1808 0.0229 0.0273
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0001 0.0002
## PP.Nat_2R_PBFB 0.5170 0.7072 0.8037
## PP.Nat_3R_PBFB 0.4011 0.1855 0.1916
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0242 0.0055 0.0129
## PP.Nat_2R_VB 0.6961 0.3164 0.4848
## PP.Nat_3R_VB 0.2688 0.4485 0.3164
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB 0.2088 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.8478 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.0353 0.1352 0.3218 0.0484
## PP.Risk_Score_PBFB 0.0003 0.8430 0.2865 0.3020
## PP.Risk_Score_PBPB 0.0000 0.2627 0.9675 0.0127
## PP.Risk_Score_VB 0.0000 0.0000 0.0020 0.0000
## PP.Ben_Score_GFFB 0.0000 0.1226 0.2595 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.6213 0.7109 0.0675
## PP.Ben_Score_CBB 0.0011 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.8793 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.3782 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.3730 0.0000 0.0000 0.0024
## PP.BehavInt1_GFFB 0.0000 0.8948 0.6689 0.0029
## PP.BehavInt2_GFFB 0.0000 0.4505 0.3811 0.0248
## PP.BehavInt3_GFFB 0.0000 0.8385 0.9097 0.0010
## PP.BehavInt4_GFFB 0.0000 0.7437 0.5602 0.0059
## PP.BehavInt1_GFPRB 0.2043 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.2038 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.2665 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.2605 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0079 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0016 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0051 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0044 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.2043 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.2038 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.2665 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.2605 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.6248 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.9935 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.9479 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.9800 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.1772 0.0000 0.0000 0.0009
## PP.BehavInt2_VB 0.1188 0.0000 0.0000 0.0002
## PP.BehavInt3_VB 0.1809 0.0000 0.0000 0.0014
## PP.BehavInt4_VB 0.1631 0.0000 0.0000 0.0008
## PP.Nat_1_GFFB 0.7073 0.5783 0.0051
## PP.Nat_4R_GFFB 0.7073 0.0000 0.0000
## PP.Nat_2R_GFFB 0.5783 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0051 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0003 0.0012 0.0295 0.1362
## PP.Nat_4R_GFPRB 0.1716 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.3107 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0689 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0003 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0678 0.5893 0.5512 0.4635
## PP.Nat_2R_CBB 0.5532 0.3854 0.0755 0.5070
## PP.Nat_3R_CBB 0.4670 0.2241 0.0183 0.2859
## PP.Nat_1_PBPB 0.7369 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.6316 0.8374 0.0346
## PP.Nat_2R_PBPB 0.0000 0.8182 0.8131 0.0153
## PP.Nat_3R_PBPB 0.0000 0.1523 0.0125 0.0015
## PP.Nat_1_PBFB 0.5796 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.1543 0.0739 0.8364
## PP.Nat_2R_PBFB 0.0000 0.6849 0.3625 0.0307
## PP.Nat_3R_PBFB 0.0000 0.6284 0.1886 0.0157
## PP.Nat_1_VB 0.2686 0.0000 0.0000 0.0022
## PP.Nat_4R_VB 0.0000 0.0088 0.0701 0.0000
## PP.Nat_2R_VB 0.0000 0.0008 0.0065 0.0000
## PP.Nat_3R_VB 0.0000 0.0013 0.0016 0.0000
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.8521 0.0057 0.0108
## PP.Risk_Score_PBFB 0.3628 0.0131 0.1221
## PP.Risk_Score_PBPB 0.0403 0.0000 0.0019
## PP.Risk_Score_VB 0.0052 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0812 0.0011 0.0037
## PP.Ben_Score_GFPRB 0.0000 0.9838 0.9652
## PP.Ben_Score_CBB 0.1332 0.0000 0.0000
## PP.Ben_Score_PBFB 0.2850 0.0000 0.0000
## PP.Ben_Score_PBPB 0.6691 0.0039 0.0005
## PP.Ben_Score_VB 0.3935 0.1014 0.0163
## PP.BehavInt1_GFFB 0.0042 0.0953 0.2157
## PP.BehavInt2_GFFB 0.0003 0.4118 0.6737
## PP.BehavInt3_GFFB 0.0101 0.0471 0.1164
## PP.BehavInt4_GFFB 0.0041 0.1290 0.2664
## PP.BehavInt1_GFPRB 0.7029 0.0156 0.0029
## PP.BehavInt2_GFPRB 0.2913 0.0016 0.0002
## PP.BehavInt3_GFPRB 0.5228 0.0035 0.0005
## PP.BehavInt4_GFPRB 0.6308 0.0063 0.0010
## PP.BehavInt1_CBB 0.1183 0.0000 0.0000
## PP.BehavInt2_CBB 0.1092 0.0000 0.0000
## PP.BehavInt3_CBB 0.0969 0.0000 0.0000
## PP.BehavInt4_CBB 0.1140 0.0000 0.0000
## PP.BehavInt1_PBPB 0.7029 0.0156 0.0029
## PP.BehavInt2_PBPB 0.2913 0.0016 0.0002
## PP.BehavInt3_PBPB 0.5228 0.0035 0.0005
## PP.BehavInt4_PBPB 0.6308 0.0063 0.0010
## PP.BehavInt1_PBFB 0.0820 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0736 0.0000 0.0000
## PP.BehavInt3_PBFB 0.1965 0.0000 0.0000
## PP.BehavInt4_PBFB 0.2226 0.0000 0.0000
## PP.BehavInt1_VB 0.8204 0.0472 0.0055
## PP.BehavInt2_VB 0.5376 0.0041 0.0001
## PP.BehavInt3_VB 0.5971 0.0949 0.0118
## PP.BehavInt4_VB 0.8229 0.0375 0.0044
## PP.Nat_1_GFFB 0.0003 0.1716 0.3107
## PP.Nat_4R_GFFB 0.0012 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0295 0.0000 0.0000
## PP.Nat_3R_GFFB 0.1362 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0030 0.0000 0.0000
## PP.Nat_1_CBB 0.0311 0.0000 0.0000
## PP.Nat_4R_CBB 0.0261 0.6134 0.7953
## PP.Nat_2R_CBB 0.0019 0.5774 0.6340
## PP.Nat_3R_CBB 0.0020 0.7303 0.7766
## PP.Nat_1_PBPB 0.1476 0.0000 0.0000
## PP.Nat_4R_PBPB 0.5598 0.0157 0.1728
## PP.Nat_2R_PBPB 0.1414 0.0419 0.2410
## PP.Nat_3R_PBPB 0.0003 0.3522 0.6607
## PP.Nat_1_PBFB 0.0433 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0044 0.9247 0.3866
## PP.Nat_2R_PBFB 0.0034 0.2110 0.6604
## PP.Nat_3R_PBFB 0.0000 0.7018 0.9882
## PP.Nat_1_VB 0.7864 0.0531 0.0076
## PP.Nat_4R_VB 0.3453 0.0000 0.0000
## PP.Nat_2R_VB 0.2831 0.0000 0.0000
## PP.Nat_3R_VB 0.8787 0.0000 0.0000
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.8636 0.4251
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.6037 0.8339
## PP.Risk_Score_CBB 0.1453 0.9157 0.0000 0.0000
## PP.Risk_Score_PBFB 0.4855 0.2620 0.0053 0.9177
## PP.Risk_Score_PBPB 0.0225 0.0025 0.1092 0.2782
## PP.Risk_Score_VB 0.0000 0.0000 0.5515 0.1624
## PP.Ben_Score_GFFB 0.0002 0.0000 0.0170 0.3101
## PP.Ben_Score_GFPRB 0.5055 0.1103 0.0010 0.0073
## PP.Ben_Score_CBB 0.0000 0.0000 0.2598 0.4670
## PP.Ben_Score_PBFB 0.0000 0.0000 0.5185 0.3302
## PP.Ben_Score_PBPB 0.0000 0.0000 0.8768 0.0368
## PP.Ben_Score_VB 0.0046 0.0909 0.0358 0.0000
## PP.BehavInt1_GFFB 0.0416 0.0002 0.0066 0.2326
## PP.BehavInt2_GFFB 0.1654 0.0035 0.0034 0.1122
## PP.BehavInt3_GFFB 0.0195 0.0000 0.0069 0.2550
## PP.BehavInt4_GFFB 0.0820 0.0005 0.0062 0.2592
## PP.BehavInt1_GFPRB 0.0000 0.0003 0.5735 0.0832
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.4954 0.1512
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.5976 0.0938
## PP.BehavInt4_GFPRB 0.0000 0.0001 0.8537 0.0372
## PP.BehavInt1_CBB 0.0000 0.0000 0.0770 0.3182
## PP.BehavInt2_CBB 0.0000 0.0000 0.0955 0.2337
## PP.BehavInt3_CBB 0.0000 0.0000 0.0973 0.2849
## PP.BehavInt4_CBB 0.0000 0.0000 0.0780 0.2842
## PP.BehavInt1_PBPB 0.0000 0.0003 0.5735 0.0832
## PP.BehavInt2_PBPB 0.0000 0.0000 0.4954 0.1512
## PP.BehavInt3_PBPB 0.0000 0.0000 0.5976 0.0938
## PP.BehavInt4_PBPB 0.0000 0.0001 0.8537 0.0372
## PP.BehavInt1_PBFB 0.0000 0.0000 0.5238 0.3391
## PP.BehavInt2_PBFB 0.0000 0.0000 0.3935 0.5701
## PP.BehavInt3_PBFB 0.0000 0.0000 0.6149 0.2702
## PP.BehavInt4_PBFB 0.0000 0.0000 0.4770 0.3768
## PP.BehavInt1_VB 0.0009 0.0344 0.2576 0.0005
## PP.BehavInt2_VB 0.0000 0.0128 0.3045 0.0029
## PP.BehavInt3_VB 0.0027 0.0586 0.1891 0.0001
## PP.BehavInt4_VB 0.0009 0.0388 0.2000 0.0004
## PP.Nat_1_GFFB 0.0689 0.0003 0.0678 0.5532
## PP.Nat_4R_GFFB 0.0000 0.0000 0.5893 0.3854
## PP.Nat_2R_GFFB 0.0000 0.0000 0.5512 0.0755
## PP.Nat_3R_GFFB 0.0000 0.0000 0.4635 0.5070
## PP.Nat_1_GFPRB 0.0030 0.0311 0.0261 0.0019
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.6134 0.5774
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.7953 0.6340
## PP.Nat_3R_GFPRB 0.0000 0.8011 0.6511
## PP.Nat_1_CBB 0.0000 0.1662 0.1368
## PP.Nat_4R_CBB 0.8011 0.1662 0.0000
## PP.Nat_2R_CBB 0.6511 0.1368 0.0000
## PP.Nat_3R_CBB 0.7621 0.5798 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.6215 0.2573
## PP.Nat_4R_PBPB 0.2916 0.0263 0.0045 0.4459
## PP.Nat_2R_PBPB 0.1952 0.0101 0.0002 0.0108
## PP.Nat_3R_PBPB 0.0530 0.0035 0.0624 0.0026
## PP.Nat_1_PBFB 0.0000 0.0000 0.2234 0.9870
## PP.Nat_4R_PBFB 0.3631 0.3785 0.0000 0.0109
## PP.Nat_2R_PBFB 0.3716 0.2842 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3471 0.2878 0.0000 0.0000
## PP.Nat_1_VB 0.0012 0.0329 0.1925 0.0008
## PP.Nat_4R_VB 0.0000 0.0000 0.4421 0.2440
## PP.Nat_2R_VB 0.0000 0.0000 0.5712 0.4326
## PP.Nat_3R_VB 0.0000 0.0000 0.9524 0.6426
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB 0.2271 0.0000 0.6265 0.8776
## PP.Risk_Score_GFPRB 0.5230 0.0000 0.3733 0.4392
## PP.Risk_Score_CBB 0.0004 0.6335 0.0000 0.0000
## PP.Risk_Score_PBFB 0.3603 0.0001 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0706 0.0107 0.0000 0.0000
## PP.Risk_Score_VB 0.1652 0.3741 0.0000 0.0000
## PP.Ben_Score_GFFB 0.2343 0.1599 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0172 0.6674 0.0005 0.0000
## PP.Ben_Score_CBB 0.6493 0.0000 0.0818 0.0301
## PP.Ben_Score_PBFB 0.0403 0.0000 0.1504 0.5027
## PP.Ben_Score_PBPB 0.0017 0.0000 0.0070 0.1216
## PP.Ben_Score_VB 0.0000 0.0000 0.0087 0.3696
## PP.BehavInt1_GFFB 0.2136 0.8175 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0809 0.5478 0.0000 0.0000
## PP.BehavInt3_GFFB 0.2281 0.9598 0.0000 0.0000
## PP.BehavInt4_GFFB 0.2408 0.7319 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0041 0.0000 0.0014 0.0346
## PP.BehavInt2_GFPRB 0.0137 0.0000 0.0036 0.0536
## PP.BehavInt3_GFPRB 0.0070 0.0000 0.0044 0.0636
## PP.BehavInt4_GFPRB 0.0020 0.0000 0.0054 0.0870
## PP.BehavInt1_CBB 0.7783 0.0000 0.2491 0.1132
## PP.BehavInt2_CBB 0.9660 0.0000 0.1566 0.0572
## PP.BehavInt3_CBB 0.8506 0.0000 0.2007 0.0940
## PP.BehavInt4_CBB 0.8796 0.0000 0.2233 0.0972
## PP.BehavInt1_PBPB 0.0041 0.0000 0.0014 0.0346
## PP.BehavInt2_PBPB 0.0137 0.0000 0.0036 0.0536
## PP.BehavInt3_PBPB 0.0070 0.0000 0.0044 0.0636
## PP.BehavInt4_PBPB 0.0020 0.0000 0.0054 0.0870
## PP.BehavInt1_PBFB 0.0435 0.0000 0.1156 0.3742
## PP.BehavInt2_PBFB 0.1175 0.0000 0.1529 0.4743
## PP.BehavInt3_PBFB 0.0332 0.0000 0.1862 0.5406
## PP.BehavInt4_PBFB 0.0531 0.0000 0.1454 0.4251
## PP.BehavInt1_VB 0.0000 0.0000 0.0016 0.1046
## PP.BehavInt2_VB 0.0003 0.0000 0.0007 0.0423
## PP.BehavInt3_VB 0.0000 0.0000 0.0018 0.0939
## PP.BehavInt4_VB 0.0000 0.0000 0.0020 0.0866
## PP.Nat_1_GFFB 0.4670 0.7369 0.0000 0.0000
## PP.Nat_4R_GFFB 0.2241 0.0000 0.6316 0.8182
## PP.Nat_2R_GFFB 0.0183 0.0000 0.8374 0.8131
## PP.Nat_3R_GFFB 0.2859 0.0000 0.0346 0.0153
## PP.Nat_1_GFPRB 0.0020 0.1476 0.5598 0.1414
## PP.Nat_4R_GFPRB 0.7303 0.0000 0.0157 0.0419
## PP.Nat_2R_GFPRB 0.7766 0.0000 0.1728 0.2410
## PP.Nat_3R_GFPRB 0.7621 0.0000 0.2916 0.1952
## PP.Nat_1_CBB 0.5798 0.0000 0.0263 0.0101
## PP.Nat_4R_CBB 0.0000 0.6215 0.0045 0.0002
## PP.Nat_2R_CBB 0.0000 0.2573 0.4459 0.0108
## PP.Nat_3R_CBB 0.0379 0.9202 0.0314
## PP.Nat_1_PBPB 0.0379 0.0108 0.1381
## PP.Nat_4R_PBPB 0.9202 0.0108 0.0000
## PP.Nat_2R_PBPB 0.0314 0.1381 0.0000
## PP.Nat_3R_PBPB 0.0004 0.0512 0.0000 0.0000
## PP.Nat_1_PBFB 0.3568 0.0000 0.3291 0.6422
## PP.Nat_4R_PBFB 0.0957 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4927 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.5114 0.0003 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0021 0.1188
## PP.Nat_4R_VB 0.2332 0.5523 0.0000 0.0000
## PP.Nat_2R_VB 0.4941 0.1637 0.0000 0.0000
## PP.Nat_3R_VB 0.9169 0.0021 0.0002 0.0000
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB 0.1019 0.0000 0.1378 0.5756
## PP.Risk_Score_GFPRB 0.2990 0.0000 0.2253 0.4337
## PP.Risk_Score_CBB 0.1800 0.4682 0.0000 0.0000
## PP.Risk_Score_PBFB 0.7587 0.0025 0.0000 0.0000
## PP.Risk_Score_PBPB 0.6297 0.2233 0.0000 0.0011
## PP.Risk_Score_VB 0.0845 0.0113 0.0049 0.0021
## PP.Ben_Score_GFFB 0.0000 0.0139 0.0012 0.0000
## PP.Ben_Score_GFPRB 0.0003 0.7514 0.0000 0.0000
## PP.Ben_Score_CBB 0.0000 0.0000 0.2333 0.2638
## PP.Ben_Score_PBFB 0.0023 0.0000 0.0001 0.6257
## PP.Ben_Score_PBPB 0.0044 0.0000 0.0000 0.6953
## PP.Ben_Score_VB 0.0054 0.0000 0.0017 0.6752
## PP.BehavInt1_GFFB 0.0000 0.4976 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.8139 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.3449 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0001 0.6127 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0164 0.0000 0.0000 0.2879
## PP.BehavInt2_GFPRB 0.0257 0.0000 0.0000 0.3486
## PP.BehavInt3_GFPRB 0.0095 0.0000 0.0000 0.4354
## PP.BehavInt4_GFPRB 0.0078 0.0000 0.0000 0.5432
## PP.BehavInt1_CBB 0.0001 0.0000 0.0604 0.5720
## PP.BehavInt2_CBB 0.0002 0.0000 0.1103 0.4418
## PP.BehavInt3_CBB 0.0002 0.0000 0.0891 0.4966
## PP.BehavInt4_CBB 0.0002 0.0000 0.0727 0.5380
## PP.BehavInt1_PBPB 0.0164 0.0000 0.0000 0.2879
## PP.BehavInt2_PBPB 0.0257 0.0000 0.0000 0.3486
## PP.BehavInt3_PBPB 0.0095 0.0000 0.0000 0.4354
## PP.BehavInt4_PBPB 0.0078 0.0000 0.0000 0.5432
## PP.BehavInt1_PBFB 0.0081 0.0000 0.0000 0.5157
## PP.BehavInt2_PBFB 0.0122 0.0000 0.0001 0.5244
## PP.BehavInt3_PBFB 0.0030 0.0000 0.0002 0.6281
## PP.BehavInt4_PBFB 0.0040 0.0000 0.0001 0.5338
## PP.BehavInt1_VB 0.0211 0.0000 0.0000 0.7690
## PP.BehavInt2_VB 0.1808 0.0000 0.0000 0.5170
## PP.BehavInt3_VB 0.0229 0.0000 0.0001 0.7072
## PP.BehavInt4_VB 0.0273 0.0000 0.0002 0.8037
## PP.Nat_1_GFFB 0.0000 0.5796 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1523 0.0000 0.1543 0.6849
## PP.Nat_2R_GFFB 0.0125 0.0000 0.0739 0.3625
## PP.Nat_3R_GFFB 0.0015 0.0000 0.8364 0.0307
## PP.Nat_1_GFPRB 0.0003 0.0433 0.0044 0.0034
## PP.Nat_4R_GFPRB 0.3522 0.0000 0.9247 0.2110
## PP.Nat_2R_GFPRB 0.6607 0.0000 0.3866 0.6604
## PP.Nat_3R_GFPRB 0.0530 0.0000 0.3631 0.3716
## PP.Nat_1_CBB 0.0035 0.0000 0.3785 0.2842
## PP.Nat_4R_CBB 0.0624 0.2234 0.0000 0.0000
## PP.Nat_2R_CBB 0.0026 0.9870 0.0109 0.0000
## PP.Nat_3R_CBB 0.0004 0.3568 0.0957 0.0000
## PP.Nat_1_PBPB 0.0512 0.0000 0.0000 0.4927
## PP.Nat_4R_PBPB 0.0000 0.3291 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.6422 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0167 0.0093 0.0000
## PP.Nat_1_PBFB 0.0167 0.0000 0.4395
## PP.Nat_4R_PBFB 0.0093 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4395 0.0000
## PP.Nat_3R_PBFB 0.0000 0.6461 0.0000 0.0000
## PP.Nat_1_VB 0.0477 0.0000 0.0000 0.6876
## PP.Nat_4R_VB 0.0014 0.2961 0.0000 0.0000
## PP.Nat_2R_VB 0.0006 0.0102 0.0016 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0366 0.0000
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB 0.5479 0.0002 0.0125 0.0016
## PP.Risk_Score_GFPRB 0.6713 0.0013 0.0005 0.0000
## PP.Risk_Score_CBB 0.0017 0.5774 0.0137 0.0219
## PP.Risk_Score_PBFB 0.1244 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.3723 0.0000 0.0000 0.0000
## PP.Risk_Score_VB 0.1618 0.1547 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0001 0.7350 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.8506 0.0067 0.0021
## PP.Ben_Score_CBB 0.1156 0.0024 0.0000 0.0000
## PP.Ben_Score_PBFB 0.2406 0.0000 0.8458 0.0745
## PP.Ben_Score_PBPB 0.1721 0.0000 0.1904 0.6529
## PP.Ben_Score_VB 0.0429 0.0000 0.0103 0.4038
## PP.BehavInt1_GFFB 0.0000 0.4431 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.4383 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.5397 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.3530 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.4519 0.0000 0.0725 0.9355
## PP.BehavInt2_GFPRB 0.5515 0.0000 0.1831 0.7131
## PP.BehavInt3_GFPRB 0.3199 0.0000 0.1789 0.6584
## PP.BehavInt4_GFPRB 0.2242 0.0000 0.1348 0.7905
## PP.BehavInt1_CBB 0.2249 0.0009 0.0002 0.0000
## PP.BehavInt2_CBB 0.2120 0.0026 0.0000 0.0000
## PP.BehavInt3_CBB 0.2171 0.0019 0.0000 0.0000
## PP.BehavInt4_CBB 0.2291 0.0022 0.0000 0.0000
## PP.BehavInt1_PBPB 0.4519 0.0000 0.0725 0.9355
## PP.BehavInt2_PBPB 0.5515 0.0000 0.1831 0.7131
## PP.BehavInt3_PBPB 0.3199 0.0000 0.1789 0.6584
## PP.BehavInt4_PBPB 0.2242 0.0000 0.1348 0.7905
## PP.BehavInt1_PBFB 0.4289 0.0000 0.8756 0.1024
## PP.BehavInt2_PBFB 0.4733 0.0000 0.6219 0.0431
## PP.BehavInt3_PBFB 0.2791 0.0000 0.8524 0.0899
## PP.BehavInt4_PBFB 0.3244 0.0000 0.8594 0.0928
## PP.BehavInt1_VB 0.1786 0.0000 0.0097 0.4262
## PP.BehavInt2_VB 0.4011 0.0000 0.0242 0.6961
## PP.BehavInt3_VB 0.1855 0.0000 0.0055 0.3164
## PP.BehavInt4_VB 0.1916 0.0000 0.0129 0.4848
## PP.Nat_1_GFFB 0.0000 0.2686 0.0000 0.0000
## PP.Nat_4R_GFFB 0.6284 0.0000 0.0088 0.0008
## PP.Nat_2R_GFFB 0.1886 0.0000 0.0701 0.0065
## PP.Nat_3R_GFFB 0.0157 0.0022 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0000 0.7864 0.3453 0.2831
## PP.Nat_4R_GFPRB 0.7018 0.0531 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.9882 0.0076 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.3471 0.0012 0.0000 0.0000
## PP.Nat_1_CBB 0.2878 0.0329 0.0000 0.0000
## PP.Nat_4R_CBB 0.0000 0.1925 0.4421 0.5712
## PP.Nat_2R_CBB 0.0000 0.0008 0.2440 0.4326
## PP.Nat_3R_CBB 0.0000 0.0000 0.2332 0.4941
## PP.Nat_1_PBPB 0.5114 0.0000 0.5523 0.1637
## PP.Nat_4R_PBPB 0.0003 0.0021 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.1188 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0477 0.0014 0.0006
## PP.Nat_1_PBFB 0.6461 0.0000 0.2961 0.0102
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000 0.0016
## PP.Nat_2R_PBFB 0.0000 0.6876 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3365 0.0044 0.0015
## PP.Nat_1_VB 0.3365 0.0031 0.2348
## PP.Nat_4R_VB 0.0044 0.0031 0.0000
## PP.Nat_2R_VB 0.0015 0.2348 0.0000
## PP.Nat_3R_VB 0.0000 0.5576 0.0000 0.0000
## PP.Nat_3R_VB
## PP.Risk_Score_GFFB 0.0022
## PP.Risk_Score_GFPRB 0.0000
## PP.Risk_Score_CBB 0.2097
## PP.Risk_Score_PBFB 0.0347
## PP.Risk_Score_PBPB 0.0011
## PP.Risk_Score_VB 0.0000
## PP.Ben_Score_GFFB 0.0000
## PP.Ben_Score_GFPRB 0.0032
## PP.Ben_Score_CBB 0.0000
## PP.Ben_Score_PBFB 0.0008
## PP.Ben_Score_PBPB 0.0191
## PP.Ben_Score_VB 0.3392
## PP.BehavInt1_GFFB 0.0000
## PP.BehavInt2_GFFB 0.0000
## PP.BehavInt3_GFFB 0.0000
## PP.BehavInt4_GFFB 0.0000
## PP.BehavInt1_GFPRB 0.0951
## PP.BehavInt2_GFPRB 0.0421
## PP.BehavInt3_GFPRB 0.0224
## PP.BehavInt4_GFPRB 0.0419
## PP.BehavInt1_CBB 0.0000
## PP.BehavInt2_CBB 0.0000
## PP.BehavInt3_CBB 0.0000
## PP.BehavInt4_CBB 0.0000
## PP.BehavInt1_PBPB 0.0951
## PP.BehavInt2_PBPB 0.0421
## PP.BehavInt3_PBPB 0.0224
## PP.BehavInt4_PBPB 0.0419
## PP.BehavInt1_PBFB 0.0032
## PP.BehavInt2_PBFB 0.0008
## PP.BehavInt3_PBFB 0.0015
## PP.BehavInt4_PBFB 0.0014
## PP.BehavInt1_VB 0.3345
## PP.BehavInt2_VB 0.2688
## PP.BehavInt3_VB 0.4485
## PP.BehavInt4_VB 0.3164
## PP.Nat_1_GFFB 0.0000
## PP.Nat_4R_GFFB 0.0013
## PP.Nat_2R_GFFB 0.0016
## PP.Nat_3R_GFFB 0.0000
## PP.Nat_1_GFPRB 0.8787
## PP.Nat_4R_GFPRB 0.0000
## PP.Nat_2R_GFPRB 0.0000
## PP.Nat_3R_GFPRB 0.0000
## PP.Nat_1_CBB 0.0000
## PP.Nat_4R_CBB 0.9524
## PP.Nat_2R_CBB 0.6426
## PP.Nat_3R_CBB 0.9169
## PP.Nat_1_PBPB 0.0021
## PP.Nat_4R_PBPB 0.0002
## PP.Nat_2R_PBPB 0.0000
## PP.Nat_3R_PBPB 0.0000
## PP.Nat_1_PBFB 0.0000
## PP.Nat_4R_PBFB 0.0366
## PP.Nat_2R_PBFB 0.0000
## PP.Nat_3R_PBFB 0.0000
## PP.Nat_1_VB 0.5576
## PP.Nat_4R_VB 0.0000
## PP.Nat_2R_VB 0.0000
## PP.Nat_3R_VB
library(corrplot)
corrplot(mydata.cor7, method="color")

corrplot(mydata.cor7, addCoef.col = 1, number.cex = 0.3, method = 'number')

#Familiarity/Naturalness
PP$corFN <- data.frame(PP$Nat_1_GFFB , PP$Nat_2R_GFFB , PP$Nat_3R_GFFB , PP$Nat_4R_GFFB, PP$Nat_1_GFPRB , PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_1_CBB , PP$Nat_2R_CBB , PP$Nat_3R_CBB , PP$Nat_4R_CBB, PP$Nat_1_PBPB , PP$Nat_2R_PBPB , PP$Nat_3R_PBPB , PP$Nat_4R_PBPB, PP$Nat_1_PBFB , PP$Nat_2R_PBFB , PP$Nat_3R_PBFB , PP$Nat_4R_PBFB, PP$Nat_1_VB , PP$Nat_2R_VB , PP$Nat_3R_VB, PP$Nat_4R_VB, PP$FR.GFFB, PP$FR.GFPRB, PP$FR.CBB, PP$FR.PBPB, PP$FR.PBFB, PP$FR.VB)
mydata.corFN = cor(PP$corFN, use = "pairwise.complete.obs")
head(round(mydata.corFN,2))
## PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 -0.15 0.18
## PP.Nat_2R_GFFB 0.18 1.00 0.44 0.61
## PP.Nat_3R_GFFB -0.15 0.44 1.00 0.50
## PP.Nat_4R_GFFB 0.18 0.61 0.50 1.00
## PP.Nat_1_GFPRB 0.42 0.07 0.01 0.15
## PP.Nat_2R_GFPRB -0.03 0.29 0.34 0.49
## PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB 0.42 -0.03 -0.04 0.04
## PP.Nat_2R_GFFB 0.07 0.29 0.17 0.21
## PP.Nat_3R_GFFB 0.01 0.34 0.49 0.33
## PP.Nat_4R_GFFB 0.15 0.49 0.38 0.47
## PP.Nat_1_GFPRB 1.00 0.25 0.14 0.38
## PP.Nat_2R_GFPRB 0.25 1.00 0.51 0.68
## PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB 0.35 0.04 0.00 -0.01
## PP.Nat_2R_GFFB -0.32 0.22 0.21 0.13
## PP.Nat_3R_GFFB -0.41 0.07 0.01 0.08
## PP.Nat_4R_GFFB -0.36 0.14 0.05 0.20
## PP.Nat_1_GFPRB -0.10 -0.13 -0.13 -0.05
## PP.Nat_2R_GFPRB -0.34 -0.07 -0.07 0.00
## PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB 0.14 -0.26 -0.17 -0.21
## PP.Nat_2R_GFFB -0.27 0.04 0.06 0.15
## PP.Nat_3R_GFFB -0.36 0.14 0.10 0.09
## PP.Nat_4R_GFFB -0.23 0.00 -0.04 0.08
## PP.Nat_1_GFPRB -0.04 0.05 -0.33 0.03
## PP.Nat_2R_GFPRB -0.27 0.02 -0.21 0.04
## PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB 0.17 0.28 0.29 0.24
## PP.Nat_2R_GFFB -0.33 -0.11 -0.07 0.05
## PP.Nat_3R_GFFB -0.37 -0.11 -0.15 -0.11
## PP.Nat_4R_GFFB -0.35 0.03 0.05 -0.07
## PP.Nat_1_GFPRB -0.06 0.20 0.28 0.23
## PP.Nat_2R_GFPRB -0.38 0.07 0.09 0.05
## PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB 0.09 -0.22 -0.24 -0.21 0.42
## PP.Nat_2R_GFFB -0.09 0.12 0.12 0.15 0.01
## PP.Nat_3R_GFFB -0.04 0.22 0.20 0.27 -0.08
## PP.Nat_4R_GFFB -0.13 0.13 0.05 0.25 0.09
## PP.Nat_1_GFPRB 0.09 0.07 0.06 0.02 0.42
## PP.Nat_2R_GFPRB -0.16 0.35 0.28 0.24 0.08
## PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB 0.25 0.28 0.06 0.17 0.20
## PP.Nat_2R_GFFB -0.02 -0.33 -0.35 -0.35 -0.02
## PP.Nat_3R_GFFB 0.09 -0.39 -0.19 -0.40 -0.01
## PP.Nat_4R_GFFB 0.08 -0.33 -0.20 -0.36 -0.14
## PP.Nat_1_GFPRB 0.53 0.05 0.09 -0.08 0.29
## PP.Nat_2R_GFPRB 0.24 -0.39 -0.02 -0.30 -0.13
library("Hmisc")
mydata.rcorrFN = rcorr(as.matrix(mydata.corFN))
mydata.rcorrFN
## PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB 1.00 -0.16 -0.46 -0.13
## PP.Nat_2R_GFFB -0.16 1.00 0.80 0.88
## PP.Nat_3R_GFFB -0.46 0.80 1.00 0.84
## PP.Nat_4R_GFFB -0.13 0.88 0.84 1.00
## PP.Nat_1_GFPRB 0.51 0.08 0.05 0.23
## PP.Nat_2R_GFPRB -0.24 0.63 0.75 0.82
## PP.Nat_3R_GFPRB -0.32 0.62 0.84 0.78
## PP.Nat_4R_GFPRB -0.24 0.60 0.75 0.79
## PP.Nat_1_CBB 0.48 -0.71 -0.84 -0.76
## PP.Nat_2R_CBB -0.23 0.26 0.09 0.10
## PP.Nat_3R_CBB -0.25 0.28 0.11 0.10
## PP.Nat_4R_CBB -0.27 0.21 0.10 0.14
## PP.Nat_1_PBPB 0.18 -0.74 -0.76 -0.75
## PP.Nat_2R_PBPB -0.72 0.17 0.28 0.06
## PP.Nat_3R_PBPB -0.65 0.26 0.31 0.08
## PP.Nat_4R_PBPB -0.65 0.17 0.25 0.10
## PP.Nat_1_PBFB 0.24 -0.76 -0.80 -0.82
## PP.Nat_2R_PBFB 0.63 -0.24 -0.30 -0.10
## PP.Nat_3R_PBFB 0.65 -0.24 -0.33 -0.09
## PP.Nat_4R_PBFB 0.52 0.02 -0.12 0.04
## PP.Nat_1_VB 0.09 -0.54 -0.43 -0.54
## PP.Nat_2R_VB -0.67 0.41 0.62 0.44
## PP.Nat_3R_VB -0.68 0.38 0.58 0.34
## PP.Nat_4R_VB -0.69 0.33 0.55 0.37
## PP.FR.GFFB 0.74 -0.31 -0.38 -0.16
## PP.FR.GFPRB 0.44 -0.21 -0.09 -0.04
## PP.FR.CBB 0.50 -0.78 -0.87 -0.80
## PP.FR.PBPB 0.26 -0.79 -0.69 -0.69
## PP.FR.PBFB 0.38 -0.81 -0.82 -0.81
## PP.FR.VB 0.38 -0.52 -0.46 -0.51
## PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB 0.51 -0.24 -0.32 -0.24
## PP.Nat_2R_GFFB 0.08 0.63 0.62 0.60
## PP.Nat_3R_GFFB 0.05 0.75 0.84 0.75
## PP.Nat_4R_GFFB 0.23 0.82 0.78 0.79
## PP.Nat_1_GFPRB 1.00 0.40 0.26 0.47
## PP.Nat_2R_GFPRB 0.40 1.00 0.88 0.94
## PP.Nat_3R_GFPRB 0.26 0.88 1.00 0.87
## PP.Nat_4R_GFPRB 0.47 0.94 0.87 1.00
## PP.Nat_1_CBB -0.19 -0.80 -0.84 -0.79
## PP.Nat_2R_CBB -0.51 -0.20 -0.13 -0.17
## PP.Nat_3R_CBB -0.49 -0.15 -0.05 -0.14
## PP.Nat_4R_CBB -0.43 -0.11 -0.09 -0.05
## PP.Nat_1_PBPB -0.22 -0.75 -0.77 -0.69
## PP.Nat_2R_PBPB -0.37 0.01 0.07 0.11
## PP.Nat_3R_PBPB -0.61 -0.07 0.11 -0.01
## PP.Nat_4R_PBPB -0.30 0.04 0.04 0.17
## PP.Nat_1_PBFB -0.26 -0.83 -0.82 -0.79
## PP.Nat_2R_PBFB 0.52 0.01 -0.09 -0.08
## PP.Nat_3R_PBFB 0.59 0.02 -0.12 -0.04
## PP.Nat_4R_PBFB 0.52 0.15 0.07 0.06
## PP.Nat_1_VB 0.04 -0.45 -0.48 -0.39
## PP.Nat_2R_VB -0.01 0.59 0.61 0.64
## PP.Nat_3R_VB -0.12 0.49 0.54 0.51
## PP.Nat_4R_VB -0.12 0.43 0.46 0.51
## PP.FR.GFFB 0.64 -0.08 -0.20 -0.05
## PP.FR.GFPRB 0.78 0.22 0.10 0.26
## PP.FR.CBB -0.05 -0.80 -0.85 -0.78
## PP.FR.PBPB 0.02 -0.53 -0.61 -0.52
## PP.FR.PBFB -0.06 -0.71 -0.76 -0.71
## PP.FR.VB 0.34 -0.38 -0.40 -0.30
## PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB 0.48 -0.23 -0.25 -0.27
## PP.Nat_2R_GFFB -0.71 0.26 0.28 0.21
## PP.Nat_3R_GFFB -0.84 0.09 0.11 0.10
## PP.Nat_4R_GFFB -0.76 0.10 0.10 0.14
## PP.Nat_1_GFPRB -0.19 -0.51 -0.49 -0.43
## PP.Nat_2R_GFPRB -0.80 -0.20 -0.15 -0.11
## PP.Nat_3R_GFPRB -0.84 -0.13 -0.05 -0.09
## PP.Nat_4R_GFPRB -0.79 -0.17 -0.14 -0.05
## PP.Nat_1_CBB 1.00 0.17 0.08 0.17
## PP.Nat_2R_CBB 0.17 1.00 0.92 0.90
## PP.Nat_3R_CBB 0.08 0.92 1.00 0.83
## PP.Nat_4R_CBB 0.17 0.90 0.83 1.00
## PP.Nat_1_PBPB 0.75 -0.04 -0.12 0.00
## PP.Nat_2R_PBPB -0.28 0.49 0.47 0.43
## PP.Nat_3R_PBPB -0.27 0.47 0.48 0.37
## PP.Nat_4R_PBPB -0.26 0.25 0.19 0.34
## PP.Nat_1_PBFB 0.85 0.07 0.03 0.10
## PP.Nat_2R_PBFB 0.14 -0.67 -0.65 -0.65
## PP.Nat_3R_PBFB 0.15 -0.59 -0.57 -0.53
## PP.Nat_4R_PBFB -0.11 -0.50 -0.44 -0.58
## PP.Nat_1_VB 0.40 -0.36 -0.41 -0.29
## PP.Nat_2R_VB -0.73 -0.05 -0.03 0.03
## PP.Nat_3R_VB -0.65 -0.03 0.00 0.00
## PP.Nat_4R_VB -0.59 -0.04 -0.03 0.09
## PP.FR.GFFB 0.34 -0.58 -0.64 -0.51
## PP.FR.GFPRB 0.06 -0.63 -0.61 -0.54
## PP.FR.CBB 0.93 -0.06 -0.13 -0.06
## PP.FR.PBPB 0.70 -0.19 -0.28 -0.12
## PP.FR.PBFB 0.80 -0.24 -0.30 -0.23
## PP.FR.VB 0.43 -0.48 -0.53 -0.41
## PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB 0.18 -0.72 -0.65 -0.65
## PP.Nat_2R_GFFB -0.74 0.17 0.26 0.17
## PP.Nat_3R_GFFB -0.76 0.28 0.31 0.25
## PP.Nat_4R_GFFB -0.75 0.06 0.08 0.10
## PP.Nat_1_GFPRB -0.22 -0.37 -0.61 -0.30
## PP.Nat_2R_GFPRB -0.75 0.01 -0.07 0.04
## PP.Nat_3R_GFPRB -0.77 0.07 0.11 0.04
## PP.Nat_4R_GFPRB -0.69 0.11 -0.01 0.17
## PP.Nat_1_CBB 0.75 -0.28 -0.27 -0.26
## PP.Nat_2R_CBB -0.04 0.49 0.47 0.25
## PP.Nat_3R_CBB -0.12 0.47 0.48 0.19
## PP.Nat_4R_CBB 0.00 0.43 0.37 0.34
## PP.Nat_1_PBPB 1.00 0.02 -0.13 0.14
## PP.Nat_2R_PBPB 0.02 1.00 0.78 0.79
## PP.Nat_3R_PBPB -0.13 0.78 1.00 0.67
## PP.Nat_4R_PBPB 0.14 0.79 0.67 1.00
## PP.Nat_1_PBFB 0.92 -0.05 -0.15 -0.03
## PP.Nat_2R_PBFB 0.02 -0.81 -0.76 -0.63
## PP.Nat_3R_PBFB 0.05 -0.75 -0.86 -0.60
## PP.Nat_4R_PBFB -0.35 -0.62 -0.55 -0.66
## PP.Nat_1_VB 0.75 -0.06 -0.23 0.13
## PP.Nat_2R_VB -0.39 0.53 0.45 0.52
## PP.Nat_3R_VB -0.45 0.48 0.60 0.47
## PP.Nat_4R_VB -0.14 0.60 0.49 0.72
## PP.FR.GFFB 0.27 -0.68 -0.75 -0.46
## PP.FR.GFPRB 0.06 -0.44 -0.71 -0.34
## PP.FR.CBB 0.79 -0.35 -0.39 -0.30
## PP.FR.PBPB 0.82 -0.21 -0.45 -0.13
## PP.FR.PBFB 0.83 -0.32 -0.41 -0.25
## PP.FR.VB 0.60 -0.36 -0.55 -0.15
## PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB 0.24 0.63 0.65 0.52
## PP.Nat_2R_GFFB -0.76 -0.24 -0.24 0.02
## PP.Nat_3R_GFFB -0.80 -0.30 -0.33 -0.12
## PP.Nat_4R_GFFB -0.82 -0.10 -0.09 0.04
## PP.Nat_1_GFPRB -0.26 0.52 0.59 0.52
## PP.Nat_2R_GFPRB -0.83 0.01 0.02 0.15
## PP.Nat_3R_GFPRB -0.82 -0.09 -0.12 0.07
## PP.Nat_4R_GFPRB -0.79 -0.08 -0.04 0.06
## PP.Nat_1_CBB 0.85 0.14 0.15 -0.11
## PP.Nat_2R_CBB 0.07 -0.67 -0.59 -0.50
## PP.Nat_3R_CBB 0.03 -0.65 -0.57 -0.44
## PP.Nat_4R_CBB 0.10 -0.65 -0.53 -0.58
## PP.Nat_1_PBPB 0.92 0.02 0.05 -0.35
## PP.Nat_2R_PBPB -0.05 -0.81 -0.75 -0.62
## PP.Nat_3R_PBPB -0.15 -0.76 -0.86 -0.55
## PP.Nat_4R_PBPB -0.03 -0.63 -0.60 -0.66
## PP.Nat_1_PBFB 1.00 -0.03 0.02 -0.33
## PP.Nat_2R_PBFB -0.03 1.00 0.89 0.80
## PP.Nat_3R_PBFB 0.02 0.89 1.00 0.76
## PP.Nat_4R_PBFB -0.33 0.80 0.76 1.00
## PP.Nat_1_VB 0.68 0.09 0.10 -0.27
## PP.Nat_2R_VB -0.45 -0.51 -0.48 -0.36
## PP.Nat_3R_VB -0.46 -0.53 -0.61 -0.35
## PP.Nat_4R_VB -0.28 -0.58 -0.53 -0.57
## PP.FR.GFFB 0.21 0.72 0.73 0.49
## PP.FR.GFPRB 0.02 0.51 0.59 0.35
## PP.FR.CBB 0.85 0.27 0.29 0.01
## PP.FR.PBPB 0.76 0.22 0.27 -0.13
## PP.FR.PBFB 0.84 0.27 0.29 -0.02
## PP.FR.VB 0.54 0.40 0.44 0.07
## PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB 0.09 -0.67 -0.68 -0.69 0.74
## PP.Nat_2R_GFFB -0.54 0.41 0.38 0.33 -0.31
## PP.Nat_3R_GFFB -0.43 0.62 0.58 0.55 -0.38
## PP.Nat_4R_GFFB -0.54 0.44 0.34 0.37 -0.16
## PP.Nat_1_GFPRB 0.04 -0.01 -0.12 -0.12 0.64
## PP.Nat_2R_GFPRB -0.45 0.59 0.49 0.43 -0.08
## PP.Nat_3R_GFPRB -0.48 0.61 0.54 0.46 -0.20
## PP.Nat_4R_GFPRB -0.39 0.64 0.51 0.51 -0.05
## PP.Nat_1_CBB 0.40 -0.73 -0.65 -0.59 0.34
## PP.Nat_2R_CBB -0.36 -0.05 -0.03 -0.04 -0.58
## PP.Nat_3R_CBB -0.41 -0.03 0.00 -0.03 -0.64
## PP.Nat_4R_CBB -0.29 0.03 0.00 0.09 -0.51
## PP.Nat_1_PBPB 0.75 -0.39 -0.45 -0.14 0.27
## PP.Nat_2R_PBPB -0.06 0.53 0.48 0.60 -0.68
## PP.Nat_3R_PBPB -0.23 0.45 0.60 0.49 -0.75
## PP.Nat_4R_PBPB 0.13 0.52 0.47 0.72 -0.46
## PP.Nat_1_PBFB 0.68 -0.45 -0.46 -0.28 0.21
## PP.Nat_2R_PBFB 0.09 -0.51 -0.53 -0.58 0.72
## PP.Nat_3R_PBFB 0.10 -0.48 -0.61 -0.53 0.73
## PP.Nat_4R_PBFB -0.27 -0.36 -0.35 -0.57 0.49
## PP.Nat_1_VB 1.00 0.00 -0.12 0.17 0.34
## PP.Nat_2R_VB 0.00 1.00 0.83 0.88 -0.45
## PP.Nat_3R_VB -0.12 0.83 1.00 0.76 -0.59
## PP.Nat_4R_VB 0.17 0.88 0.76 1.00 -0.47
## PP.FR.GFFB 0.34 -0.45 -0.59 -0.47 1.00
## PP.FR.GFPRB 0.35 -0.09 -0.22 -0.11 0.70
## PP.FR.CBB 0.52 -0.72 -0.63 -0.56 0.46
## PP.FR.PBPB 0.66 -0.47 -0.52 -0.27 0.44
## PP.FR.PBFB 0.64 -0.56 -0.52 -0.42 0.45
## PP.FR.VB 0.75 -0.27 -0.37 -0.16 0.58
## PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB 0.44 0.50 0.26 0.38 0.38
## PP.Nat_2R_GFFB -0.21 -0.78 -0.79 -0.81 -0.52
## PP.Nat_3R_GFFB -0.09 -0.87 -0.69 -0.82 -0.46
## PP.Nat_4R_GFFB -0.04 -0.80 -0.69 -0.81 -0.51
## PP.Nat_1_GFPRB 0.78 -0.05 0.02 -0.06 0.34
## PP.Nat_2R_GFPRB 0.22 -0.80 -0.53 -0.71 -0.38
## PP.Nat_3R_GFPRB 0.10 -0.85 -0.61 -0.76 -0.40
## PP.Nat_4R_GFPRB 0.26 -0.78 -0.52 -0.71 -0.30
## PP.Nat_1_CBB 0.06 0.93 0.70 0.80 0.43
## PP.Nat_2R_CBB -0.63 -0.06 -0.19 -0.24 -0.48
## PP.Nat_3R_CBB -0.61 -0.13 -0.28 -0.30 -0.53
## PP.Nat_4R_CBB -0.54 -0.06 -0.12 -0.23 -0.41
## PP.Nat_1_PBPB 0.06 0.79 0.82 0.83 0.60
## PP.Nat_2R_PBPB -0.44 -0.35 -0.21 -0.32 -0.36
## PP.Nat_3R_PBPB -0.71 -0.39 -0.45 -0.41 -0.55
## PP.Nat_4R_PBPB -0.34 -0.30 -0.13 -0.25 -0.15
## PP.Nat_1_PBFB 0.02 0.85 0.76 0.84 0.54
## PP.Nat_2R_PBFB 0.51 0.27 0.22 0.27 0.40
## PP.Nat_3R_PBFB 0.59 0.29 0.27 0.29 0.44
## PP.Nat_4R_PBFB 0.35 0.01 -0.13 -0.02 0.07
## PP.Nat_1_VB 0.35 0.52 0.66 0.64 0.75
## PP.Nat_2R_VB -0.09 -0.72 -0.47 -0.56 -0.27
## PP.Nat_3R_VB -0.22 -0.63 -0.52 -0.52 -0.37
## PP.Nat_4R_VB -0.11 -0.56 -0.27 -0.42 -0.16
## PP.FR.GFFB 0.70 0.46 0.44 0.45 0.58
## PP.FR.GFPRB 1.00 0.21 0.39 0.30 0.64
## PP.FR.CBB 0.21 1.00 0.80 0.89 0.57
## PP.FR.PBPB 0.39 0.80 1.00 0.90 0.73
## PP.FR.PBFB 0.30 0.89 0.90 1.00 0.74
## PP.FR.VB 0.64 0.57 0.73 0.74 1.00
##
## n= 30
##
##
## P
## PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB 0.4131 0.0110 0.4936
## PP.Nat_2R_GFFB 0.4131 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0110 0.0000 0.0000
## PP.Nat_4R_GFFB 0.4936 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0037 0.6814 0.7791 0.2308
## PP.Nat_2R_GFPRB 0.2061 0.0002 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0891 0.0002 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.1981 0.0004 0.0000 0.0000
## PP.Nat_1_CBB 0.0066 0.0000 0.0000 0.0000
## PP.Nat_2R_CBB 0.2242 0.1703 0.6348 0.6156
## PP.Nat_3R_CBB 0.1826 0.1299 0.5534 0.5862
## PP.Nat_4R_CBB 0.1501 0.2684 0.5845 0.4487
## PP.Nat_1_PBPB 0.3376 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.3720 0.1297 0.7568
## PP.Nat_3R_PBPB 0.0001 0.1637 0.0979 0.6597
## PP.Nat_4R_PBPB 0.0000 0.3701 0.1875 0.6092
## PP.Nat_1_PBFB 0.1963 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0002 0.1964 0.1066 0.5815
## PP.Nat_3R_PBFB 0.0000 0.2077 0.0743 0.6478
## PP.Nat_4R_PBFB 0.0030 0.9273 0.5187 0.8535
## PP.Nat_1_VB 0.6258 0.0023 0.0171 0.0020
## PP.Nat_2R_VB 0.0000 0.0245 0.0002 0.0158
## PP.Nat_3R_VB 0.0000 0.0379 0.0008 0.0636
## PP.Nat_4R_VB 0.0000 0.0762 0.0015 0.0422
## PP.FR.GFFB 0.0000 0.0985 0.0364 0.3944
## PP.FR.GFPRB 0.0148 0.2621 0.6310 0.8509
## PP.FR.CBB 0.0049 0.0000 0.0000 0.0000
## PP.FR.PBPB 0.1713 0.0000 0.0000 0.0000
## PP.FR.PBFB 0.0380 0.0000 0.0000 0.0000
## PP.FR.VB 0.0406 0.0033 0.0111 0.0044
## PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB 0.0037 0.2061 0.0891 0.1981
## PP.Nat_2R_GFFB 0.6814 0.0002 0.0002 0.0004
## PP.Nat_3R_GFFB 0.7791 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.2308 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0274 0.1590 0.0090
## PP.Nat_2R_GFPRB 0.0274 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.1590 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.0090 0.0000 0.0000
## PP.Nat_1_CBB 0.3105 0.0000 0.0000 0.0000
## PP.Nat_2R_CBB 0.0041 0.3014 0.4907 0.3621
## PP.Nat_3R_CBB 0.0056 0.4213 0.8037 0.4663
## PP.Nat_4R_CBB 0.0182 0.5765 0.6514 0.8097
## PP.Nat_1_PBPB 0.2446 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0449 0.9376 0.7175 0.5483
## PP.Nat_3R_PBPB 0.0003 0.7122 0.5753 0.9688
## PP.Nat_4R_PBPB 0.1087 0.8509 0.8354 0.3568
## PP.Nat_1_PBFB 0.1603 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0032 0.9478 0.6240 0.6832
## PP.Nat_3R_PBFB 0.0006 0.9051 0.5321 0.8529
## PP.Nat_4R_PBFB 0.0032 0.4238 0.6967 0.7454
## PP.Nat_1_VB 0.8487 0.0118 0.0068 0.0327
## PP.Nat_2R_VB 0.9488 0.0006 0.0004 0.0001
## PP.Nat_3R_VB 0.5124 0.0065 0.0023 0.0042
## PP.Nat_4R_VB 0.5111 0.0173 0.0113 0.0039
## PP.FR.GFFB 0.0001 0.6799 0.2939 0.8038
## PP.FR.GFPRB 0.0000 0.2519 0.5921 0.1694
## PP.FR.CBB 0.7877 0.0000 0.0000 0.0000
## PP.FR.PBPB 0.9216 0.0024 0.0003 0.0034
## PP.FR.PBFB 0.7664 0.0000 0.0000 0.0000
## PP.FR.VB 0.0659 0.0385 0.0303 0.1084
## PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB 0.0066 0.2242 0.1826 0.1501
## PP.Nat_2R_GFFB 0.0000 0.1703 0.1299 0.2684
## PP.Nat_3R_GFFB 0.0000 0.6348 0.5534 0.5845
## PP.Nat_4R_GFFB 0.0000 0.6156 0.5862 0.4487
## PP.Nat_1_GFPRB 0.3105 0.0041 0.0056 0.0182
## PP.Nat_2R_GFPRB 0.0000 0.3014 0.4213 0.5765
## PP.Nat_3R_GFPRB 0.0000 0.4907 0.8037 0.6514
## PP.Nat_4R_GFPRB 0.0000 0.3621 0.4663 0.8097
## PP.Nat_1_CBB 0.3835 0.6689 0.3835
## PP.Nat_2R_CBB 0.3835 0.0000 0.0000
## PP.Nat_3R_CBB 0.6689 0.0000 0.0000
## PP.Nat_4R_CBB 0.3835 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.8172 0.5348 0.9969
## PP.Nat_2R_PBPB 0.1295 0.0065 0.0086 0.0166
## PP.Nat_3R_PBPB 0.1463 0.0087 0.0073 0.0470
## PP.Nat_4R_PBPB 0.1685 0.1917 0.3088 0.0678
## PP.Nat_1_PBFB 0.0000 0.7019 0.8645 0.6167
## PP.Nat_2R_PBFB 0.4730 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.4265 0.0006 0.0010 0.0029
## PP.Nat_4R_PBFB 0.5511 0.0050 0.0143 0.0008
## PP.Nat_1_VB 0.0285 0.0487 0.0247 0.1143
## PP.Nat_2R_VB 0.0000 0.7992 0.8947 0.8869
## PP.Nat_3R_VB 0.0001 0.8935 0.9949 0.9868
## PP.Nat_4R_VB 0.0006 0.8508 0.8871 0.6247
## PP.FR.GFFB 0.0645 0.0008 0.0001 0.0041
## PP.FR.GFPRB 0.7672 0.0002 0.0003 0.0023
## PP.FR.CBB 0.0000 0.7534 0.4838 0.7334
## PP.FR.PBPB 0.0000 0.3034 0.1365 0.5349
## PP.FR.PBFB 0.0000 0.2092 0.1024 0.2276
## PP.FR.VB 0.0190 0.0076 0.0025 0.0254
## PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB 0.3376 0.0000 0.0001 0.0000
## PP.Nat_2R_GFFB 0.0000 0.3720 0.1637 0.3701
## PP.Nat_3R_GFFB 0.0000 0.1297 0.0979 0.1875
## PP.Nat_4R_GFFB 0.0000 0.7568 0.6597 0.6092
## PP.Nat_1_GFPRB 0.2446 0.0449 0.0003 0.1087
## PP.Nat_2R_GFPRB 0.0000 0.9376 0.7122 0.8509
## PP.Nat_3R_GFPRB 0.0000 0.7175 0.5753 0.8354
## PP.Nat_4R_GFPRB 0.0000 0.5483 0.9688 0.3568
## PP.Nat_1_CBB 0.0000 0.1295 0.1463 0.1685
## PP.Nat_2R_CBB 0.8172 0.0065 0.0087 0.1917
## PP.Nat_3R_CBB 0.5348 0.0086 0.0073 0.3088
## PP.Nat_4R_CBB 0.9969 0.0166 0.0470 0.0678
## PP.Nat_1_PBPB 0.8961 0.4822 0.4477
## PP.Nat_2R_PBPB 0.8961 0.0000 0.0000
## PP.Nat_3R_PBPB 0.4822 0.0000 0.0000
## PP.Nat_4R_PBPB 0.4477 0.0000 0.0000
## PP.Nat_1_PBFB 0.0000 0.7902 0.4343 0.8715
## PP.Nat_2R_PBFB 0.9282 0.0000 0.0000 0.0002
## PP.Nat_3R_PBFB 0.7898 0.0000 0.0000 0.0005
## PP.Nat_4R_PBFB 0.0606 0.0003 0.0016 0.0000
## PP.Nat_1_VB 0.0000 0.7408 0.2193 0.4959
## PP.Nat_2R_VB 0.0331 0.0025 0.0136 0.0033
## PP.Nat_3R_VB 0.0120 0.0073 0.0005 0.0092
## PP.Nat_4R_VB 0.4566 0.0005 0.0059 0.0000
## PP.FR.GFFB 0.1508 0.0000 0.0000 0.0106
## PP.FR.GFPRB 0.7510 0.0145 0.0000 0.0703
## PP.FR.CBB 0.0000 0.0586 0.0343 0.1120
## PP.FR.PBPB 0.0000 0.2545 0.0130 0.5032
## PP.FR.PBFB 0.0000 0.0874 0.0252 0.1847
## PP.FR.VB 0.0005 0.0512 0.0016 0.4409
## PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB 0.1963 0.0002 0.0000 0.0030
## PP.Nat_2R_GFFB 0.0000 0.1964 0.2077 0.9273
## PP.Nat_3R_GFFB 0.0000 0.1066 0.0743 0.5187
## PP.Nat_4R_GFFB 0.0000 0.5815 0.6478 0.8535
## PP.Nat_1_GFPRB 0.1603 0.0032 0.0006 0.0032
## PP.Nat_2R_GFPRB 0.0000 0.9478 0.9051 0.4238
## PP.Nat_3R_GFPRB 0.0000 0.6240 0.5321 0.6967
## PP.Nat_4R_GFPRB 0.0000 0.6832 0.8529 0.7454
## PP.Nat_1_CBB 0.0000 0.4730 0.4265 0.5511
## PP.Nat_2R_CBB 0.7019 0.0000 0.0006 0.0050
## PP.Nat_3R_CBB 0.8645 0.0000 0.0010 0.0143
## PP.Nat_4R_CBB 0.6167 0.0000 0.0029 0.0008
## PP.Nat_1_PBPB 0.0000 0.9282 0.7898 0.0606
## PP.Nat_2R_PBPB 0.7902 0.0000 0.0000 0.0003
## PP.Nat_3R_PBPB 0.4343 0.0000 0.0000 0.0016
## PP.Nat_4R_PBPB 0.8715 0.0002 0.0005 0.0000
## PP.Nat_1_PBFB 0.8543 0.9165 0.0752
## PP.Nat_2R_PBFB 0.8543 0.0000 0.0000
## PP.Nat_3R_PBFB 0.9165 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0752 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.6184 0.5906 0.1497
## PP.Nat_2R_VB 0.0132 0.0042 0.0070 0.0516
## PP.Nat_3R_VB 0.0099 0.0029 0.0003 0.0564
## PP.Nat_4R_VB 0.1349 0.0008 0.0024 0.0011
## PP.FR.GFFB 0.2705 0.0000 0.0000 0.0058
## PP.FR.GFPRB 0.9025 0.0038 0.0006 0.0574
## PP.FR.CBB 0.0000 0.1512 0.1144 0.9669
## PP.FR.PBPB 0.0000 0.2467 0.1506 0.4894
## PP.FR.PBFB 0.0000 0.1519 0.1140 0.9038
## PP.FR.VB 0.0023 0.0287 0.0158 0.7094
## PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB 0.6258 0.0000 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0023 0.0245 0.0379 0.0762 0.0985
## PP.Nat_3R_GFFB 0.0171 0.0002 0.0008 0.0015 0.0364
## PP.Nat_4R_GFFB 0.0020 0.0158 0.0636 0.0422 0.3944
## PP.Nat_1_GFPRB 0.8487 0.9488 0.5124 0.5111 0.0001
## PP.Nat_2R_GFPRB 0.0118 0.0006 0.0065 0.0173 0.6799
## PP.Nat_3R_GFPRB 0.0068 0.0004 0.0023 0.0113 0.2939
## PP.Nat_4R_GFPRB 0.0327 0.0001 0.0042 0.0039 0.8038
## PP.Nat_1_CBB 0.0285 0.0000 0.0001 0.0006 0.0645
## PP.Nat_2R_CBB 0.0487 0.7992 0.8935 0.8508 0.0008
## PP.Nat_3R_CBB 0.0247 0.8947 0.9949 0.8871 0.0001
## PP.Nat_4R_CBB 0.1143 0.8869 0.9868 0.6247 0.0041
## PP.Nat_1_PBPB 0.0000 0.0331 0.0120 0.4566 0.1508
## PP.Nat_2R_PBPB 0.7408 0.0025 0.0073 0.0005 0.0000
## PP.Nat_3R_PBPB 0.2193 0.0136 0.0005 0.0059 0.0000
## PP.Nat_4R_PBPB 0.4959 0.0033 0.0092 0.0000 0.0106
## PP.Nat_1_PBFB 0.0000 0.0132 0.0099 0.1349 0.2705
## PP.Nat_2R_PBFB 0.6184 0.0042 0.0029 0.0008 0.0000
## PP.Nat_3R_PBFB 0.5906 0.0070 0.0003 0.0024 0.0000
## PP.Nat_4R_PBFB 0.1497 0.0516 0.0564 0.0011 0.0058
## PP.Nat_1_VB 0.9812 0.5148 0.3695 0.0700
## PP.Nat_2R_VB 0.9812 0.0000 0.0000 0.0125
## PP.Nat_3R_VB 0.5148 0.0000 0.0000 0.0006
## PP.Nat_4R_VB 0.3695 0.0000 0.0000 0.0091
## PP.FR.GFFB 0.0700 0.0125 0.0006 0.0091
## PP.FR.GFPRB 0.0558 0.6318 0.2444 0.5565 0.0000
## PP.FR.CBB 0.0030 0.0000 0.0002 0.0012 0.0101
## PP.FR.PBPB 0.0000 0.0091 0.0029 0.1435 0.0156
## PP.FR.PBFB 0.0002 0.0013 0.0033 0.0211 0.0124
## PP.FR.VB 0.0000 0.1416 0.0470 0.3893 0.0008
## PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB 0.0148 0.0049 0.1713 0.0380 0.0406
## PP.Nat_2R_GFFB 0.2621 0.0000 0.0000 0.0000 0.0033
## PP.Nat_3R_GFFB 0.6310 0.0000 0.0000 0.0000 0.0111
## PP.Nat_4R_GFFB 0.8509 0.0000 0.0000 0.0000 0.0044
## PP.Nat_1_GFPRB 0.0000 0.7877 0.9216 0.7664 0.0659
## PP.Nat_2R_GFPRB 0.2519 0.0000 0.0024 0.0000 0.0385
## PP.Nat_3R_GFPRB 0.5921 0.0000 0.0003 0.0000 0.0303
## PP.Nat_4R_GFPRB 0.1694 0.0000 0.0034 0.0000 0.1084
## PP.Nat_1_CBB 0.7672 0.0000 0.0000 0.0000 0.0190
## PP.Nat_2R_CBB 0.0002 0.7534 0.3034 0.2092 0.0076
## PP.Nat_3R_CBB 0.0003 0.4838 0.1365 0.1024 0.0025
## PP.Nat_4R_CBB 0.0023 0.7334 0.5349 0.2276 0.0254
## PP.Nat_1_PBPB 0.7510 0.0000 0.0000 0.0000 0.0005
## PP.Nat_2R_PBPB 0.0145 0.0586 0.2545 0.0874 0.0512
## PP.Nat_3R_PBPB 0.0000 0.0343 0.0130 0.0252 0.0016
## PP.Nat_4R_PBPB 0.0703 0.1120 0.5032 0.1847 0.4409
## PP.Nat_1_PBFB 0.9025 0.0000 0.0000 0.0000 0.0023
## PP.Nat_2R_PBFB 0.0038 0.1512 0.2467 0.1519 0.0287
## PP.Nat_3R_PBFB 0.0006 0.1144 0.1506 0.1140 0.0158
## PP.Nat_4R_PBFB 0.0574 0.9669 0.4894 0.9038 0.7094
## PP.Nat_1_VB 0.0558 0.0030 0.0000 0.0002 0.0000
## PP.Nat_2R_VB 0.6318 0.0000 0.0091 0.0013 0.1416
## PP.Nat_3R_VB 0.2444 0.0002 0.0029 0.0033 0.0470
## PP.Nat_4R_VB 0.5565 0.0012 0.1435 0.0211 0.3893
## PP.FR.GFFB 0.0000 0.0101 0.0156 0.0124 0.0008
## PP.FR.GFPRB 0.2685 0.0349 0.1020 0.0002
## PP.FR.CBB 0.2685 0.0000 0.0000 0.0011
## PP.FR.PBPB 0.0349 0.0000 0.0000 0.0000
## PP.FR.PBFB 0.1020 0.0000 0.0000 0.0000
## PP.FR.VB 0.0002 0.0011 0.0000 0.0000
library(corrplot)
corrplot(mydata.corFN, method="color")

corrplot(mydata.corFN, addCoef.col = 1, number.cex = 0.3, method = 'number')

Variable Checks & Balances
##Naturalness Scales and Scores
PP$Naturalness_Score_GFFB_AN
## NULL
PP$Naturalness_Score_GFFB_HI
## NULL
PP$Naturalness_Score_GFPRB_AN
## NULL
PP$Naturalness_Score_GFPRB_HI
## NULL
PP$Naturalness_Score_CBB_AN
## NULL
PP$Naturalness_Score_CBB_HI
## NULL
PP$Naturalness_Score_PBPB_AN
## NULL
PP$Naturalness_Score_PBPB_HI
## NULL
PP$Naturalness_Score_PBFB_AN
## NULL
PP$Naturalness_Score_PBFB_HI
## NULL
PP$Naturalness_Score_VB_AN
## NULL
PP$Naturalness_Score_VB_HI
## NULL
PP$Naturalness_Score_GFFB_Tot
## [1] NaN NaN NaN 45.50000 23.00000 NaN 100.00000
## [8] 62.50000 100.00000 50.00000 88.00000 99.50000 100.00000 88.00000
## [15] 100.00000 99.50000 51.50000 24.25000 42.25000 80.75000 67.50000
## [22] 76.00000 41.50000 25.00000 62.00000 33.00000 32.25000 NaN
## [29] NaN NaN NaN NaN NaN NaN NaN
## [36] NaN NaN NaN NaN NaN NaN NaN
## [43] NaN NaN NaN NaN NaN NaN NaN
## [50] NaN NaN NaN NaN NaN NaN NaN
## [57] NaN 51.25000 NaN NaN NaN 84.75000 NaN
## [64] NaN NaN NaN NaN NaN NaN NaN
## [71] NaN 74.50000 79.75000 75.00000 NaN 25.00000 61.75000
## [78] NaN NaN 78.75000 NaN NaN NaN NaN
## [85] 99.25000 NaN NaN NaN NaN 30.25000 93.25000
## [92] NaN NaN NaN NaN 23.50000 NaN NaN
## [99] 41.00000 91.50000 NaN NaN NaN NaN 99.25000
## [106] 71.25000 NaN NaN 77.75000 25.75000 9.75000 NaN
## [113] 89.00000 NaN NaN NaN NaN NaN NaN
## [120] NaN NaN NaN 68.50000 NaN 62.75000 NaN
## [127] NaN 52.00000 NaN 70.25000 38.75000 NaN NaN
## [134] NaN 95.75000 NaN NaN 90.00000 44.25000 NaN
## [141] NaN NaN 50.00000 NaN 64.50000 46.50000 26.25000
## [148] NaN 85.00000 NaN 75.75000 NaN 35.00000 NaN
## [155] NaN NaN NaN 72.50000 57.00000 NaN NaN
## [162] NaN NaN NaN 49.00000 NaN NaN NaN
## [169] 60.75000 NaN NaN 40.00000 NaN NaN 39.00000
## [176] NaN 75.00000 98.25000 0.00000 NaN NaN NaN
## [183] NaN NaN NaN 64.75000 NaN NaN 63.75000
## [190] 40.50000 NaN NaN NaN 84.75000 34.50000 33.25000
## [197] 28.50000 NaN 69.50000 NaN NaN 34.75000 57.25000
## [204] 60.00000 NaN NaN 57.25000 40.75000 NaN NaN
## [211] NaN NaN NaN NaN NaN NaN 84.50000
## [218] NaN NaN NaN 59.25000 NaN NaN NaN
## [225] NaN NaN NaN NaN 49.50000 NaN NaN
## [232] 58.00000 NaN NaN NaN NaN 63.25000 NaN
## [239] 44.50000 NaN 39.00000 53.25000 NaN NaN NaN
## [246] NaN NaN NaN NaN NaN 75.00000 NaN
## [253] NaN NaN 54.00000 49.00000 64.00000 57.00000 NaN
## [260] NaN NaN 57.50000 NaN 0.00000 NaN 41.25000
## [267] 50.00000 NaN 64.50000 NaN 44.25000 81.75000 NaN
## [274] NaN NaN NaN 26.50000 53.00000 NaN NaN
## [281] NaN NaN NaN 32.25000 47.00000 23.75000 NaN
## [288] NaN NaN NaN 36.75000 NaN NaN 73.75000
## [295] NaN NaN NaN 57.00000 69.50000 65.00000 NaN
## [302] 46.50000 NaN NaN 42.25000 NaN NaN NaN
## [309] NaN 44.75000 48.50000 54.50000 NaN NaN 46.25000
## [316] 18.75000 NaN NaN NaN NaN 49.75000 49.00000
## [323] NaN NaN NaN NaN NaN NaN NaN
## [330] 45.50000 25.00000 NaN NaN NaN 38.00000 NaN
## [337] NaN NaN NaN 45.25000 47.75000 41.75000 47.50000
## [344] NaN 49.00000 NaN NaN NaN NaN NaN
## [351] NaN 57.00000 NaN NaN NaN NaN NaN
## [358] 47.25000 NaN NaN 34.75000 47.75000 NaN NaN
## [365] 41.50000 NaN NaN NaN NaN NaN 41.75000
## [372] 45.00000 NaN 40.00000 NaN NaN NaN NaN
## [379] NaN NaN 68.00000 NaN NaN NaN 51.00000
## [386] 33.00000 NaN NaN 38.75000 NaN NaN NaN
## [393] 55.00000 46.75000 33.75000 NaN 48.75000 40.75000 65.00000
## [400] 41.50000 38.25000 NaN 44.75000 57.50000 NaN 48.00000
## [407] 56.25000 NaN NaN 30.25000 NaN 63.50000 NaN
## [414] NaN 49.50000 NaN NaN NaN NaN 38.00000
## [421] NaN NaN NaN 51.50000 NaN NaN NaN
## [428] NaN 46.50000 37.00000 39.00000 NaN NaN NaN
## [435] 52.25000 38.50000 NaN 66.25000 41.50000 NaN NaN
## [442] NaN 27.25000 NaN 32.00000 NaN NaN NaN
## [449] 26.50000 43.75000 NaN 40.75000 NaN NaN 33.50000
## [456] 29.25000 NaN NaN NaN 37.75000 NaN 49.25000
## [463] NaN NaN NaN NaN NaN 50.50000 57.25000
## [470] 33.00000 NaN NaN 36.50000 32.00000 41.75000 NaN
## [477] NaN 32.00000 32.25000 NaN NaN NaN NaN
## [484] NaN NaN NaN 34.25000 NaN 37.50000 31.75000
## [491] 28.75000 NaN NaN 32.25000 NaN NaN NaN
## [498] 22.50000 NaN 37.75000 NaN NaN NaN NaN
## [505] NaN 27.00000 62.50000 26.25000 75.00000 25.25000 25.00000
## [512] NaN NaN NaN NaN NaN 7.00000 62.50000
## [519] 100.00000 66.50000 79.25000 100.00000 100.00000 62.25000 76.00000
## [526] 50.25000 72.50000 25.00000 75.00000 75.00000 99.25000 100.00000
## [533] 80.00000 80.50000 100.00000 75.00000 36.25000 99.25000 59.50000
## [540] 66.25000 60.50000 92.75000 98.50000 71.25000 82.25000 99.25000
## [547] 78.00000 19.50000 94.50000 100.00000 24.50000 87.25000 25.25000
## [554] 58.50000 63.25000 77.00000 73.25000 64.50000 48.25000 74.50000
## [561] 20.25000 67.75000 93.00000 40.00000 69.25000 85.00000 69.50000
## [568] 38.25000 66.25000 87.25000 19.75000 38.50000 33.00000 78.50000
## [575] 100.00000 79.00000 37.25000 62.25000 25.00000 52.75000 75.00000
## [582] 27.25000 82.50000 31.00000 31.25000 45.75000 48.00000 21.50000
## [589] 33.25000 30.50000 52.00000 32.50000 57.75000 71.50000 0.00000
## [596] 72.50000 98.50000 29.50000 52.50000 59.50000 60.00000 14.00000
## [603] 49.25000 63.25000 55.25000 76.00000 63.25000 33.75000 26.00000
## [610] 36.50000 57.25000 80.25000 48.75000 0.00000 25.75000 66.75000
## [617] 57.00000 75.75000 53.00000 49.00000 49.75000 52.25000 80.75000
## [624] 37.25000 62.75000 32.00000 58.75000 45.25000 59.25000 54.50000
## [631] 58.00000 31.75000 40.00000 63.00000 64.50000 30.00000 49.25000
## [638] 52.25000 55.75000 37.75000 51.25000 52.75000 79.00000 55.25000
## [645] 48.00000 52.25000 53.75000 51.00000 49.75000 45.50000 42.75000
## [652] 53.25000 40.75000 25.00000 49.50000 54.75000 25.00000 50.25000
## [659] 49.50000 49.50000 49.25000 47.50000 58.00000 49.50000 51.25000
## [666] 49.00000 48.50000 46.00000 49.25000 49.00000 49.00000 49.00000
## [673] 49.00000 48.50000 62.25000 28.00000 48.75000 48.75000 48.75000
## [680] 46.25000 47.25000 55.00000 52.50000 47.25000 47.75000 79.50000
## [687] 36.00000 44.75000 22.50000 46.75000 49.00000 52.00000 37.25000
## [694] 39.75000 42.00000 58.00000 43.50000 50.00000 42.25000 58.00000
## [701] 47.25000 49.50000 50.25000 49.75000 52.75000 94.25000 49.25000
## [708] 39.00000 55.25000 69.25000 48.75000 43.25000 45.66667 49.50000
## [715] 16.75000 59.00000 51.00000 56.25000 43.75000 35.50000 53.75000
## [722] 27.25000 37.75000 100.00000 46.50000 19.75000 48.50000 35.00000
## [729] 36.75000 43.50000 43.50000 39.25000 66.00000 34.75000 67.75000
## [736] 42.50000 35.50000 51.00000 41.50000 35.50000 34.75000 23.75000
## [743] 34.00000 52.25000 41.75000 30.75000 20.00000 43.25000 41.25000
## [750] 30.75000 50.25000 68.25000 40.50000 75.75000 37.50000 27.75000
## [757] 37.25000 47.50000 25.00000 36.25000 1.00000 31.50000 40.25000
## [764] 25.75000 40.25000 37.75000 30.75000 31.25000 42.00000 44.25000
## [771] 38.50000 18.00000 32.25000 25.00000 76.00000 31.00000 33.25000
## [778] 39.75000 37.50000 29.50000 43.50000 47.75000 37.50000 33.00000
## [785] 51.00000 29.50000 50.25000 47.50000 32.75000 10.00000 28.00000
## [792] 31.25000 31.50000 31.50000 31.00000 66.75000 0.00000 25.00000
## [799] 32.25000 50.00000 6.25000 28.25000 54.00000 49.75000 29.50000
## [806] 13.50000 7.00000 25.25000 8.00000 26.00000 25.00000 25.00000
## [813] 25.00000 25.00000 35.50000 8.50000 25.25000 23.25000 38.00000
## [820] 0.25000 32.75000 0.00000 NaN NaN NaN NaN
## [827] NaN NaN NaN NaN NaN NaN NaN
## [834] NaN NaN NaN NaN NaN NaN NaN
## [841] NaN NaN NaN NaN NaN NaN NaN
## [848] NaN NaN NaN NaN NaN NaN NaN
## [855] NaN NaN NaN NaN NaN NaN NaN
## [862] NaN NaN NaN NaN NaN NaN NaN
## [869] NaN NaN NaN NaN NaN NaN NaN
## [876] NaN NaN NaN NaN NaN NaN NaN
## [883] NaN NaN NaN NaN NaN NaN NaN
## [890] NaN NaN NaN NaN NaN NaN NaN
## [897] NaN NaN NaN NaN NaN NaN NaN
## [904] NaN NaN NaN NaN NaN NaN NaN
## [911] NaN NaN NaN NaN NaN NaN NaN
## [918] NaN NaN NaN NaN NaN NaN NaN
## [925] NaN NaN NaN NaN NaN NaN NaN
## [932] NaN NaN NaN NaN NaN NaN NaN
## [939] NaN NaN NaN NaN NaN NaN NaN
## [946] NaN NaN NaN NaN NaN NaN NaN
## [953] NaN NaN NaN NaN NaN NaN NaN
## [960] NaN NaN NaN NaN NaN NaN NaN
## [967] NaN NaN NaN NaN NaN NaN NaN
## [974] NaN NaN NaN NaN NaN NaN NaN
## [981] NaN NaN NaN NaN NaN NaN NaN
## [988] NaN NaN NaN NaN NaN NaN NaN
## [995] NaN NaN NaN NaN NaN NaN NaN
## [1002] NaN NaN NaN NaN
PP$Naturalness_Score_GFPRB_Tot
## [1] NaN NaN 63.75000 46.00000 62.00000 91.25000 99.50000
## [8] 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000
## [15] 26.00000 99.25000 50.00000 25.00000 100.00000 100.00000 100.00000
## [22] 71.50000 82.75000 49.50000 100.00000 66.25000 52.75000 100.00000
## [29] 99.75000 98.25000 100.00000 62.00000 98.50000 75.00000 100.00000
## [36] 93.75000 82.00000 75.00000 100.00000 100.00000 75.00000 99.75000
## [43] 100.00000 75.00000 82.25000 97.50000 81.25000 79.25000 83.75000
## [50] 100.00000 75.00000 100.00000 100.00000 100.00000 75.00000 75.00000
## [57] 100.00000 75.00000 100.00000 74.75000 60.00000 74.75000 98.75000
## [64] 99.25000 100.00000 74.75000 84.50000 99.00000 25.00000 79.00000
## [71] 92.00000 50.00000 98.25000 99.25000 100.00000 75.00000 96.50000
## [78] 97.25000 97.00000 79.50000 98.75000 98.00000 94.75000 57.25000
## [85] 74.00000 49.50000 100.00000 95.50000 70.75000 96.25000 96.25000
## [92] 96.50000 76.25000 7.00000 75.00000 94.00000 86.75000 62.75000
## [99] 67.25000 46.75000 92.75000 70.00000 99.50000 98.25000 95.25000
## [106] 96.50000 75.75000 94.00000 96.75000 69.50000 94.00000 93.50000
## [113] 91.75000 72.00000 100.00000 92.25000 62.00000 94.00000 68.50000
## [120] 20.25000 96.50000 67.00000 91.50000 88.00000 88.00000 83.75000
## [127] 79.50000 80.75000 68.75000 73.75000 84.25000 100.00000 85.50000
## [134] 95.25000 100.00000 42.75000 77.50000 100.00000 94.75000 44.75000
## [141] 100.00000 48.50000 79.25000 74.75000 31.00000 81.25000 88.75000
## [148] 91.25000 85.50000 91.75000 79.50000 78.00000 31.00000 71.75000
## [155] 84.00000 92.50000 82.50000 66.50000 61.50000 58.25000 66.25000
## [162] 73.00000 100.00000 64.50000 49.50000 79.75000 30.75000 54.25000
## [169] 58.75000 59.00000 33.25000 80.50000 89.00000 68.25000 38.75000
## [176] 65.75000 75.00000 99.75000 100.00000 25.00000 25.00000 62.50000
## [183] 100.00000 87.25000 81.50000 58.50000 100.00000 79.25000 72.50000
## [190] 59.25000 29.75000 53.50000 50.50000 69.75000 64.25000 75.00000
## [197] 73.25000 45.25000 100.00000 75.75000 86.00000 85.25000 76.50000
## [204] 80.75000 87.75000 58.00000 46.25000 73.00000 75.00000 97.25000
## [211] 51.75000 65.25000 86.00000 42.25000 51.25000 65.75000 82.50000
## [218] 81.50000 89.00000 67.75000 58.00000 63.00000 59.00000 74.75000
## [225] 0.00000 100.00000 69.75000 43.25000 72.50000 56.50000 48.25000
## [232] 60.25000 55.00000 71.25000 36.25000 85.00000 65.25000 26.75000
## [239] 57.00000 48.75000 81.00000 51.25000 78.25000 55.25000 43.75000
## [246] 73.50000 72.00000 77.50000 65.25000 45.25000 84.75000 85.50000
## [253] 39.00000 97.00000 56.50000 55.75000 61.25000 62.75000 67.75000
## [260] 67.50000 96.25000 56.50000 70.00000 33.75000 86.50000 37.75000
## [267] 99.25000 71.50000 58.75000 47.25000 44.50000 67.50000 33.66667
## [274] 36.50000 57.25000 50.50000 45.50000 40.25000 94.75000 66.00000
## [281] 100.00000 95.50000 38.25000 60.25000 45.75000 19.25000 67.25000
## [288] 49.00000 75.00000 48.50000 39.00000 50.75000 51.00000 70.50000
## [295] 42.25000 80.25000 81.00000 49.00000 96.75000 42.50000 46.00000
## [302] 54.25000 59.50000 94.00000 75.50000 50.50000 96.25000 60.00000
## [309] 53.25000 62.00000 45.25000 55.75000 35.25000 49.50000 54.25000
## [316] 70.00000 43.75000 100.00000 50.50000 73.25000 50.00000 49.50000
## [323] 43.00000 61.75000 58.25000 86.50000 50.00000 75.25000 50.00000
## [330] 62.50000 62.50000 67.50000 51.50000 56.50000 92.75000 49.50000
## [337] 43.25000 49.50000 49.50000 50.00000 46.25000 53.50000 49.00000
## [344] 99.75000 49.00000 49.00000 59.50000 48.50000 61.75000 30.00000
## [351] 52.00000 70.00000 46.00000 48.75000 45.50000 53.75000 50.25000
## [358] 46.75000 48.50000 48.50000 55.50000 53.25000 38.00000 54.00000
## [365] 47.75000 51.50000 31.75000 49.00000 98.00000 58.00000 41.25000
## [372] 48.50000 76.50000 51.00000 78.25000 45.75000 42.50000 49.00000
## [379] 42.25000 29.75000 71.75000 41.50000 43.25000 94.50000 52.75000
## [386] 67.50000 46.25000 57.50000 49.00000 43.50000 52.75000 50.75000
## [393] 59.25000 48.50000 23.75000 49.00000 47.25000 55.50000 49.75000
## [400] 45.00000 41.00000 81.25000 56.50000 21.00000 56.25000 52.50000
## [407] 42.75000 38.75000 48.50000 16.50000 55.00000 50.00000 100.00000
## [414] 61.25000 49.50000 41.75000 34.75000 40.25000 41.75000 43.25000
## [421] 39.25000 57.00000 36.75000 48.00000 65.50000 39.75000 43.75000
## [428] 41.50000 47.00000 42.00000 42.25000 31.75000 37.75000 10.75000
## [435] 45.25000 42.25000 73.25000 55.00000 39.50000 79.50000 39.75000
## [442] 40.75000 30.25000 35.50000 37.50000 53.75000 58.25000 1.75000
## [449] 41.50000 37.00000 27.50000 42.50000 24.25000 33.25000 60.00000
## [456] 28.75000 50.75000 38.00000 25.00000 34.50000 35.00000 36.50000
## [463] 53.00000 33.00000 23.00000 37.75000 50.75000 63.25000 61.50000
## [470] 32.75000 33.00000 36.50000 34.50000 28.00000 57.00000 33.00000
## [477] 31.50000 33.75000 36.50000 34.00000 32.00000 35.75000 33.25000
## [484] 31.50000 27.75000 33.50000 28.25000 36.00000 24.50000 31.50000
## [491] 31.25000 28.25000 70.75000 31.00000 23.50000 11.75000 35.75000
## [498] 51.25000 36.25000 46.75000 58.25000 23.75000 46.50000 28.50000
## [505] 50.25000 32.25000 23.50000 25.00000 25.00000 25.50000 25.00000
## [512] 74.25000 25.00000 50.25000 23.25000 25.00000 NaN NaN
## [519] NaN NaN NaN NaN NaN NaN NaN
## [526] NaN NaN NaN NaN NaN NaN NaN
## [533] NaN NaN NaN NaN NaN NaN NaN
## [540] NaN NaN NaN NaN NaN NaN NaN
## [547] NaN NaN NaN NaN NaN NaN NaN
## [554] NaN NaN NaN NaN NaN NaN NaN
## [561] NaN NaN NaN NaN NaN NaN NaN
## [568] NaN NaN NaN NaN NaN NaN NaN
## [575] NaN NaN NaN NaN NaN NaN NaN
## [582] NaN NaN NaN NaN NaN NaN NaN
## [589] NaN NaN NaN NaN NaN NaN NaN
## [596] NaN NaN NaN NaN NaN NaN NaN
## [603] NaN NaN NaN NaN NaN NaN NaN
## [610] NaN NaN NaN NaN NaN NaN NaN
## [617] NaN NaN NaN NaN NaN NaN NaN
## [624] NaN NaN NaN NaN NaN NaN NaN
## [631] NaN NaN NaN NaN NaN NaN NaN
## [638] NaN NaN NaN NaN NaN NaN NaN
## [645] NaN NaN NaN NaN NaN NaN NaN
## [652] NaN NaN NaN NaN NaN NaN NaN
## [659] NaN NaN NaN NaN NaN NaN NaN
## [666] NaN NaN NaN NaN NaN NaN NaN
## [673] NaN NaN NaN NaN NaN NaN NaN
## [680] NaN NaN NaN NaN NaN NaN NaN
## [687] NaN NaN NaN NaN NaN NaN NaN
## [694] NaN NaN NaN NaN NaN NaN NaN
## [701] NaN NaN NaN NaN NaN NaN NaN
## [708] NaN NaN NaN NaN NaN NaN NaN
## [715] NaN NaN NaN NaN NaN NaN NaN
## [722] NaN NaN NaN NaN NaN NaN NaN
## [729] NaN NaN NaN NaN NaN NaN NaN
## [736] NaN NaN NaN NaN NaN NaN NaN
## [743] NaN NaN NaN NaN NaN NaN NaN
## [750] NaN NaN NaN NaN NaN NaN NaN
## [757] NaN NaN NaN NaN NaN NaN NaN
## [764] NaN NaN NaN NaN NaN NaN NaN
## [771] NaN NaN NaN NaN NaN NaN NaN
## [778] NaN NaN NaN NaN NaN NaN NaN
## [785] NaN NaN NaN NaN NaN NaN NaN
## [792] NaN NaN NaN NaN NaN NaN NaN
## [799] NaN NaN NaN NaN NaN NaN NaN
## [806] NaN NaN NaN NaN NaN NaN NaN
## [813] NaN NaN NaN NaN NaN NaN NaN
## [820] NaN NaN NaN NaN NaN NaN NaN
## [827] NaN NaN NaN NaN NaN NaN NaN
## [834] NaN NaN NaN NaN NaN NaN NaN
## [841] NaN NaN NaN NaN NaN NaN NaN
## [848] NaN NaN NaN NaN NaN NaN NaN
## [855] NaN NaN NaN NaN NaN NaN NaN
## [862] NaN NaN NaN NaN NaN NaN NaN
## [869] NaN NaN NaN NaN NaN NaN NaN
## [876] NaN NaN NaN NaN NaN NaN NaN
## [883] NaN NaN NaN NaN NaN NaN NaN
## [890] NaN NaN NaN NaN NaN NaN NaN
## [897] NaN NaN NaN NaN NaN NaN NaN
## [904] NaN NaN NaN NaN NaN NaN NaN
## [911] NaN NaN NaN NaN NaN NaN NaN
## [918] NaN NaN NaN NaN NaN NaN NaN
## [925] NaN NaN NaN NaN NaN NaN NaN
## [932] NaN NaN NaN NaN NaN NaN NaN
## [939] NaN NaN NaN NaN NaN NaN NaN
## [946] NaN NaN NaN NaN NaN NaN NaN
## [953] NaN NaN NaN NaN NaN NaN NaN
## [960] NaN NaN NaN NaN NaN NaN NaN
## [967] NaN NaN NaN NaN NaN NaN NaN
## [974] NaN NaN NaN NaN NaN NaN NaN
## [981] NaN NaN NaN NaN NaN NaN NaN
## [988] NaN NaN NaN NaN NaN NaN NaN
## [995] NaN NaN NaN NaN NaN NaN NaN
## [1002] NaN NaN NaN NaN
PP$Naturalness_Score_CBB_Tot
## [1] NaN NaN 64.50000 46.50000 NaN 66.66667 NaN
## [8] NaN NaN NaN NaN NaN NaN NaN
## [15] 25.00000 74.00000 NaN 28.00000 NaN NaN NaN
## [22] NaN 0.00000 0.00000 NaN NaN NaN NaN
## [29] NaN NaN 0.00000 0.00000 19.25000 NaN 0.00000
## [36] 96.25000 NaN NaN 75.00000 NaN 99.50000 NaN
## [43] NaN NaN 8.50000 NaN 50.00000 11.75000 0.00000
## [50] NaN 42.00000 NaN NaN 6.25000 NaN 0.00000
## [57] NaN NaN NaN NaN 70.50000 NaN 60.75000
## [64] NaN NaN NaN NaN NaN 98.50000 NaN
## [71] NaN NaN NaN NaN 0.00000 NaN NaN
## [78] 1.25000 NaN NaN 16.00000 NaN 33.75000 NaN
## [85] NaN 52.50000 62.75000 NaN 59.75000 NaN NaN
## [92] NaN 12.25000 NaN 11.25000 NaN NaN 50.00000
## [99] 9.25000 48.00000 NaN NaN 29.25000 NaN NaN
## [106] NaN 4.00000 NaN NaN NaN NaN 13.50000
## [113] NaN 48.00000 NaN 7.50000 NaN NaN 0.00000
## [120] NaN 37.25000 NaN NaN 0.00000 NaN NaN
## [127] 11.25000 NaN NaN NaN 3.75000 10.50000 NaN
## [134] 9.50000 0.00000 NaN NaN NaN 3.25000 31.75000
## [141] NaN NaN NaN 26.25000 NaN NaN NaN
## [148] 30.75000 NaN NaN 51.50000 NaN 27.75000 25.50000
## [155] 0.00000 NaN 48.00000 55.50000 60.00000 56.25000 50.25000
## [162] NaN 0.00000 NaN 43.50000 NaN 7.50000 66.75000
## [169] NaN NaN NaN 10.75000 43.50000 NaN NaN
## [176] 68.25000 NaN NaN NaN 0.00000 0.00000 NaN
## [183] NaN NaN NaN 21.25000 7.50000 NaN 31.75000
## [190] NaN NaN 31.50000 54.00000 NaN 25.00000 NaN
## [197] 19.00000 NaN NaN NaN NaN NaN NaN
## [204] NaN 0.00000 NaN NaN NaN 70.50000 52.50000
## [211] 39.00000 NaN NaN NaN NaN NaN 77.75000
## [218] NaN NaN NaN NaN NaN NaN 53.50000
## [225] 100.00000 NaN NaN 44.50000 NaN 57.25000 39.25000
## [232] 52.50000 20.50000 NaN NaN NaN NaN 30.75000
## [239] NaN 38.33333 1.50000 58.25000 21.25000 NaN NaN
## [246] NaN NaN 15.25000 38.00000 52.75000 NaN 0.25000
## [253] 45.25000 NaN NaN 49.25000 NaN 34.00000 17.75000
## [260] 26.75000 16.50000 NaN NaN NaN 0.00000 NaN
## [267] NaN 30.50000 NaN 45.00000 NaN NaN NaN
## [274] NaN 28.50000 NaN NaN 27.75000 NaN NaN
## [281] NaN 1.75000 NaN NaN NaN NaN 36.00000
## [288] NaN 65.00000 42.50000 NaN 37.75000 48.00000 NaN
## [295] 67.50000 NaN NaN NaN NaN NaN NaN
## [302] NaN 12.25000 0.00000 5.00000 NaN NaN 56.00000
## [309] 47.33333 NaN NaN NaN NaN 48.25000 NaN
## [316] NaN 48.50000 NaN 30.25000 NaN NaN NaN
## [323] 53.00000 NaN NaN NaN 50.00000 25.00000 NaN
## [330] NaN NaN NaN 50.25000 9.50000 12.75000 NaN
## [337] 57.50000 49.50000 NaN NaN 48.50000 52.00000 NaN
## [344] 88.75000 44.00000 NaN NaN NaN 5.75000 7.50000
## [351] NaN NaN 53.75000 48.25000 27.00000 37.50000 NaN
## [358] NaN 48.00000 54.00000 NaN 44.25000 36.50000 NaN
## [365] NaN 41.75000 NaN NaN NaN 30.75000 NaN
## [372] NaN 48.75000 NaN NaN NaN 41.75000 50.50000
## [379] 29.25000 28.25000 NaN 31.75000 39.50000 NaN NaN
## [386] NaN 44.75000 NaN NaN NaN NaN NaN
## [393] 28.75000 NaN NaN NaN NaN NaN 75.00000
## [400] 42.75000 50.25000 NaN 53.00000 26.75000 NaN NaN
## [407] NaN NaN NaN 48.25000 50.00000 NaN NaN
## [414] 27.00000 36.50000 NaN NaN 43.75000 NaN NaN
## [421] NaN NaN 59.00000 NaN NaN NaN NaN
## [428] 43.00000 NaN NaN NaN 59.00000 NaN NaN
## [435] NaN NaN 0.50000 NaN NaN NaN 39.75000
## [442] 32.25000 NaN 43.25000 NaN NaN 53.75000 46.50000
## [449] NaN 40.25000 NaN NaN NaN NaN NaN
## [456] NaN 80.25000 NaN NaN NaN 55.75000 NaN
## [463] 35.25000 NaN NaN 25.00000 NaN NaN NaN
## [470] NaN 52.25000 NaN NaN 30.25000 NaN 37.50000
## [477] NaN NaN 31.75000 NaN NaN NaN NaN
## [484] 32.75000 2.00000 35.75000 NaN NaN 0.00000 24.25000
## [491] 24.75000 25.00000 6.00000 NaN 26.75000 NaN NaN
## [498] NaN 62.75000 26.25000 NaN 33.50000 NaN 26.75000
## [505] NaN NaN NaN 25.00000 25.00000 25.00000 NaN
## [512] 75.50000 25.00000 NaN 1.75000 25.00000 NaN 0.00000
## [519] NaN 0.00000 NaN NaN NaN 59.00000 NaN
## [526] NaN NaN NaN NaN NaN 0.00000 0.25000
## [533] 64.50000 23.50000 0.00000 0.00000 NaN 0.00000 NaN
## [540] NaN 24.00000 NaN 2.50000 32.25000 48.75000 NaN
## [547] NaN NaN NaN 0.00000 28.50000 27.75000 36.50000
## [554] 34.50000 43.00000 NaN 6.25000 NaN 40.25000 NaN
## [561] 0.00000 50.00000 NaN 16.25000 NaN NaN 72.50000
## [568] 25.00000 23.25000 0.25000 74.50000 47.00000 6.50000 NaN
## [575] NaN 43.75000 NaN NaN 25.00000 NaN NaN
## [582] NaN 61.50000 NaN NaN NaN 24.50000 NaN
## [589] 15.50000 0.00000 0.00000 34.50000 59.00000 6.75000 0.00000
## [596] NaN NaN 0.00000 32.25000 NaN 0.00000 7.75000
## [603] 50.25000 NaN 55.00000 5.25000 NaN NaN NaN
## [610] 48.50000 NaN NaN 22.25000 0.00000 19.25000 28.25000
## [617] 58.50000 NaN 50.50000 44.50000 42.50000 67.75000 NaN
## [624] NaN 29.75000 42.25000 NaN NaN 50.50000 NaN
## [631] NaN 22.25000 52.00000 8.25000 NaN NaN 53.00000
## [638] 67.75000 NaN 43.75000 NaN 46.75000 0.00000 65.25000
## [645] 57.00000 52.25000 53.00000 NaN NaN NaN NaN
## [652] NaN 36.00000 99.75000 43.75000 57.00000 NaN NaN
## [659] NaN NaN NaN 25.50000 NaN 68.75000 47.75000
## [666] NaN NaN NaN 0.00000 51.00000 49.00000 NaN
## [673] NaN 48.25000 13.00000 NaN NaN 40.00000 NaN
## [680] NaN NaN NaN NaN 40.25000 39.50000 1.50000
## [687] NaN 18.00000 NaN NaN 42.75000 NaN NaN
## [694] NaN 49.25000 NaN NaN NaN 47.50000 NaN
## [701] 46.75000 6.50000 NaN NaN 63.50000 0.00000 51.25000
## [708] 59.00000 16.75000 NaN NaN 52.75000 NaN NaN
## [715] 0.00000 NaN 50.00000 33.25000 NaN 56.50000 37.25000
## [722] NaN NaN NaN 90.50000 NaN 48.50000 32.00000
## [729] 32.50000 46.25000 29.50000 NaN NaN NaN 22.50000
## [736] 43.75000 48.00000 NaN NaN NaN 54.75000 NaN
## [743] NaN 45.25000 38.50000 NaN 22.50000 41.50000 NaN
## [750] 35.50000 NaN NaN 35.50000 67.00000 NaN NaN
## [757] NaN NaN 2.25000 14.75000 49.25000 43.00000 43.00000
## [764] 25.00000 32.75000 NaN 34.75000 31.75000 NaN NaN
## [771] 34.50000 NaN 6.25000 0.00000 NaN NaN NaN
## [778] 39.00000 40.50000 NaN 33.25000 NaN 36.00000 NaN
## [785] 62.00000 35.50000 NaN 40.75000 NaN 0.00000 31.00000
## [792] 34.50000 32.00000 NaN 30.00000 NaN 2.25000 75.00000
## [799] 5.75000 17.50000 NaN NaN NaN NaN NaN
## [806] NaN 44.50000 25.50000 25.00000 25.75000 25.00000 25.75000
## [813] 25.00000 25.00000 25.00000 NaN NaN 33.50000 45.00000
## [820] 25.00000 NaN 25.00000 NaN 67.00000 NaN NaN
## [827] 30.50000 44.00000 41.00000 35.00000 49.25000 36.25000 NaN
## [834] 49.25000 NaN 47.00000 NaN 0.50000 4.75000 17.00000
## [841] 4.25000 51.00000 44.50000 75.00000 66.00000 6.50000 NaN
## [848] 49.00000 35.50000 NaN NaN 46.75000 25.00000 NaN
## [855] 7.75000 42.75000 30.25000 11.50000 62.50000 100.00000 66.75000
## [862] 24.50000 30.00000 53.50000 54.50000 42.25000 0.00000 48.75000
## [869] 34.75000 48.25000 29.50000 NaN 1.00000 2.50000 44.25000
## [876] 12.75000 46.25000 1.75000 50.50000 7.75000 63.75000 40.50000
## [883] 30.00000 NaN NaN 99.75000 47.75000 35.00000 39.75000
## [890] 13.50000 39.50000 45.25000 NaN NaN 55.00000 0.00000
## [897] NaN 27.25000 NaN 32.50000 NaN 48.25000 0.00000
## [904] NaN NaN 22.50000 0.00000 47.25000 NaN 44.75000
## [911] 40.50000 56.00000 62.50000 0.00000 55.00000 50.50000 NaN
## [918] 31.50000 47.25000 15.00000 17.00000 29.50000 22.75000 12.50000
## [925] 45.75000 12.25000 12.75000 NaN 38.00000 32.00000 9.00000
## [932] 54.00000 0.00000 NaN NaN 0.00000 41.25000 NaN
## [939] 37.50000 30.25000 NaN 54.50000 25.50000 43.25000 45.75000
## [946] NaN NaN NaN 56.75000 44.50000 47.75000 15.00000
## [953] 29.50000 5.25000 27.50000 NaN 48.50000 14.00000 58.50000
## [960] 49.00000 29.75000 52.25000 30.50000 NaN NaN 50.75000
## [967] 39.00000 NaN 46.75000 44.50000 17.50000 61.00000 45.75000
## [974] 14.50000 25.00000 27.00000 24.25000 53.00000 NaN NaN
## [981] 33.75000 NaN 19.75000 49.00000 0.50000 50.00000 26.50000
## [988] 45.25000 44.75000 56.00000 49.00000 53.50000 22.50000 42.00000
## [995] NaN 19.75000 2.50000 13.50000 55.25000 61.00000 NaN
## [1002] 65.75000 32.50000 39.75000 NaN
PP$Naturalness_Score_PBPB_Tot
## [1] NaN 48.75000 30.75000 NaN 92.00000 NaN NaN
## [8] NaN NaN NaN NaN NaN NaN NaN
## [15] NaN NaN NaN NaN NaN 15.50000 NaN
## [22] NaN NaN NaN NaN 97.00000 NaN NaN
## [29] NaN NaN 0.00000 NaN NaN 0.00000 0.00000
## [36] NaN 3.50000 25.00000 NaN 30.75000 NaN 12.25000
## [43] 19.25000 NaN NaN 12.75000 25.00000 NaN NaN
## [50] 11.25000 NaN 12.75000 0.75000 NaN 79.75000 50.00000
## [57] NaN NaN NaN NaN 45.25000 NaN NaN
## [64] NaN 74.50000 NaN NaN 48.75000 50.00000 75.00000
## [71] 47.75000 50.00000 NaN 25.00000 11.00000 NaN NaN
## [78] NaN NaN NaN NaN NaN NaN 36.25000
## [85] 1.00000 NaN NaN 42.25000 NaN 0.00000 21.75000
## [92] NaN 4.25000 NaN 96.75000 25.00000 38.50000 NaN
## [99] NaN NaN 8.00000 51.50000 NaN 2.50000 NaN
## [106] NaN 41.50000 NaN 66.25000 NaN 72.75000 8.00000
## [113] 73.00000 49.75000 NaN NaN NaN NaN 0.00000
## [120] 30.00000 NaN 49.00000 NaN NaN NaN 19.75000
## [127] 11.25000 NaN 49.00000 NaN NaN NaN 33.25000
## [134] NaN NaN NaN 48.50000 NaN NaN NaN
## [141] 87.00000 NaN 75.00000 40.75000 NaN NaN NaN
## [148] 53.50000 NaN NaN NaN 54.75000 NaN NaN
## [155] NaN 30.75000 NaN NaN NaN NaN NaN
## [162] NaN 62.25000 69.00000 NaN 25.00000 7.00000 NaN
## [169] 48.00000 NaN 37.25000 NaN NaN NaN NaN
## [176] NaN 75.00000 10.25000 NaN NaN 0.00000 0.00000
## [183] NaN NaN 72.75000 NaN NaN 23.00000 NaN
## [190] 63.50000 66.75000 39.00000 NaN NaN NaN 69.50000
## [197] NaN 25.00000 48.75000 50.00000 41.25000 18.75000 NaN
## [204] NaN NaN 62.25000 44.50000 NaN 57.25000 24.75000
## [211] NaN NaN 28.00000 36.25000 58.50000 NaN NaN
## [218] NaN 23.25000 25.50000 59.00000 NaN 62.00000 88.25000
## [225] 2.25000 NaN 57.75000 NaN NaN NaN NaN
## [232] NaN 21.50000 NaN NaN NaN NaN NaN
## [239] NaN 47.00000 NaN NaN NaN NaN NaN
## [246] 72.25000 52.75000 20.00000 NaN NaN NaN NaN
## [253] 34.00000 10.00000 67.50000 NaN NaN NaN NaN
## [260] NaN NaN 38.50000 63.50000 31.00000 48.25000 NaN
## [267] 25.00000 NaN NaN 49.50000 NaN 32.25000 27.00000
## [274] 62.75000 NaN 46.50000 NaN NaN 57.75000 34.75000
## [281] 32.50000 65.75000 NaN NaN NaN NaN 60.75000
## [288] NaN 29.00000 NaN 54.50000 NaN 45.50000 59.50000
## [295] 38.25000 23.75000 76.25000 51.00000 NaN 40.50000 38.25000
## [302] 46.25000 NaN NaN NaN 52.00000 29.25000 57.25000
## [309] 51.25000 NaN NaN NaN 27.50000 NaN NaN
## [316] NaN NaN NaN NaN 49.00000 50.00000 NaN
## [323] NaN NaN 83.66667 40.50000 50.00000 50.00000 50.00000
## [330] 49.75000 75.00000 NaN NaN 49.50000 NaN NaN
## [337] NaN 49.75000 NaN NaN NaN NaN 52.50000
## [344] NaN NaN NaN 36.50000 49.00000 NaN 25.00000
## [351] 50.00000 NaN 53.50000 NaN NaN NaN 39.75000
## [358] 49.00000 NaN NaN 33.50000 NaN 27.25000 NaN
## [365] 46.00000 39.75000 NaN 48.50000 44.50000 24.75000 NaN
## [372] NaN NaN 39.00000 54.75000 42.00000 44.00000 NaN
## [379] 43.25000 NaN NaN 41.50000 53.25000 NaN NaN
## [386] 29.75000 50.75000 45.75000 22.50000 NaN 39.25000 46.75000
## [393] NaN NaN 48.25000 45.75000 NaN 42.00000 NaN
## [400] NaN NaN 34.25000 NaN NaN NaN 74.75000
## [407] 53.75000 56.25000 47.50000 NaN 38.00000 57.50000 25.00000
## [414] NaN NaN NaN NaN NaN 34.75000 NaN
## [421] NaN NaN 72.50000 NaN NaN 55.75000 NaN
## [428] NaN NaN NaN 42.50000 NaN 62.75000 NaN
## [435] NaN NaN NaN 69.50000 NaN 37.50000 NaN
## [442] NaN NaN NaN 46.25000 43.75000 35.25000 NaN
## [449] 40.75000 NaN NaN 41.00000 NaN 32.25000 62.50000
## [456] NaN NaN 37.25000 NaN NaN 23.25000 NaN
## [463] NaN 35.25000 NaN NaN 16.50000 NaN 52.25000
## [470] NaN 48.00000 33.50000 39.25000 NaN NaN NaN
## [477] NaN NaN NaN 31.75000 NaN 29.50000 28.25000
## [484] NaN 64.25000 NaN NaN 38.75000 NaN NaN
## [491] NaN NaN NaN NaN NaN NaN 50.50000
## [498] 28.50000 NaN NaN NaN 26.75000 NaN NaN
## [505] NaN NaN NaN NaN NaN NaN NaN
## [512] NaN NaN NaN NaN NaN NaN 1.25000
## [519] NaN 49.50000 51.00000 0.00000 NaN NaN 46.75000
## [526] 75.00000 0.00000 50.00000 25.00000 55.75000 NaN 0.00000
## [533] 62.50000 NaN 100.00000 NaN 56.25000 NaN 25.00000
## [540] 80.50000 NaN NaN 25.25000 NaN NaN NaN
## [547] NaN NaN 1.00000 NaN 25.75000 55.75000 37.25000
## [554] NaN NaN 66.00000 NaN 64.75000 31.50000 43.50000
## [561] NaN NaN 38.25000 74.25000 65.25000 3.00000 54.50000
## [568] 44.00000 NaN NaN 60.75000 63.50000 58.25000 54.75000
## [575] NaN 39.50000 47.00000 NaN NaN 40.75000 NaN
## [582] 53.50000 44.25000 32.00000 31.50000 71.75000 NaN 48.75000
## [589] 77.75000 NaN NaN NaN NaN NaN 0.00000
## [596] 48.25000 NaN 1.25000 NaN 0.50000 NaN NaN
## [603] NaN NaN NaN NaN 6.50000 NaN 27.00000
## [610] NaN 28.00000 58.50000 39.00000 100.00000 NaN 44.50000
## [617] NaN 11.00000 36.75000 47.75000 42.25000 68.25000 45.25000
## [624] 67.25000 NaN 48.25000 57.50000 NaN NaN NaN
## [631] 37.00000 NaN NaN 5.25000 30.75000 NaN NaN
## [638] NaN 48.25000 NaN 59.75000 NaN NaN NaN
## [645] NaN 37.50000 NaN NaN 84.75000 36.75000 46.50000
## [652] 51.50000 NaN 49.50000 NaN 54.25000 0.00000 72.00000
## [659] NaN 49.25000 49.50000 NaN NaN 63.75000 50.00000
## [666] 66.00000 6.25000 51.50000 NaN NaN NaN 48.50000
## [673] 49.50000 NaN NaN NaN NaN NaN NaN
## [680] 48.50000 44.25000 50.50000 NaN NaN NaN NaN
## [687] 39.25000 NaN NaN NaN NaN 3.25000 43.00000
## [694] 35.25000 35.25000 NaN 51.25000 NaN 32.75000 42.50000
## [701] 47.25000 NaN 45.75000 54.50000 55.00000 49.00000 NaN
## [708] 60.25000 NaN 35.50000 NaN NaN 45.00000 55.00000
## [715] 81.50000 61.25000 50.00000 51.00000 60.50000 NaN NaN
## [722] 39.00000 17.50000 38.00000 NaN 43.25000 34.00000 NaN
## [729] 46.75000 NaN 41.00000 41.25000 45.75000 47.25000 NaN
## [736] 34.50000 NaN 24.50000 31.25000 0.00000 NaN 1.75000
## [743] NaN NaN NaN 57.75000 NaN 41.50000 37.25000
## [750] 38.50000 21.50000 NaN 42.50000 0.00000 39.25000 46.75000
## [757] 45.00000 NaN NaN 51.25000 41.75000 NaN 40.50000
## [764] 24.75000 NaN 59.75000 NaN NaN 53.50000 73.75000
## [771] NaN 61.25000 41.50000 NaN 56.50000 33.75000 35.00000
## [778] 37.75000 NaN 40.50000 NaN 46.75000 NaN NaN
## [785] NaN NaN 37.00000 NaN NaN NaN 24.25000
## [792] 30.25000 NaN 29.50000 NaN NaN 56.25000 75.00000
## [799] NaN NaN 37.50000 24.75000 NaN NaN NaN
## [806] NaN NaN NaN NaN 26.50000 NaN NaN
## [813] 25.00000 25.00000 29.00000 60.00000 32.00000 NaN NaN
## [820] NaN 73.50000 NaN 25.50000 NaN 17.50000 100.00000
## [827] NaN 40.25000 41.25000 NaN 36.50000 69.75000 30.75000
## [834] 53.75000 43.50000 NaN 44.50000 71.00000 NaN 62.00000
## [841] NaN NaN 50.75000 68.50000 47.00000 45.00000 65.75000
## [848] NaN 28.75000 39.50000 25.25000 NaN NaN 44.00000
## [855] NaN 52.25000 37.75000 6.25000 58.75000 25.00000 55.00000
## [862] 38.25000 49.75000 66.50000 50.25000 57.00000 92.25000 11.25000
## [869] 25.25000 NaN 31.00000 28.00000 64.50000 NaN 65.50000
## [876] NaN 52.50000 98.50000 36.75000 0.00000 14.50000 31.00000
## [883] 9.75000 53.25000 48.75000 NaN 33.50000 23.00000 NaN
## [890] NaN 49.50000 40.75000 46.75000 0.00000 NaN 24.75000
## [897] 13.25000 29.25000 25.00000 NaN 75.50000 37.25000 0.00000
## [904] 59.25000 28.50000 26.75000 50.50000 47.75000 37.50000 54.25000
## [911] 46.00000 52.00000 32.75000 17.00000 52.25000 52.75000 45.75000
## [918] NaN 27.00000 39.50000 NaN 43.00000 84.50000 NaN
## [925] 52.00000 14.00000 21.00000 35.50000 49.25000 NaN 20.25000
## [932] NaN NaN 10.25000 39.50000 0.00000 NaN 54.66667
## [939] 35.00000 47.25000 57.75000 43.00000 25.50000 44.00000 43.50000
## [946] 61.25000 34.75000 69.00000 57.25000 NaN 48.25000 NaN
## [953] 58.50000 49.25000 NaN 58.25000 50.00000 NaN NaN
## [960] NaN 29.00000 NaN NaN 75.75000 25.75000 54.75000
## [967] 10.75000 47.00000 74.00000 41.50000 53.75000 68.00000 68.75000
## [974] 38.00000 NaN NaN 62.75000 72.75000 33.00000 58.25000
## [981] 25.75000 31.75000 16.00000 49.00000 0.50000 50.00000 53.75000
## [988] 43.75000 NaN 65.50000 49.00000 NaN 47.25000 39.25000
## [995] 20.50000 75.75000 NaN NaN 53.75000 NaN 8.25000
## [1002] 40.75000 NaN 33.50000 54.25000
PP$Naturalness_Score_PBFB_Tot
## [1] NaN 41.50 NaN NaN NaN 96.50 13.25 75.00 75.00 100.00
## [11] 75.00 NaN NaN NaN NaN NaN 43.00 NaN 75.00 NaN
## [21] 75.00 45.00 NaN NaN NaN NaN 43.50 74.25 67.00 55.50
## [31] NaN 63.00 60.50 50.00 NaN NaN NaN 37.50 100.00 67.00
## [41] 71.00 23.75 75.00 0.00 51.50 NaN NaN 69.75 NaN 57.00
## [51] 52.25 NaN 51.00 75.00 53.00 NaN 75.00 NaN 75.25 75.00
## [61] NaN 75.00 NaN 23.25 0.25 75.00 60.25 75.25 NaN NaN
## [71] NaN NaN 75.00 NaN NaN NaN NaN NaN 63.00 NaN
## [81] 60.00 51.75 65.75 80.00 NaN NaN 78.50 41.00 29.50 NaN
## [91] NaN 75.00 NaN 25.00 NaN NaN 76.75 NaN NaN NaN
## [101] 70.50 97.00 64.00 80.75 NaN NaN NaN 72.75 NaN NaN
## [111] NaN NaN NaN NaN 68.00 NaN 75.00 75.00 NaN NaN
## [121] NaN NaN NaN NaN NaN 51.00 NaN 28.25 NaN 52.75
## [131] NaN 67.00 NaN 70.50 NaN 51.00 NaN NaN NaN NaN
## [141] 50.00 4.25 NaN NaN 52.75 60.25 NaN NaN 63.75 62.50
## [151] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
## [161] NaN 58.00 NaN NaN NaN 92.75 NaN NaN NaN 48.25
## [171] NaN NaN NaN 55.75 NaN 49.25 NaN NaN NaN NaN
## [181] NaN NaN 75.00 55.25 69.00 NaN NaN NaN NaN NaN
## [191] NaN NaN NaN 64.25 NaN NaN NaN NaN NaN NaN
## [201] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
## [211] 51.00 48.50 NaN 60.75 NaN 65.00 NaN 48.25 NaN 58.25
## [221] NaN 69.75 46.75 NaN NaN 69.00 61.00 52.75 NaN NaN
## [231] 71.50 NaN NaN 54.75 82.75 70.50 54.25 72.50 54.25 NaN
## [241] NaN NaN NaN 68.25 2.75 NaN 56.00 NaN 60.00 NaN
## [251] NaN 74.00 NaN NaN NaN NaN NaN NaN 75.50 NaN
## [261] NaN NaN 45.25 NaN NaN NaN NaN NaN 38.50 NaN
## [271] 19.00 NaN NaN NaN 60.75 50.25 NaN NaN 71.50 59.00
## [281] NaN NaN NaN 64.25 NaN 39.25 NaN 53.25 NaN NaN
## [291] NaN NaN NaN NaN NaN NaN 65.25 NaN 11.25 NaN
## [301] NaN NaN NaN 62.25 NaN NaN 84.00 NaN NaN NaN
## [311] NaN NaN 43.50 NaN 66.75 NaN NaN 60.00 NaN NaN
## [321] NaN NaN 66.00 86.75 NaN 66.25 NaN NaN 50.00 NaN
## [331] NaN 88.50 52.00 NaN NaN 51.00 NaN NaN 52.50 NaN
## [341] NaN NaN NaN NaN NaN 52.00 NaN NaN 59.00 NaN
## [351] NaN 66.25 NaN NaN NaN NaN 67.00 NaN NaN 52.75
## [361] NaN NaN NaN 46.00 NaN NaN 55.00 NaN 77.00 NaN
## [371] NaN NaN 54.00 NaN 58.25 NaN NaN 61.25 NaN 93.75
## [381] 67.00 NaN NaN 45.50 NaN NaN NaN 51.25 NaN 65.75
## [391] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
## [401] NaN NaN NaN NaN 67.00 NaN NaN NaN NaN NaN
## [411] NaN NaN 87.50 NaN NaN 51.75 68.00 66.00 37.00 NaN
## [421] 64.25 67.25 NaN NaN 27.50 63.75 63.25 61.00 60.50 52.75
## [431] NaN NaN NaN 75.00 68.25 NaN NaN NaN 73.50 100.00
## [441] NaN NaN 82.25 63.00 NaN NaN NaN NaN NaN NaN
## [451] 71.25 NaN 72.25 83.25 NaN NaN 63.25 NaN 100.00 75.00
## [461] NaN 59.50 49.75 81.25 64.25 81.50 NaN 71.75 NaN NaN
## [471] NaN NaN NaN NaN 60.00 NaN 96.00 NaN NaN 85.75
## [481] 99.00 79.00 NaN NaN NaN 82.00 NaN 76.25 NaN NaN
## [491] NaN NaN 84.00 94.75 73.25 80.75 76.00 NaN 77.50 NaN
## [501] 70.25 NaN 68.50 96.50 57.25 40.00 97.50 NaN NaN NaN
## [511] NaN NaN 100.00 92.75 76.00 NaN NaN NaN 25.00 NaN
## [521] 62.75 75.00 93.75 0.00 NaN 0.00 NaN NaN 75.00 NaN
## [531] NaN NaN NaN 59.50 NaN 0.00 91.00 75.00 NaN 55.50
## [541] NaN 51.50 NaN NaN NaN 75.00 75.00 64.50 74.50 NaN
## [551] NaN NaN NaN 53.75 NaN NaN NaN 19.25 NaN 46.75
## [561] NaN 74.75 64.75 NaN 61.75 NaN NaN NaN NaN 55.50
## [571] NaN NaN NaN 63.75 82.50 NaN NaN 26.50 NaN 55.00
## [581] 48.50 96.50 NaN NaN NaN 44.50 47.75 NaN NaN NaN
## [591] NaN 31.25 NaN 75.25 NaN NaN 75.00 NaN NaN 74.25
## [601] NaN 67.00 NaN 59.00 NaN 75.25 NaN 81.50 NaN NaN
## [611] 51.75 NaN NaN NaN 78.00 NaN NaN NaN NaN NaN
## [621] NaN NaN NaN 75.00 NaN NaN NaN 64.75 NaN 52.00
## [631] NaN NaN NaN NaN 60.00 78.50 NaN NaN 47.00 52.25
## [641] NaN 59.75 75.00 NaN 52.00 NaN NaN 31.75 61.25 60.25
## [651] NaN 59.75 NaN NaN NaN NaN NaN 32.75 51.25 52.00
## [661] 51.50 NaN 66.75 NaN NaN 68.50 73.75 NaN NaN NaN
## [671] NaN 52.50 52.00 NaN NaN 57.00 66.25 65.50 54.75 54.00
## [681] 49.75 61.75 53.50 NaN NaN NaN NaN 66.25 59.50 50.00
## [691] NaN 44.75 69.75 NaN NaN NaN 60.25 47.50 NaN NaN
## [701] NaN NaN 64.75 53.25 NaN NaN NaN NaN 55.00 58.25
## [711] 41.25 NaN 51.25 NaN NaN NaN NaN NaN 63.75 61.25
## [721] NaN 73.25 NaN NaN 37.25 77.75 NaN 61.50 NaN 51.50
## [731] NaN 64.00 NaN NaN 70.75 NaN NaN NaN 52.00 NaN
## [741] 64.75 7.50 95.75 NaN 77.00 56.25 NaN NaN 51.00 NaN
## [751] NaN 68.00 NaN NaN 71.50 86.00 66.50 71.50 NaN NaN
## [761] NaN NaN NaN NaN 59.00 47.50 64.50 NaN 37.75 58.75
## [771] 86.75 79.75 NaN NaN NaN 90.00 NaN NaN NaN NaN
## [781] 48.75 49.50 83.50 77.75 NaN 65.00 NaN NaN 85.50 86.25
## [791] NaN NaN NaN 74.00 91.50 74.50 NaN NaN NaN NaN
## [801] 69.75 94.25 48.00 65.00 98.50 73.50 NaN 99.75 70.50 NaN
## [811] 100.00 NaN NaN NaN NaN NaN NaN NaN 53.25 53.25
## [821] 74.25 0.00 68.75 43.00 70.00 22.50 94.25 64.75 66.00 35.00
## [831] 52.50 NaN 62.75 52.25 36.25 64.50 81.75 NaN 59.00 NaN
## [841] 56.75 72.25 65.75 NaN NaN 60.00 38.75 59.00 NaN 69.75
## [851] 71.50 51.75 50.00 56.50 64.75 NaN NaN 74.00 46.25 62.50
## [861] 57.25 74.00 63.75 50.00 68.75 57.00 NaN NaN NaN 60.50
## [871] 96.25 67.25 68.00 73.50 61.25 91.50 38.25 NaN NaN NaN
## [881] 31.00 70.50 80.50 52.50 53.00 94.50 NaN 65.50 70.00 81.00
## [891] 53.50 64.50 79.50 75.00 39.50 75.00 76.00 92.75 50.00 50.00
## [901] 47.00 55.00 75.00 62.00 74.25 57.50 63.75 61.25 82.50 NaN
## [911] NaN NaN 75.75 74.50 58.75 55.50 68.75 100.00 52.50 71.00
## [921] 28.25 NaN 27.75 63.25 NaN 69.75 NaN 55.25 56.00 85.25
## [931] NaN 73.00 75.00 96.50 73.25 NaN 77.75 44.00 NaN 68.75
## [941] 38.00 55.00 NaN NaN 61.00 53.50 47.00 50.75 66.75 58.00
## [951] 45.75 60.00 56.50 NaN 55.25 82.00 NaN 43.00 29.00 52.00
## [961] 87.25 67.25 56.75 71.75 75.00 NaN 35.25 60.75 NaN 53.50
## [971] 54.75 27.00 NaN 66.75 92.50 55.00 NaN NaN 62.50 89.75
## [981] NaN 69.00 NaN NaN NaN NaN NaN NaN 93.25 50.75
## [991] 51.75 41.50 61.50 45.25 64.00 52.50 72.00 30.75 NaN 35.75
## [1001] 75.00 43.75 76.50 78.25 60.25
PP$Naturalness_Score_VB_Tot
## [1] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
## [11] NaN 72.75 60.00 50.25 NaN NaN NaN NaN NaN NaN
## [21] NaN NaN NaN NaN 74.00 NaN NaN 80.25 100.00 21.50
## [31] NaN NaN NaN NaN NaN 50.00 25.00 NaN NaN NaN
## [41] NaN NaN NaN 75.00 NaN 32.00 NaN NaN 75.00 NaN
## [51] NaN 51.50 NaN NaN NaN NaN 97.75 96.50 24.75 73.00
## [61] NaN NaN 99.25 99.75 NaN 49.00 99.50 NaN NaN 75.00
## [71] 39.50 NaN NaN NaN NaN 25.00 71.25 35.75 8.75 95.00
## [81] NaN 97.25 NaN NaN NaN 50.00 NaN NaN NaN NaN
## [91] NaN 4.75 NaN 25.00 NaN NaN NaN 41.50 NaN NaN
## [101] NaN NaN NaN NaN 4.50 9.75 NaN 69.00 NaN 75.00
## [111] NaN NaN NaN NaN 62.75 90.75 84.00 29.00 NaN 31.00
## [121] 66.75 57.75 29.75 58.50 70.00 NaN NaN NaN 68.75 NaN
## [131] NaN NaN 23.00 NaN NaN 59.50 69.75 32.50 NaN 55.50
## [141] NaN 48.25 NaN NaN NaN NaN 76.50 NaN NaN 84.00
## [151] NaN 33.50 NaN 48.25 48.50 23.75 85.50 NaN NaN 59.00
## [161] 50.75 39.25 NaN 64.00 NaN NaN NaN 38.25 NaN 51.50
## [171] 59.25 NaN 20.25 68.50 42.25 NaN NaN NaN 100.00 26.00
## [181] NaN 12.50 0.00 45.75 NaN NaN 84.00 50.25 NaN NaN
## [191] 85.00 NaN 38.50 NaN NaN NaN NaN 39.50 NaN 38.00
## [201] 44.50 NaN 40.50 20.00 75.00 62.00 NaN 90.50 NaN NaN
## [211] NaN 64.00 35.00 NaN 48.25 78.00 NaN 47.25 36.75 NaN
## [221] NaN 48.25 NaN NaN NaN 75.00 NaN NaN 17.25 53.00
## [231] NaN NaN NaN 44.00 41.50 65.50 NaN NaN NaN NaN
## [241] NaN NaN 73.75 15.75 66.75 69.50 NaN NaN NaN 48.75
## [251] 99.75 NaN NaN 91.00 NaN NaN 56.00 NaN NaN 86.75
## [261] 33.75 NaN NaN NaN NaN 49.25 NaN 51.00 NaN NaN
## [271] NaN NaN 26.75 34.00 NaN NaN 49.75 NaN NaN NaN
## [281] 94.50 NaN 62.25 NaN 43.25 NaN NaN 61.00 NaN 51.75
## [291] NaN 53.50 NaN NaN NaN 73.50 NaN NaN NaN NaN
## [301] 71.00 NaN 18.00 NaN NaN 72.00 NaN NaN NaN 47.00
## [311] 46.25 58.25 NaN 45.75 NaN 58.50 49.00 75.00 46.00 54.75
## [321] NaN 44.50 NaN 32.25 74.50 NaN NaN NaN NaN NaN
## [331] NaN 45.00 NaN NaN NaN 49.50 44.25 NaN 59.75 98.75
## [341] NaN NaN NaN 4.25 NaN 47.75 43.00 49.00 NaN NaN
## [351] 52.25 NaN NaN 48.75 57.00 34.00 NaN NaN 83.25 NaN
## [361] NaN NaN NaN 58.75 NaN NaN 52.25 51.75 NaN NaN
## [371] 45.25 46.75 NaN NaN NaN 38.75 NaN NaN NaN NaN
## [381] NaN NaN NaN 39.75 38.75 NaN NaN NaN NaN 43.00
## [391] 11.50 47.50 NaN 39.50 NaN 50.00 48.25 NaN NaN NaN
## [401] NaN 100.00 NaN NaN 45.75 NaN NaN 41.25 41.25 NaN
## [411] NaN NaN NaN 24.75 NaN 37.00 33.25 NaN NaN 38.00
## [421] 41.50 53.50 NaN 50.25 87.25 NaN 42.25 NaN NaN NaN
## [431] NaN 63.25 48.25 5.25 NaN 38.00 65.00 NaN NaN NaN
## [441] 47.00 39.50 NaN NaN NaN 48.00 NaN 25.50 NaN NaN
## [451] 34.50 NaN 51.75 NaN NaN 37.75 NaN 35.50 50.00 NaN
## [461] NaN NaN NaN NaN 21.50 NaN 75.00 NaN NaN 32.25
## [471] NaN 34.75 NaN NaN NaN 35.50 27.25 33.75 NaN NaN
## [481] 30.00 NaN 29.75 29.00 NaN NaN 43.00 NaN NaN NaN
## [491] NaN 32.50 NaN NaN NaN 36.00 NaN NaN NaN NaN
## [501] 31.75 NaN 68.25 NaN 83.75 NaN NaN NaN NaN NaN
## [511] 25.00 89.50 NaN 73.50 NaN 25.00 25.00 NaN 100.00 NaN
## [521] NaN NaN 34.00 NaN 49.00 NaN 3.00 75.00 NaN 49.75
## [531] 25.75 NaN NaN NaN NaN NaN NaN NaN 5.25 NaN
## [541] 94.75 62.00 NaN 51.75 77.00 8.00 97.50 28.00 NaN 98.50
## [551] NaN NaN NaN NaN 52.75 71.75 60.00 NaN NaN NaN
## [561] 51.50 NaN NaN NaN NaN 55.75 NaN NaN 25.50 NaN
## [571] NaN NaN NaN NaN 41.50 NaN 61.25 37.00 25.00 NaN
## [581] 34.75 NaN NaN 71.00 27.50 NaN NaN 16.50 NaN 48.00
## [591] 51.25 NaN 56.25 NaN NaN 96.25 100.00 NaN 42.75 NaN
## [601] 66.00 NaN 53.50 83.50 19.75 NaN 31.50 49.75 41.25 25.00
## [611] NaN 31.75 NaN NaN NaN NaN 56.00 3.25 NaN NaN
## [621] NaN NaN 48.50 NaN 30.50 NaN 54.00 65.75 40.25 28.75
## [631] 56.50 60.75 37.75 NaN NaN 13.50 53.00 68.00 NaN NaN
## [641] 87.25 NaN NaN 46.00 NaN NaN 0.00 81.00 NaN NaN
## [651] 60.00 NaN 56.75 NaN 55.50 NaN 41.25 NaN 49.00 NaN
## [661] NaN 60.25 39.50 NaN NaN NaN NaN 49.00 12.50 49.00
## [671] 50.25 NaN NaN 48.00 62.50 60.50 49.75 NaN 45.75 NaN
## [681] NaN NaN 39.75 37.00 61.00 31.50 40.50 NaN 24.50 44.00
## [691] 58.25 NaN NaN 57.25 NaN 44.25 NaN 49.00 NaN 55.50
## [701] NaN 50.25 NaN NaN NaN NaN 55.25 NaN NaN NaN
## [711] 48.25 40.00 NaN 46.50 NaN 35.00 NaN NaN NaN NaN
## [721] 49.00 NaN 54.25 99.75 NaN NaN NaN NaN NaN NaN
## [731] NaN NaN 66.25 84.00 NaN NaN 31.00 36.25 NaN 34.00
## [741] NaN NaN 35.75 23.25 NaN NaN 83.25 NaN NaN NaN
## [751] 65.50 37.75 NaN NaN NaN NaN NaN 29.50 86.75 NaN
## [761] NaN 41.25 NaN NaN NaN NaN NaN 35.75 NaN NaN
## [771] NaN NaN NaN 99.75 61.25 NaN 33.25 NaN 38.00 37.00
## [781] NaN NaN NaN 35.00 63.50 NaN 36.25 51.75 28.25 NaN
## [791] NaN NaN 36.75 NaN NaN 73.25 NaN NaN 87.75 34.25
## [801] NaN NaN 72.75 77.25 23.25 8.50 54.75 NaN NaN NaN
## [811] NaN 41.00 NaN NaN NaN 74.75 43.50 72.25 NaN NaN
## [821] NaN NaN 15.25 53.00 18.50 100.00 34.75 NaN NaN 92.75
## [831] NaN 61.50 32.00 NaN 44.50 58.25 58.25 61.25 35.50 62.75
## [841] 86.25 55.50 NaN 72.75 25.00 NaN 84.00 47.50 49.25 44.00
## [851] 45.25 45.75 50.00 43.50 85.00 48.50 29.75 NaN NaN NaN
## [861] NaN NaN NaN NaN NaN NaN 100.00 17.00 65.50 45.50
## [871] NaN 25.50 NaN 87.25 NaN 31.00 NaN 98.50 44.25 12.25
## [881] NaN NaN NaN 44.75 48.25 50.00 59.25 NaN 39.50 27.50
## [891] NaN NaN 27.00 83.00 60.25 NaN 75.00 NaN 74.50 75.00
## [901] 50.75 NaN NaN 61.50 68.00 NaN NaN NaN 24.00 50.00
## [911] 34.25 63.00 NaN NaN NaN NaN 43.50 38.25 NaN NaN
## [921] 14.75 39.50 NaN 71.00 45.25 NaN 78.00 68.50 NaN 51.25
## [931] 50.50 1.25 25.50 34.00 36.25 99.50 40.75 NaN 93.75 NaN
## [941] 55.75 NaN 24.75 31.50 NaN 71.25 44.25 49.50 NaN 44.75
## [951] NaN 79.00 NaN 75.25 89.25 37.25 42.00 100.00 54.75 49.00
## [961] NaN 49.00 34.50 72.25 25.00 46.00 NaN 49.00 65.00 NaN
## [971] NaN NaN 70.50 NaN 100.00 NaN 64.50 53.00 60.00 99.00
## [981] 68.25 16.50 75.50 49.25 59.00 50.00 54.25 45.50 42.00 NaN
## [991] NaN 46.00 NaN NaN 82.50 NaN 4.75 80.25 55.00 54.75
## [1001] 31.75 NaN 35.00 NaN 61.50
PP$Familiarity_GFFB
## [1] NA NA NA 7 67 NA 100 50 100 100 100 100 100 88 100 100 24 100
## [19] 100 100 100 70 0 52 52 NA 98 NA NA NA NA NA NA NA NA NA
## [37] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [55] NA NA NA 2 NA NA NA 98 NA NA NA NA NA NA NA NA NA 100
## [73] 100 0 NA 100 6 NA NA 80 NA NA NA NA 100 NA NA NA NA 20
## [91] 100 NA NA NA NA 100 NA NA 90 94 NA NA NA NA 100 72 NA NA
## [109] 97 100 83 NA 93 NA NA NA NA NA NA NA NA NA 69 NA 34 NA
## [127] NA 82 NA 67 36 NA NA NA 92 NA NA 100 46 NA NA NA 100 NA
## [145] 68 26 80 NA 25 NA 12 NA 85 NA NA NA NA 77 76 NA NA NA
## [163] NA NA 55 NA NA NA 68 NA NA 76 NA NA 74 NA 100 97 0 NA
## [181] NA NA NA NA NA 60 NA NA 68 65 NA NA NA 89 65 100 48 NA
## [199] 9 NA NA 71 50 40 NA NA 59 81 NA NA NA NA NA NA NA NA
## [217] 92 NA NA NA 46 NA NA NA NA NA NA NA 0 NA NA 36 NA NA
## [235] NA NA 77 NA 87 NA 56 72 NA NA NA NA NA NA NA NA 95 NA
## [253] NA NA 55 29 70 81 NA NA NA 29 NA 92 NA 33 100 NA 41 NA
## [271] 79 75 NA NA NA NA 0 23 NA NA NA NA NA 40 24 75 NA NA
## [289] NA NA 74 NA NA 100 NA NA NA 52 100 57 NA 64 NA NA 11 NA
## [307] NA NA NA 68 46 85 NA NA 64 3 NA NA NA NA 50 65 NA NA
## [325] NA NA NA NA NA 85 0 NA NA NA 74 NA NA NA NA 0 95 78
## [343] 39 NA 52 NA NA NA NA NA NA 59 NA NA NA NA NA 53 NA NA
## [361] 30 54 NA NA 64 NA NA NA NA NA 57 68 NA 28 NA NA NA NA
## [379] NA NA 100 NA NA NA 58 92 NA NA 100 NA NA NA 36 67 21 NA
## [397] 72 54 81 70 18 NA 40 69 NA 91 35 NA NA 42 NA 89 NA NA
## [415] 51 NA NA NA NA 75 NA NA NA 53 NA NA NA NA 78 58 60 NA
## [433] NA NA 37 43 NA 86 NA NA NA NA 92 NA 91 NA NA NA 81 63
## [451] NA 82 NA NA 52 76 NA NA NA 27 NA 38 NA NA NA NA NA 28
## [469] 35 77 NA NA 65 86 25 NA NA 92 75 NA NA NA NA NA NA NA
## [487] 85 NA 0 95 93 NA NA 93 NA NA NA 29 NA 3 NA NA NA NA
## [505] NA NA 100 98 0 100 100 NA NA NA NA NA NA 80 100 78 77 100
## [523] 60 100 65 0 43 100 100 100 92 100 100 81 50 3 0 100 72 100
## [541] 52 95 100 91 28 100 100 59 98 65 13 100 87 71 77 39 95 14
## [559] 91 53 19 53 100 22 74 74 19 51 90 100 5 82 2 81 100 21
## [577] 66 22 100 25 67 89 11 85 78 84 78 NA 95 88 100 20 27 80
## [595] 100 81 100 100 100 28 83 100 31 75 25 84 64 82 50 12 37 83
## [613] 75 10 73 15 39 17 52 100 36 79 75 80 22 91 60 18 59 61
## [631] 30 15 29 95 66 92 NA 67 50 75 31 39 52 40 35 41 50 90
## [649] 80 71 55 62 69 0 46 66 0 37 51 51 51 54 96 51 69 52
## [667] 3 52 51 52 52 52 52 53 0 14 50 53 55 85 51 17 35 79
## [685] 54 52 31 52 28 53 81 52 50 22 62 62 45 60 14 8 44 71
## [703] 59 57 24 19 33 83 78 77 52 78 63 62 94 19 55 61 61 16
## [721] 37 89 87 100 0 84 87 23 52 22 79 72 88 25 55 66 66 100
## [739] 36 53 66 86 84 95 69 0 14 77 63 55 91 84 63 77 70 73
## [757] 77 37 2 0 100 92 73 98 62 65 37 82 50 100 91 86 64 46
## [775] 20 92 83 80 85 81 53 67 88 79 70 79 84 78 99 90 90 88
## [793] 79 69 81 92 94 100 0 100 25 97 100 100 97 25 5 100 4 100
## [811] 100 100 100 100 0 80 7 77 100 0 5 100 NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Familiarity_GFPRB
## [1] NA NA NA 74 100 NA 100 100 100 100 100 100 100 100 0 0 0 100
## [19] 98 100 100 35 100 51 100 0 76 100 72 86 100 100 100 100 100 100
## [37] 100 100 100 100 52 1 100 0 100 81 50 100 70 100 100 100 82 100
## [55] 100 100 100 100 100 100 65 100 100 78 100 100 100 52 100 87 100 100
## [73] 100 99 88 100 97 98 52 100 93 100 100 100 90 94 100 100 71 100
## [91] 100 89 100 64 87 79 93 85 91 94 92 9 94 93 100 98 96 90
## [109] 19 5 100 86 96 100 100 100 80 100 84 100 100 86 93 0 75 20
## [127] 63 77 87 89 88 100 78 100 100 32 100 100 58 39 100 53 96 85
## [145] 70 67 79 83 70 53 85 83 93 92 62 100 81 94 84 73 66 72
## [163] 80 84 53 100 100 81 61 21 72 100 70 52 26 94 100 98 100 100
## [181] 0 100 100 80 100 31 100 83 75 93 NA 86 64 73 76 76 97 4
## [199] 87 91 86 91 69 82 100 31 61 80 50 82 57 82 85 65 67 100
## [217] 85 72 35 85 58 96 66 72 0 100 65 88 14 60 73 33 64 88
## [235] 31 100 75 78 73 98 61 62 100 75 61 43 74 100 87 81 100 70
## [253] 76 79 44 51 52 87 75 89 100 66 58 79 100 70 85 78 46 58
## [271] 24 71 53 85 99 77 0 33 100 65 100 100 77 86 42 49 59 52
## [289] 52 85 80 44 46 83 40 66 88 52 100 31 41 77 52 100 83 26
## [307] 96 35 72 44 41 32 53 71 71 92 52 100 56 65 50 52 71 82
## [325] 78 85 50 100 50 65 25 8 51 50 100 51 41 51 74 50 94 82
## [343] 61 18 52 55 82 52 82 0 59 84 43 52 72 69 90 52 52 38
## [361] 72 65 72 70 40 64 39 83 100 87 44 62 79 74 74 57 61 66
## [379] 72 100 86 38 80 92 58 86 61 60 89 60 39 38 37 64 63 51
## [397] 72 36 45 60 15 73 59 60 82 72 33 39 65 17 8 85 50 100
## [415] 51 63 74 45 30 66 61 64 77 74 82 49 52 67 62 38 66 71
## [433] 75 22 69 68 71 65 89 100 31 75 97 65 63 58 76 80 97 74
## [451] 90 73 100 85 90 73 81 77 100 74 92 81 25 81 15 16 73 16
## [469] 63 80 71 78 77 78 100 93 89 86 78 85 97 82 86 77 75 83
## [487] 91 100 0 96 91 92 93 91 96 98 76 15 100 24 93 83 65 99
## [505] 98 100 98 100 100 100 100 100 100 70 16 100 NA NA NA NA NA NA
## [523] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [541] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [559] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [577] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [595] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [613] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [631] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [649] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [667] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [685] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [703] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [721] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [739] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [757] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [775] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [793] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [811] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Familiarity_CBB
## [1] NA NA 6 72 NA 0 NA NA NA NA NA NA NA NA 16 0 NA 99
## [19] NA NA NA NA 0 0 NA NA NA NA NA NA 0 0 62 NA 0 100
## [37] NA NA 100 NA 53 NA NA NA 12 NA 0 75 0 NA 60 NA NA 19
## [55] NA 100 NA NA NA NA 65 NA 13 NA NA NA NA NA 100 NA NA NA
## [73] NA NA 0 NA NA 7 NA NA 6 NA 23 NA NA 100 100 NA 60 NA
## [91] NA NA 3 NA 11 NA NA 19 22 12 NA NA 14 NA NA NA 0 NA
## [109] NA NA NA 1 NA 67 NA 88 NA NA 0 NA 51 NA NA 45 NA NA
## [127] 5 NA NA NA 16 20 NA 38 0 NA NA NA 30 77 NA NA NA 17
## [145] NA NA NA 39 NA NA 15 NA 100 72 2 NA 82 91 20 5 68 NA
## [163] 0 NA 52 NA 82 24 NA NA NA 18 76 NA NA 85 NA NA NA 0
## [181] 0 NA NA NA NA 73 83 NA 19 NA NA 83 45 NA 77 NA 29 NA
## [199] NA NA NA NA NA NA 0 NA NA NA 0 26 78 NA NA NA NA NA
## [217] 25 NA NA NA NA NA NA 12 100 NA NA 82 NA 53 60 34 15 NA
## [235] NA NA NA 86 NA 59 28 65 91 NA NA NA NA 25 22 17 NA 25
## [253] 63 NA NA 51 NA 56 0 53 19 NA NA NA 6 NA NA 53 NA 51
## [271] NA NA NA NA 66 NA NA 36 NA NA NA 5 NA NA NA NA 38 NA
## [289] 53 29 NA 41 45 NA 65 NA NA NA NA NA NA NA 2 0 2 NA
## [307] NA 38 67 NA NA NA NA 53 NA NA 52 NA 34 NA NA NA 81 NA
## [325] NA NA 50 0 NA NA NA NA 51 37 27 NA 25 51 NA NA 79 69
## [343] NA 0 52 NA NA NA 2 0 NA NA 49 65 57 64 NA NA 53 55
## [361] NA 60 72 NA NA 70 NA NA NA 94 NA NA 54 NA NA NA 53 68
## [379] 77 98 NA 82 50 NA NA NA 73 NA NA NA NA NA 42 NA NA NA
## [397] NA NA 100 61 54 NA 50 65 NA NA NA NA NA 0 53 NA NA 15
## [415] 51 NA NA 62 NA NA NA NA 76 NA NA NA NA 63 NA NA NA 93
## [433] NA NA NA NA 12 NA NA NA 31 56 NA 88 NA NA 29 100 NA 67
## [451] NA NA NA NA NA NA 93 NA NA NA 32 NA 32 NA NA 97 NA NA
## [469] NA NA 90 NA NA 96 NA 83 NA NA 94 NA NA NA NA 80 0 83
## [487] NA NA 0 91 100 100 2 NA 98 NA NA NA 33 17 NA 85 NA 89
## [505] NA NA NA 100 100 100 NA 5 100 NA 18 100 100 0 NA 0 NA NA
## [523] NA 51 NA NA NA NA NA NA 0 0 100 34 0 NA NA 0 NA NA
## [541] 12 NA 17 6 6 NA NA NA NA 0 10 27 78 64 60 NA 0 NA
## [559] 77 NA 100 5 NA 8 NA NA 6 57 22 0 0 74 0 NA NA 28
## [577] NA NA 100 NA NA NA 33 NA NA NA 19 NA 26 0 0 5 31 0
## [595] 0 NA NA 2 50 NA 0 4 54 NA 64 14 NA NA NA 75 NA NA
## [613] 64 0 78 8 35 NA 35 0 64 100 NA NA 97 68 NA NA 59 NA
## [631] NA 8 26 3 NA NA 52 32 NA 31 NA 30 85 41 39 53 54 NA
## [649] NA NA NA NA 35 100 43 59 NA NA NA NA NA 29 NA 18 67 NA
## [667] NA NA 97 100 52 NA NA 53 0 NA NA 16 NA NA NA NA NA 72
## [685] 73 25 NA 31 NA NA 56 NA NA NA 62 NA NA NA 14 NA 44 21
## [703] NA NA 13 2 69 31 60 NA NA 67 NA NA 29 NA 65 47 NA 78
## [721] 36 NA NA NA 95 NA 71 77 23 33 8 NA NA NA 40 61 67 NA
## [739] NA NA 7 NA NA 34 75 NA 89 72 NA 53 NA NA 72 83 NA NA
## [757] NA NA 85 0 100 60 68 100 44 NA 19 87 NA NA 86 NA 67 16
## [775] NA NA NA 75 93 NA 2 NA 90 NA 84 63 NA 76 NA 0 96 91
## [793] 91 NA 91 NA 6 100 0 0 NA NA NA NA NA NA 100 98 15 99
## [811] 100 92 100 100 0 NA NA 52 13 0 NA 0 NA 75 NA NA 95 97
## [829] 63 0 67 17 NA 100 NA 71 NA 0 100 8 4 92 69 69 94 3
## [847] NA NA 64 NA NA 54 0 NA 0 33 81 3 85 100 37 15 0 20
## [865] 89 66 0 20 16 38 92 NA 0 10 61 55 48 1 69 3 32 58
## [883] 27 NA NA 0 61 12 69 42 41 74 NA NA 79 49 NA 100 NA 68
## [901] NA 88 0 NA NA 39 37 39 NA 33 67 24 70 10 38 64 NA 79
## [919] 84 25 25 80 3 85 36 10 76 NA 86 75 53 100 0 NA NA 15
## [937] 70 NA 0 0 NA 48 98 11 63 NA NA NA 21 57 54 15 37 22
## [955] 0 NA 35 50 31 52 99 44 88 NA NA 69 0 NA 97 52 8 25
## [973] 27 52 100 70 74 85 NA NA 21 NA 21 53 88 54 35 56 43 18
## [991] 52 28 22 14 NA 93 52 24 43 57 NA 11 78 100 NA
PP$Familiarity_PBPB
## [1] NA 95 90 NA 100 NA NA NA NA NA NA NA NA NA NA NA NA NA
## [19] NA 6 NA NA NA NA NA 2 NA NA NA NA 0 NA NA 100 50 NA
## [37] 0 100 NA 77 NA 47 1 NA NA 35 0 NA NA 38 NA 36 36 NA
## [55] 52 74 NA NA NA NA 27 NA NA NA 0 NA NA 88 100 21 51 0
## [73] NA 100 20 NA NA NA NA NA NA NA NA 81 5 NA NA 69 NA 13
## [91] 84 NA 0 NA 31 69 2 NA NA NA 99 52 NA 3 NA NA 37 NA
## [109] 15 NA 99 70 83 92 NA NA NA NA 0 89 NA 52 NA NA NA 0
## [127] 22 NA 92 NA NA NA 35 NA NA NA 57 NA NA NA 100 NA 100 26
## [145] NA NA NA 28 NA NA NA 52 NA NA NA 25 NA NA NA NA NA NA
## [163] 65 77 NA 29 100 NA 66 NA 20 NA NA NA NA NA 100 8 NA NA
## [181] 0 100 NA NA 31 NA NA 17 NA 16 19 77 NA NA NA 29 NA 0
## [199] 2 20 82 89 NA NA NA 27 60 NA 100 86 NA NA 73 70 56 NA
## [217] NA NA 22 24 68 NA 76 87 58 NA 82 NA NA NA NA NA 66 NA
## [235] NA NA NA NA NA 33 NA NA NA NA NA 42 54 45 NA NA NA NA
## [253] 84 2 76 NA NA NA NA NA NA 62 23 61 0 NA 100 NA NA 51
## [271] NA 19 90 16 NA 68 NA NA 1 36 85 96 NA NA NA NA 50 NA
## [289] 53 NA 37 NA 26 91 25 20 68 52 NA 67 33 53 NA NA NA 72
## [307] 100 31 50 NA NA NA 26 NA NA NA NA NA NA 69 50 NA NA NA
## [325] 86 86 50 0 50 69 100 NA NA 50 NA NA NA 51 NA NA NA NA
## [343] 66 NA NA NA 36 54 NA 50 48 NA 38 NA NA NA 33 52 NA NA
## [361] 83 NA 68 NA 42 61 NA 90 77 94 NA NA NA 81 50 59 68 NA
## [379] 67 NA NA 64 38 NA NA 100 65 61 69 NA 70 42 NA NA 99 4
## [397] NA 25 NA NA NA 63 NA NA NA 86 30 19 55 NA 75 84 100 NA
## [415] NA NA NA NA 17 NA NA NA 68 NA NA 38 NA NA NA NA 69 NA
## [433] 34 NA NA NA NA 52 NA 100 NA NA NA NA 31 59 82 NA 100 NA
## [451] NA 61 NA 91 55 NA NA 79 NA NA 89 NA NA 82 NA NA 14 NA
## [469] 36 NA 91 68 78 NA NA NA NA NA NA 86 NA 90 83 NA 81 NA
## [487] NA 68 NA NA NA NA NA NA NA NA 77 4 NA NA NA 82 NA NA
## [505] NA NA NA NA NA NA NA NA NA NA NA NA NA 10 NA 52 50 0
## [523] NA NA 53 0 0 100 0 100 NA 0 83 NA 39 NA 100 NA 0 89
## [541] NA NA 42 NA NA NA NA NA 0 NA 7 72 22 NA NA 76 NA 23
## [559] 85 26 NA NA 51 11 79 22 40 100 NA NA 3 32 84 52 NA 30
## [577] 47 NA NA 88 NA 91 36 91 95 70 NA 42 70 NA NA NA NA NA
## [595] 0 85 NA 72 NA 48 NA NA NA NA NA NA 58 NA 36 NA 17 28
## [613] 80 11 NA 37 NA 17 11 32 59 18 62 0 NA 70 36 NA NA NA
## [631] 7 NA NA 4 31 NA NA NA 61 NA 56 NA NA NA NA 23 NA NA
## [649] 37 43 55 80 NA 0 NA 63 0 100 NA 50 51 NA NA 96 10 17
## [667] 51 52 NA NA NA 52 52 NA NA NA NA NA NA 54 57 32 NA NA
## [685] NA NA 70 NA NA NA NA 98 66 38 60 NA 54 NA 78 69 53 NA
## [703] 70 52 47 32 NA 28 NA 76 NA NA 71 64 83 25 62 67 26 NA
## [721] NA 100 75 27 NA 37 85 NA 20 NA 70 53 7 42 NA 69 NA 100
## [739] 63 0 NA 83 NA NA NA 0 NA 84 62 57 24 NA 76 100 74 72
## [757] 62 NA NA 100 83 NA 67 100 NA 89 NA NA 60 20 NA 69 32 NA
## [775] 86 98 88 75 NA 73 NA 55 NA NA NA NA 85 NA NA NA 100 84
## [793] NA 86 NA NA 52 100 NA NA 100 99 NA NA NA NA NA NA NA 99
## [811] NA NA 100 100 100 68 100 NA NA NA 100 NA 50 NA 86 70 NA 77
## [829] 66 NA 77 79 42 90 10 NA 63 65 NA 87 NA NA 66 50 13 18
## [847] 71 NA 56 91 100 NA NA 56 NA 45 66 3 74 0 71 25 0 63
## [865] 93 67 75 60 31 NA 100 31 15 NA 94 NA 25 96 65 3 76 82
## [883] 19 79 52 NA 39 72 NA NA 57 80 30 0 NA 56 57 93 0 NA
## [901] 29 63 0 21 78 49 33 43 95 65 52 34 15 0 30 57 63 NA
## [919] 22 71 NA 84 77 NA 57 0 30 28 42 NA 45 NA NA 21 71 71
## [937] NA 65 70 48 39 61 88 59 64 100 76 91 90 NA 48 NA 52 50
## [955] NA 23 65 NA NA NA 92 NA NA 26 3 41 0 71 96 79 97 89
## [973] 98 21 NA NA 23 72 37 80 19 80 27 30 88 50 44 60 NA 64
## [991] 52 NA 64 18 3 69 NA NA 37 NA 0 74 NA 88 38
PP$Familiarity_PBFB
## [1] NA 55 NA NA NA 100 53 100 0 100 0 NA NA NA NA NA 0 NA
## [19] 1 NA 0 20 NA NA NA NA 98 77 0 13 NA 0 31 0 NA NA
## [37] NA 100 0 74 100 11 2 0 88 NA NA 10 NA 52 9 NA 100 16
## [55] 0 NA 0 NA 0 0 NA 0 NA 2 1 0 18 1 NA NA NA NA
## [73] 0 NA NA NA NA NA 5 NA 71 3 0 94 NA NA 10 73 19 NA
## [91] NA 0 NA 100 NA NA 8 NA NA NA 16 99 41 0 NA NA NA 3
## [109] NA NA NA NA NA NA 0 NA 11 58 NA NA NA NA NA NA NA 0
## [127] NA 78 NA 76 NA 10 NA 42 NA 71 NA NA NA NA 0 53 NA NA
## [145] 67 14 NA NA 31 26 NA NA NA NA NA NA NA NA NA NA NA 25
## [163] NA NA NA 52 NA NA NA 25 NA NA NA 68 NA 19 NA NA NA NA
## [181] NA NA 100 43 14 NA NA NA NA NA NA NA NA 72 NA NA NA NA
## [199] NA NA NA NA NA NA NA NA NA NA NA NA 60 74 NA 34 NA 29
## [217] NA 27 NA 39 NA 0 77 NA NA 22 66 76 NA NA 42 NA NA 10
## [235] 94 52 40 94 61 NA NA NA NA 23 4 NA 54 NA 17 NA NA 1
## [253] NA NA NA NA NA NA 53 NA NA NA 83 NA NA NA NA NA 41 NA
## [271] 27 NA NA NA 71 37 NA NA 9 36 NA NA NA 38 NA 87 NA 25
## [289] NA NA NA NA NA NA NA NA 27 NA 89 NA NA NA NA 69 NA NA
## [307] 89 NA NA NA NA NA 37 NA 54 NA NA 27 NA NA NA NA 75 63
## [325] NA 55 NA NA 50 NA NA 0 51 NA NA 51 NA NA 59 NA NA NA
## [343] NA NA NA 51 NA NA 41 NA NA 61 NA NA NA NA 19 NA NA 50
## [361] NA NA NA 16 NA NA 30 NA 21 NA NA NA 37 NA 50 NA NA 68
## [379] NA 93 85 NA NA 39 NA NA NA 67 NA 63 NA NA NA NA NA NA
## [397] NA NA NA NA NA NA NA NA 86 NA NA NA NA NA NA NA 100 NA
## [415] NA 69 84 63 28 NA 45 68 NA NA 93 24 68 61 62 69 NA NA
## [433] NA 0 75 NA NA NA 76 100 NA NA 76 98 NA NA NA NA NA NA
## [451] 80 NA 100 86 NA NA 97 NA 100 85 NA 7 31 77 29 85 NA 43
## [469] NA NA NA NA NA NA 82 NA 87 NA NA 83 100 91 NA NA NA 81
## [487] NA 72 NA NA NA NA 27 95 70 76 72 NA 75 NA 93 NA 89 92
## [505] 91 78 100 NA NA NA NA NA 100 100 11 NA NA NA 100 NA 36 0
## [523] 31 0 NA 0 NA NA 0 NA NA NA NA 80 NA 0 100 0 NA 84
## [541] NA 4 NA NA NA 0 100 7 0 NA NA NA NA 79 NA NA NA 16
## [559] NA 11 NA 0 36 NA 68 NA NA NA NA 20 NA NA NA 36 22 NA
## [577] NA 25 NA 94 20 91 NA NA NA 17 6 NA NA NA NA 70 NA 11
## [595] NA NA 0 NA NA 3 NA 47 NA 57 NA 1 NA 73 NA NA 28 NA
## [613] NA NA 88 NA NA NA NA NA NA NA NA 0 NA NA NA 24 NA 41
## [631] NA NA NA NA 19 86 NA NA 88 68 NA 36 81 NA 12 NA NA 57
## [649] 5 37 NA 81 NA NA NA NA NA 30 51 54 51 NA 91 NA NA 96
## [667] 12 NA NA NA NA 52 52 NA NA 89 25 3 53 56 41 0 30 NA
## [685] NA NA NA 45 36 47 NA 40 68 NA NA NA 59 40 NA NA NA NA
## [703] 71 59 NA NA NA NA 35 96 46 NA 62 NA NA NA NA NA 63 48
## [721] NA 51 NA NA 0 84 NA 29 NA 63 NA 71 NA NA 51 NA NA NA
## [739] 51 NA 75 88 84 NA 80 2 NA NA 55 NA NA 73 NA NA 70 97
## [757] 72 38 NA NA NA NA NA NA 70 83 24 NA 14 0 90 19 NA NA
## [775] NA 72 NA NA NA NA 53 55 83 86 NA 44 NA NA 91 10 NA NA
## [793] NA 75 99 68 NA NA NA NA 100 99 86 78 98 11 NA 100 20 NA
## [811] 100 NA NA NA NA NA NA NA 76 52 63 100 49 68 16 0 94 81
## [829] 69 81 62 NA 52 74 10 32 74 NA 86 NA 47 87 75 NA NA 20
## [847] 16 0 NA 67 100 42 0 56 4 NA NA 0 35 0 40 18 0 51
## [865] 88 58 NA NA NA 39 100 8 0 0 84 17 35 NA NA NA 30 79
## [883] 37 35 53 0 NA 23 69 34 44 66 53 0 36 48 0 87 100 91
## [901] 77 85 14 36 73 64 0 37 81 NA NA NA 23 73 32 60 67 72
## [919] 31 27 17 NA 0 75 NA 0 NA 69 58 78 NA 100 33 9 85 NA
## [937] 79 21 NA 11 16 69 NA NA 68 80 21 18 97 55 75 23 42 NA
## [955] 25 95 NA 0 21 53 91 60 89 76 2 NA 17 62 NA 50 14 30
## [973] NA 23 80 64 NA NA 3 31 NA 87 NA NA NA NA NA NA 94 72
## [991] 21 30 29 4 3 86 52 6 NA 44 0 21 79 79 52
PP$Familiarity_VB
## [1] NA NA NA NA NA NA NA NA NA NA NA 8 100 100 NA NA NA NA
## [19] NA NA NA NA NA NA 100 NA NA 100 100 29 NA NA NA NA NA 100
## [37] 0 NA NA NA NA NA NA 0 NA 64 NA NA 60 NA NA 100 NA NA
## [55] NA NA 70 100 73 100 NA NA 52 77 NA 2 100 NA NA 31 61 NA
## [73] NA NA NA 0 89 74 13 0 NA 100 NA NA NA 100 NA NA NA NA
## [91] NA 10 NA 0 NA NA NA 100 NA NA NA NA NA NA 50 5 NA 51
## [109] NA 2 NA NA NA NA 69 88 21 0 NA 81 100 87 1 5 66 NA
## [127] NA NA 86 NA NA NA 19 NA NA 71 7 10 NA 56 NA 53 NA NA
## [145] NA NA 85 NA NA 50 NA 21 NA 29 39 21 84 NA NA 74 73 71
## [163] NA 81 NA NA NA 25 NA 26 17 NA 73 73 61 NA NA NA 50 9
## [181] NA 100 100 67 NA NA 50 50 NA NA 81 NA 43 NA NA NA NA 54
## [199] NA 27 90 NA 61 59 51 21 NA 52 NA NA NA 82 76 NA 73 45
## [217] NA 56 66 NA NA 83 NA NA NA 11 NA NA 12 59 NA NA NA 12
## [235] 45 97 NA NA NA NA NA NA 80 42 57 56 NA NA NA 21 0 NA
## [253] NA 16 NA NA 52 NA NA 100 34 NA NA NA NA 25 NA 69 NA NA
## [271] NA NA 100 89 NA NA 63 NA NA NA 94 NA 70 NA 82 NA NA 53
## [289] NA 30 NA 63 NA NA NA 64 NA NA NA NA 51 NA 63 NA NA 70
## [307] NA NA NA 66 44 56 NA 86 NA 90 16 91 57 61 NA 58 NA 85
## [325] 71 NA NA NA NA NA NA 27 NA NA NA 51 41 NA 99 75 NA NA
## [343] NA 31 NA 52 63 52 NA NA 57 NA NA 52 81 26 NA NA 94 NA
## [361] NA NA NA 26 NA NA 53 75 NA NA 58 70 NA NA NA 58 NA NA
## [379] NA NA NA NA NA 74 84 NA NA NA NA 62 68 38 NA 65 NA 52
## [397] 35 NA NA NA NA 94 NA NA 86 NA NA 65 43 NA NA NA NA 75
## [415] NA 71 84 NA NA 67 65 69 NA 61 81 NA 63 NA NA NA NA 21
## [433] 84 0 NA 78 20 NA NA NA 73 75 NA NA NA 53 NA 100 NA NA
## [451] 98 NA 88 NA NA 76 NA 79 0 NA NA NA NA NA 25 NA 88 NA
## [469] NA 84 NA 81 NA NA NA 79 95 94 NA NA 97 NA 87 74 NA NA
## [487] 81 NA NA NA NA 100 NA NA NA 99 NA NA NA NA 52 NA 97 NA
## [505] 92 NA NA NA NA NA 100 100 NA 0 NA 100 100 NA 100 NA NA NA
## [523] 37 NA 52 NA 78 100 NA 30 98 NA NA NA NA NA NA NA 0 NA
## [541] 3 11 NA 83 87 22 100 82 NA 96 NA NA NA NA 89 7 94 NA
## [559] NA NA 69 NA NA NA NA 10 NA NA 0 NA NA NA NA NA 100 NA
## [577] 40 23 100 NA 24 NA NA 11 87 NA NA 45 NA 72 0 NA 39 NA
## [595] NA 94 100 NA 100 NA 58 NA 50 74 63 NA 29 88 0 100 NA 57
## [613] NA NA NA NA 39 47 NA NA NA NA 75 NA 84 NA 34 75 71 76
## [631] 67 47 85 NA NA 97 43 53 NA NA 4 NA NA 77 NA NA 0 63
## [649] NA NA 67 NA 69 NA 40 NA 35 NA 51 NA NA 56 94 NA NA NA
## [667] NA 52 53 52 52 NA NA 53 2 79 50 NA 55 NA NA NA 18 50
## [685] 98 93 76 NA 42 82 74 NA NA 53 NA 15 NA 45 NA 94 NA 86
## [703] NA NA NA NA 50 NA NA NA 52 69 NA 70 NA 52 NA NA NA NA
## [721] 36 NA 96 100 NA NA NA NA NA NA NA NA 66 45 NA NA 55 42
## [739] NA 0 NA NA 71 80 NA NA 73 NA NA NA 87 92 NA NA NA NA
## [757] NA 84 100 NA NA 65 NA NA NA NA NA 77 NA NA NA NA NA 94
## [775] 78 NA 84 NA 83 78 NA NA NA 80 81 NA 71 70 97 NA NA NA
## [793] 71 NA NA 87 NA NA 93 67 NA NA 60 100 96 5 29 NA NA NA
## [811] NA 58 NA NA NA 0 99 97 NA NA NA NA 31 49 79 60 85 NA
## [829] NA 79 NA 89 68 NA 20 70 34 53 45 86 54 93 NA 84 100 NA
## [847] 80 52 87 86 96 60 100 66 100 43 89 NA NA NA NA NA NA NA
## [865] NA NA 100 51 75 40 NA 21 NA 6 NA 95 NA 100 70 1 NA NA
## [883] NA 73 53 100 83 NA 68 43 NA NA 100 1 70 NA 0 NA 62 77
## [901] 100 NA NA 62 19 NA NA NA 79 45 72 59 NA NA NA NA 64 86
## [919] NA NA 85 76 NA 91 34 NA 36 81 NA 77 53 100 83 83 77 100
## [937] 74 NA 100 NA 36 NA 96 56 NA 68 69 50 NA 64 NA 68 NA 77
## [955] 70 71 50 0 33 55 NA 38 96 86 100 28 NA 68 95 NA NA NA
## [973] 98 NA 100 NA 99 61 42 98 42 83 69 38 86 50 47 64 83 NA
## [991] NA 48 NA NA 62 NA 0 100 44 42 0 NA 81 NA 68
PP$Understanding_GFFB
## [1] NA NA NA 65 93 NA 100 100 100 100 100 100 100 0 100 100 12 97
## [19] 100 100 100 80 69 NA 52 94 87 NA NA NA NA NA NA NA NA NA
## [37] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [55] NA NA NA 100 NA NA NA 100 NA NA NA NA NA NA NA NA NA 100
## [73] 100 100 NA 0 59 NA NA 100 NA NA NA NA 100 NA NA NA NA 18
## [91] 100 NA NA NA NA 90 NA NA 91 92 NA NA NA NA 89 95 NA NA
## [109] 91 100 93 NA 82 NA NA NA NA NA NA NA NA NA 78 NA 73 NA
## [127] NA 80 NA 85 69 NA NA NA 100 NA NA 100 49 NA NA NA 100 NA
## [145] 67 91 69 NA 69 NA 11 NA 18 NA NA NA NA 88 36 NA NA NA
## [163] NA NA 53 NA NA NA 100 NA NA 22 NA NA 75 NA 100 98 100 NA
## [181] NA NA NA NA NA 66 NA NA 75 21 NA NA NA 88 29 90 72 NA
## [199] 74 NA NA 98 50 68 NA NA 59 73 NA NA NA NA NA NA NA NA
## [217] 89 NA NA NA 44 NA NA NA NA NA NA NA 81 NA NA 30 NA NA
## [235] NA NA 77 NA 54 NA 93 67 NA NA NA NA NA NA NA NA 0 NA
## [253] NA NA 56 29 94 82 NA NA NA 31 NA 73 NA 31 100 NA 22 NA
## [271] 33 78 NA NA NA NA 0 11 NA NA NA NA NA 67 69 16 NA NA
## [289] NA NA 70 NA NA 100 NA NA NA 52 9 38 NA 82 NA NA 40 NA
## [307] NA NA NA 45 59 22 NA NA 66 96 NA NA NA NA 50 59 NA NA
## [325] NA NA NA NA NA 75 100 NA NA NA 69 NA NA NA NA 73 86 82
## [343] 50 NA 52 NA NA NA NA NA NA 79 NA NA NA NA NA 53 NA NA
## [361] 25 54 NA NA 53 NA NA NA NA NA 59 43 NA 20 NA NA NA NA
## [379] NA NA 100 NA NA NA 62 88 NA NA 84 NA NA NA 37 72 81 NA
## [397] 40 64 79 69 2 NA 55 79 NA 68 73 NA NA 71 NA 84 NA NA
## [415] 56 NA NA NA NA 78 NA NA NA 53 NA NA NA NA 69 42 64 NA
## [433] NA NA 38 38 NA 71 NA NA NA NA 74 NA 32 NA NA NA 87 64
## [451] NA 68 NA NA 96 76 NA NA NA 68 NA 53 NA NA NA NA NA 81
## [469] 92 78 NA NA 63 93 100 NA NA 86 81 NA NA NA NA NA NA NA
## [487] 85 NA 50 82 100 NA NA 90 NA NA NA 4 NA 98 NA NA NA NA
## [505] NA 0 100 98 0 100 100 NA NA NA NA NA 100 100 100 51 90 100
## [523] 100 100 100 0 100 100 100 100 78 100 100 90 100 0 0 99 61 94
## [541] 52 93 70 93 55 93 100 64 98 72 100 91 82 100 89 15 98 26
## [559] 85 53 17 53 100 94 82 90 17 91 81 87 66 80 22 83 100 62
## [577] 87 35 100 71 74 93 23 87 73 91 26 100 82 38 100 80 29 70
## [595] 100 86 100 100 100 53 87 86 21 59 60 73 62 100 19 80 67 87
## [613] 63 84 100 14 42 74 52 62 35 27 76 100 65 73 38 67 63 73
## [631] 37 31 74 85 71 93 56 47 75 78 25 61 100 45 67 38 57 80
## [649] 79 41 59 67 65 100 51 100 100 33 51 51 51 54 92 47 63 52
## [667] 25 52 53 52 52 52 52 53 54 90 50 82 53 51 57 13 40 80
## [685] 7 73 31 50 17 58 73 41 63 36 65 61 52 39 77 6 46 78
## [703] 58 52 62 100 65 59 75 85 52 79 55 58 89 81 62 62 63 76
## [721] 76 36 73 100 69 29 70 76 64 28 73 70 87 63 79 66 74 69
## [739] 44 80 59 100 86 79 69 0 51 64 67 70 84 96 68 100 70 78
## [757] 67 86 1 0 100 68 79 99 81 65 74 85 29 100 87 100 100 99
## [775] 75 81 81 85 85 82 53 53 85 71 28 94 83 71 100 100 91 85
## [793] 87 82 95 79 95 100 16 100 100 94 100 95 98 88 100 100 31 84
## [811] 100 99 100 100 99 56 98 85 100 0 76 100 NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Understanding_GFPRB
## [1] NA NA NA 73 100 100 89 100 100 100 100 100 100 100 0 100 0 100
## [19] 98 100 100 70 100 51 100 0 77 85 100 82 100 0 100 100 100 100
## [37] 100 100 100 100 100 100 100 0 100 0 100 100 0 100 100 100 100 100
## [55] 100 100 100 100 100 100 71 100 99 90 100 100 100 52 100 94 100 100
## [73] 1 97 100 100 94 100 14 100 100 100 100 83 100 100 100 85 100 100
## [91] 100 94 92 88 100 80 75 95 93 100 93 9 90 91 90 97 98 93
## [109] 79 13 88 87 96 78 100 98 82 80 93 100 66 26 100 9 75 78
## [127] 66 81 92 85 82 100 93 100 100 62 100 100 89 28 100 53 100 82
## [145] NA 66 100 74 20 81 89 86 88 91 50 97 83 86 71 64 66 76
## [163] 70 91 53 100 52 76 98 19 76 69 87 87 24 93 100 96 100 0
## [181] 0 100 100 72 100 81 100 84 73 89 17 77 59 95 91 85 90 5
## [199] 84 81 98 81 50 69 90 32 20 82 100 76 34 89 73 67 87 93
## [217] 78 77 56 69 68 92 77 83 33 100 79 99 82 68 81 32 57 69
## [235] 30 89 76 88 89 80 100 70 72 37 39 56 55 100 87 64 97 75
## [253] 80 100 41 19 56 87 100 100 100 31 61 69 100 29 88 81 50 51
## [271] 75 71 100 62 99 69 59 29 100 50 100 100 54 64 37 69 77 52
## [289] 52 33 84 45 44 70 44 60 100 40 100 64 49 66 48 86 80 72
## [307] 26 34 37 30 56 39 58 34 71 94 20 96 56 26 50 42 75 18
## [325] 100 92 50 100 50 45 100 20 51 54 91 51 66 51 84 58 85 76
## [343] 62 100 52 52 80 52 86 0 56 65 55 62 81 30 81 52 53 45
## [361] 29 65 74 34 71 36 69 42 95 16 61 37 68 34 39 60 43 38
## [379] 67 85 100 71 66 90 59 100 52 39 88 68 36 43 40 71 73 95
## [397] 70 31 41 63 45 99 65 38 32 34 71 34 64 32 78 72 100 90
## [415] 51 64 84 66 67 63 64 75 70 53 100 56 62 66 67 70 66 85
## [433] 76 8 77 65 79 35 81 100 29 70 95 71 0 36 78 15 74 69
## [451] 84 73 100 77 94 73 80 71 2 85 75 87 75 82 32 85 60 86
## [469] 21 86 74 87 77 98 100 92 73 72 83 93 85 97 79 42 79 92
## [487] 79 79 0 89 100 96 89 78 81 94 90 11 84 95 100 91 100 100
## [505] 68 100 96 100 100 98 100 100 100 75 20 100 NA NA NA NA NA NA
## [523] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [541] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [559] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [577] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [595] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [613] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [631] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [649] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [667] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [685] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [703] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [721] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [739] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [757] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [775] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [793] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [811] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Understanding_CBB
## [1] NA NA 92 54 NA 95 NA NA NA NA NA NA NA NA 30 0 NA 100
## [19] NA NA NA NA 72 0 NA NA NA NA NA NA 0 51 92 NA 82 50
## [37] NA NA 100 NA 100 NA NA NA 6 NA 0 91 90 NA 0 NA NA 100
## [55] NA 99 NA NA NA NA 71 NA 100 NA NA NA NA NA 100 NA NA NA
## [73] NA NA 3 NA NA 65 NA NA 30 NA 77 NA NA 100 100 NA 24 NA
## [91] NA NA 12 NA 96 NA NA 75 84 90 NA NA 65 NA NA NA 0 NA
## [109] NA NA NA 68 NA 76 NA 93 NA NA 0 NA 51 NA NA 87 NA NA
## [127] 5 NA NA NA 35 100 NA 38 100 NA NA NA 69 93 NA NA NA 86
## [145] NA NA NA 37 NA NA 18 NA 99 80 11 NA 16 95 40 18 62 NA
## [163] 1 NA 52 NA 100 50 NA NA NA 28 12 NA NA 86 NA NA NA 0
## [181] 0 NA NA NA NA 70 77 NA 69 NA NA 75 54 NA 75 NA 73 NA
## [199] NA NA NA NA NA NA 0 NA NA NA 100 23 73 NA NA NA NA NA
## [217] 28 NA NA NA NA NA NA 36 30 NA NA 86 NA 60 43 13 26 NA
## [235] NA NA NA 93 NA 53 69 57 100 NA NA NA NA 10 51 69 NA 50
## [253] 78 NA NA 51 NA 69 25 67 72 NA NA NA 100 NA NA 73 NA 56
## [271] NA NA NA NA 66 NA NA 54 NA NA NA 90 NA NA NA NA 33 NA
## [289] 3 33 NA 43 45 NA 63 NA NA NA NA NA NA NA 86 0 6 NA
## [307] NA 37 84 NA NA NA NA 53 NA NA 52 NA 39 NA NA NA 15 NA
## [325] NA NA 50 0 NA NA NA NA 58 93 19 NA 25 51 NA NA 85 87
## [343] NA 100 52 NA NA NA 62 0 NA NA 46 70 64 77 NA NA 53 52
## [361] NA 62 23 NA NA 29 NA NA NA 93 NA NA 53 NA NA NA 100 58
## [379] 71 96 NA 70 35 NA NA NA 70 NA NA NA NA NA 39 NA NA NA
## [397] NA NA 100 59 NA NA 75 70 NA NA NA NA NA 75 35 NA NA 70
## [415] 51 NA NA 69 NA NA NA NA 70 NA NA NA NA 64 NA NA NA 86
## [433] NA NA NA NA 72 NA NA NA 73 69 NA 38 NA NA 75 100 NA 69
## [451] NA NA NA NA NA NA 93 NA NA NA 83 NA 29 NA NA 100 NA NA
## [469] NA NA 79 NA NA 97 NA 86 NA NA 95 NA NA NA NA 86 83 88
## [487] NA NA 50 75 92 100 14 NA 97 NA NA NA 36 72 NA 85 NA 82
## [505] NA NA NA 99 100 100 NA 0 100 NA 10 100 100 0 NA 0 NA NA
## [523] NA 51 NA NA NA NA NA NA 18 100 100 34 0 NA NA 2 NA NA
## [541] 75 NA 21 20 34 NA NA NA NA 100 100 31 83 41 63 NA 38 NA
## [559] 78 NA 100 4 NA 95 NA NA 7 62 61 0 0 73 0 NA NA 15
## [577] NA NA 100 NA NA NA 66 NA NA NA 0 NA 93 6 100 75 30 62
## [595] 14 NA NA 100 100 NA 5 100 38 NA 57 13 NA NA NA 30 NA NA
## [613] 28 3 83 2 55 NA 41 0 32 95 NA NA 97 69 NA NA 75 NA
## [631] NA 10 21 20 NA NA 53 88 NA 79 NA 39 0 33 37 61 54 NA
## [649] NA NA NA NA 43 100 45 62 NA NA NA NA NA 29 NA 15 67 NA
## [667] NA NA 0 100 52 NA NA 53 50 NA NA 53 NA NA NA NA NA 85
## [685] 81 42 NA 52 NA NA 29 NA NA NA 56 NA NA NA 82 NA 52 59
## [703] NA NA 33 100 35 63 65 NA NA 66 NA NA 68 NA 66 54 NA 73
## [721] 62 NA NA NA 84 NA 59 87 22 26 76 NA NA NA 100 50 68 NA
## [739] NA NA 33 NA NA 81 73 NA 76 63 NA 68 NA NA 84 77 NA NA
## [757] NA NA 33 70 96 64 86 100 69 NA 27 81 NA NA 89 NA 100 100
## [775] NA NA NA 65 87 NA 22 NA 83 NA 85 74 NA 38 NA 28 94 83
## [793] 89 NA 84 NA 20 100 8 35 NA NA NA NA NA NA 72 100 16 100
## [811] 100 93 100 100 57 NA NA 49 78 0 NA 100 NA 70 NA NA 92 23
## [829] 66 75 38 67 NA 100 NA 80 NA 65 46 12 34 100 59 50 72 2
## [847] NA 52 65 NA NA 61 100 NA 0 47 90 53 36 100 27 50 25 27
## [865] 93 68 90 7 35 43 95 NA 99 25 100 100 51 4 51 3 26 83
## [883] 63 NA NA 3 100 29 28 31 56 64 NA NA 74 46 NA 99 NA 100
## [901] NA 88 0 NA NA 64 69 48 NA 59 87 63 74 15 83 60 NA 85
## [919] 30 76 19 83 20 100 32 94 96 NA 76 65 54 100 0 NA NA 68
## [937] 72 NA 80 26 NA 62 100 56 62 NA NA NA 68 62 53 10 64 50
## [955] 0 NA 44 0 30 52 96 43 100 NA NA 66 21 NA 98 52 20 23
## [973] 78 52 100 64 56 71 NA NA 22 NA 78 52 91 50 44 63 24 33
## [991] 52 24 60 41 NA 25 38 46 42 41 NA 13 79 100 NA
PP$Understanding_PBPB
## [1] NA 56 90 NA 100 NA NA NA NA NA NA NA NA NA NA NA NA NA
## [19] NA 71 NA NA NA NA NA 3 NA NA NA NA 0 NA NA 100 77 NA
## [37] 0 100 NA 100 NA 91 100 NA NA 34 100 NA NA 52 NA 30 100 NA
## [55] 62 99 NA NA NA NA 31 NA NA NA 1 NA NA 77 100 32 100 100
## [73] NA 100 13 NA NA NA NA NA NA NA NA 24 100 NA NA 57 NA 98
## [91] 88 NA 0 NA 63 28 52 NA NA NA 13 75 NA 0 NA NA 40 NA
## [109] 86 NA 56 77 86 84 NA NA NA NA 0 81 NA 52 NA NA NA 51
## [127] 28 NA 91 NA NA NA 90 NA NA NA 63 NA NA NA 100 NA 100 72
## [145] NA NA NA 29 NA NA NA 73 NA NA NA 88 NA NA NA NA NA NA
## [163] 0 92 NA 78 24 NA 100 NA 67 NA NA NA NA NA 0 72 NA NA
## [181] 0 100 NA NA 97 NA NA 28 NA 90 16 78 NA NA NA 29 NA 0
## [199] 42 78 3 83 NA NA NA 30 64 NA 100 19 NA NA 74 59 70 NA
## [217] NA NA 71 68 67 NA 73 82 33 NA 92 NA NA NA NA NA 29 NA
## [235] NA NA NA NA NA 62 NA NA NA NA NA 35 55 70 NA NA NA NA
## [253] 78 9 46 NA NA NA NA NA NA 62 23 10 100 NA 100 NA NA 50
## [271] NA 52 100 87 NA 41 NA NA 99 50 82 91 NA NA NA NA 50 NA
## [289] 80 NA 26 NA 17 100 21 21 100 52 NA 29 47 58 NA NA NA 77
## [307] 72 69 53 NA NA NA 74 NA NA NA NA NA NA 74 50 NA NA NA
## [325] 100 87 50 100 50 41 100 NA NA 57 NA NA NA 51 NA NA NA NA
## [343] 70 NA NA NA 95 59 NA 0 59 NA 41 NA NA NA 29 52 NA NA
## [361] 100 NA 30 NA 42 31 NA 25 61 93 NA NA NA 17 76 58 64 NA
## [379] 69 NA NA 68 60 NA NA 74 69 39 79 NA 64 60 NA NA 100 48
## [397] NA 86 NA NA NA 74 NA NA NA 85 62 58 58 NA 58 86 100 NA
## [415] NA NA NA NA 73 NA NA NA 84 NA NA 33 NA NA NA NA 66 NA
## [433] 83 NA NA NA NA 52 NA 100 NA NA NA NA 65 59 72 NA 100 NA
## [451] NA 67 NA 72 52 NA NA 71 NA NA 77 NA NA 80 NA NA 24 NA
## [469] 93 NA 66 71 86 NA NA NA NA NA NA 90 NA 86 89 NA 100 NA
## [487] NA 28 NA NA NA NA NA NA NA NA 20 14 NA NA NA 29 NA NA
## [505] NA NA NA NA NA NA NA NA NA NA NA NA NA 5 NA 51 100 50
## [523] NA NA 57 0 81 100 100 100 NA 100 80 NA 65 NA 100 NA 7 85
## [541] NA NA 17 NA NA NA NA NA 20 NA 93 63 80 NA NA 29 NA 19
## [559] 85 16 NA NA 75 93 87 76 28 59 NA NA 100 78 38 27 NA 70
## [577] 86 NA NA 77 NA 82 74 100 91 100 NA 45 100 NA NA NA NA NA
## [595] 13 84 NA 100 NA 48 NA NA NA NA NA NA 0 NA 100 NA 23 25
## [613] 64 51 NA 35 NA 60 52 52 58 20 72 0 NA 72 34 NA NA NA
## [631] 63 NA NA 33 68 NA NA NA 52 NA 27 NA NA NA NA 74 NA NA
## [649] 43 42 64 81 NA 100 NA 64 100 75 NA 52 51 NA NA 90 68 61
## [667] 89 52 NA NA NA 51 51 NA NA NA NA NA NA 53 55 27 NA NA
## [685] NA NA 68 NA NA NA NA 87 32 52 68 NA 52 NA 79 46 52 NA
## [703] 67 50 65 100 NA 62 NA 85 NA NA 64 42 76 98 34 61 4 NA
## [721] NA 100 72 28 NA 62 77 NA 26 NA 79 66 79 69 NA 68 NA 30
## [739] 42 79 NA 100 NA NA NA 42 NA 64 62 81 87 NA 63 100 65 86
## [757] 60 NA NA 100 100 NA 67 100 NA 88 NA NA 66 83 NA 100 100 NA
## [775] 62 86 77 73 NA 81 NA 58 NA NA NA NA 84 NA NA NA 82 90
## [793] NA 81 NA NA 61 100 NA NA 100 97 NA NA NA NA NA NA NA 100
## [811] NA NA 100 100 100 100 100 NA NA NA 76 NA 71 NA 22 100 NA 72
## [829] 64 NA 38 70 36 75 28 NA 62 85 NA 62 NA NA 55 50 38 36
## [847] 28 NA 56 100 100 NA NA 73 NA 35 91 43 70 0 66 58 60 60
## [865] 87 71 94 91 71 NA 87 65 100 NA 91 NA 31 100 68 69 28 59
## [883] 23 77 52 NA 100 87 NA NA 63 75 100 100 NA 52 61 100 100 NA
## [901] 76 59 34 22 81 76 100 47 97 42 52 24 82 28 29 63 57 NA
## [919] 31 71 NA 78 87 NA 28 0 75 3 91 NA 82 NA NA 79 74 23
## [937] NA 31 85 77 41 40 75 44 73 100 60 84 100 NA 53 NA 34 52
## [955] NA 66 53 NA NA NA 93 NA NA 76 100 69 63 72 95 44 93 92
## [973] 98 25 NA NA 22 52 1 100 27 77 0 45 80 47 45 62 NA 65
## [991] 52 NA 83 33 7 84 NA NA 36 NA 55 10 NA 88 43
PP$Understanding_PBFB
## [1] NA 60 NA NA NA 100 52 100 0 100 100 NA NA NA NA NA 0 NA
## [19] 81 NA 0 4 NA NA NA NA 87 100 0 6 NA 51 26 100 NA NA
## [37] NA 100 0 100 0 100 0 0 80 NA NA 68 NA 57 54 NA 100 2
## [55] 0 NA 70 NA 1 0 NA 0 NA 8 0 52 100 11 NA NA NA NA
## [73] 1 NA NA NA NA NA 1 NA 75 100 100 33 NA NA 100 31 66 NA
## [91] NA 12 NA 6 NA NA 28 NA NA NA 14 82 42 16 NA NA NA 3
## [109] NA NA NA NA NA NA 15 NA 87 59 NA NA NA NA NA NA NA 0
## [127] NA 77 NA 67 NA 100 NA 100 NA 38 NA NA NA NA 80 53 NA NA
## [145] 89 57 NA NA 88 22 NA NA NA NA NA NA NA NA NA NA NA 40
## [163] NA NA NA 52 NA NA NA 20 NA NA NA 70 NA 32 NA NA NA NA
## [181] NA NA 100 55 100 NA NA NA NA NA NA NA NA 58 NA NA NA NA
## [199] NA NA NA NA NA NA NA NA NA NA NA NA 40 74 NA 5 NA 32
## [217] NA 57 NA 69 NA 89 75 NA NA 85 78 97 NA NA 68 NA NA 13
## [235] 28 83 74 85 61 NA NA NA NA 35 2 NA 54 NA 52 NA NA 90
## [253] NA NA NA NA NA NA 27 NA NA NA 28 NA NA NA NA NA 41 NA
## [271] 28 NA NA NA 74 24 NA NA 82 21 NA NA NA 28 NA 68 NA 52
## [289] NA NA NA NA NA NA NA NA 84 NA 34 NA NA NA NA 80 NA NA
## [307] 89 NA NA NA NA NA 64 NA 72 NA NA 69 NA NA NA NA 71 85
## [325] NA 43 NA NA 50 NA NA 0 52 NA NA 51 NA NA 93 NA NA NA
## [343] NA NA NA 52 NA NA 71 NA NA 68 NA NA NA NA 22 NA NA 100
## [361] NA NA NA 26 NA NA 80 NA 26 NA NA NA 52 NA 66 NA NA 65
## [379] NA 98 100 NA NA 66 NA NA NA 39 NA 66 NA NA NA NA NA NA
## [397] NA NA NA NA NA NA NA NA 28 NA NA NA NA NA NA NA 100 NA
## [415] NA 67 75 62 78 NA 63 76 NA NA 65 29 30 61 100 64 NA NA
## [433] NA 50 75 NA NA NA 80 100 NA NA 94 100 NA NA NA NA NA NA
## [451] 82 NA 100 74 NA NA 86 NA 0 91 NA 65 25 83 34 73 NA 36
## [469] NA NA NA NA NA NA 79 NA 100 NA NA 88 90 96 NA NA NA 82
## [487] NA 75 NA NA NA NA 56 98 83 79 70 NA 71 NA 95 NA 83 92
## [505] 100 98 100 NA NA NA NA NA 100 100 23 NA NA NA 85 NA 78 51
## [523] 100 0 NA 0 NA NA 100 NA NA NA NA 73 NA 1 100 2 NA 78
## [541] NA 5 NA NA NA 90 87 20 1 NA NA NA NA 77 NA NA NA 16
## [559] NA 52 NA 0 66 NA 93 NA NA NA NA 11 NA NA NA 35 100 NA
## [577] NA 15 NA 70 25 95 NA NA NA 50 0 NA NA NA NA 75 NA 77
## [595] NA NA 0 NA NA 52 NA 77 NA 18 NA 0 NA 83 NA NA 28 NA
## [613] NA NA 83 NA NA NA NA NA NA NA NA 0 NA NA NA 21 NA 84
## [631] NA NA NA NA 66 88 NA NA 70 33 NA 53 100 NA 33 NA NA 69
## [649] 73 41 NA 62 NA NA NA NA NA 67 51 53 51 NA 100 NA NA 68
## [667] 88 NA NA NA NA 52 51 NA NA 77 50 53 42 52 36 98 43 NA
## [685] NA NA NA 59 28 42 NA 41 62 NA NA NA 52 37 NA NA NA NA
## [703] 60 47 NA NA NA NA 53 94 69 NA 45 NA NA NA NA NA 64 27
## [721] NA 82 NA NA 3 70 NA 82 NA 30 NA 78 NA NA 88 NA NA NA
## [739] 67 NA 77 100 87 NA 78 57 NA NA 61 NA NA 34 NA NA 72 79
## [757] 62 63 NA NA NA NA NA NA 62 82 21 NA 75 80 86 100 NA NA
## [775] NA 78 NA NA NA NA 52 98 72 75 NA 55 NA NA 77 75 NA NA
## [793] NA 77 61 12 NA NA NA NA 100 92 100 98 100 10 NA 100 100 NA
## [811] 100 NA NA NA NA NA NA NA 77 53 28 100 65 47 81 80 95 82
## [829] 65 89 66 NA 15 73 35 75 89 NA 82 NA 53 90 68 NA NA 2
## [847] 73 19 NA 66 100 34 0 67 50 NA NA 21 64 0 36 34 28 76
## [865] 89 65 NA NA NA 24 89 64 100 70 11 13 43 NA NA NA 10 82
## [883] 28 37 47 0 NA 84 70 39 54 69 100 78 79 52 0 93 100 100
## [901] 87 37 36 29 100 81 44 47 81 NA NA NA 87 31 74 59 64 61
## [919] 21 72 13 NA 83 97 NA 12 NA 28 61 76 NA 100 41 73 62 NA
## [937] 88 NA NA 67 18 70 NA NA 64 80 28 21 96 58 74 43 35 NA
## [955] 10 81 NA 0 39 52 87 59 99 24 0 NA 33 68 NA 47 74 27
## [973] NA 26 100 37 NA NA 0 71 NA 89 NA NA NA NA NA NA 21 30
## [991] 52 30 43 40 9 93 72 34 NA 52 46 14 72 71 52
PP$Understanding_VB
## [1] NA NA NA NA NA NA NA NA NA NA NA 100 100 100 NA NA NA NA
## [19] NA NA NA NA NA NA 100 NA NA 100 100 100 NA NA NA NA NA 50
## [37] 100 NA NA NA NA NA NA 0 NA 26 NA NA 100 NA NA 100 NA NA
## [55] NA NA 92 100 12 100 NA NA 98 100 NA 52 100 NA NA 56 79 NA
## [73] NA NA NA 5 82 83 9 100 NA 100 NA NA NA 100 NA NA NA NA
## [91] NA 5 NA 0 NA NA NA 100 NA NA NA NA NA NA 41 68 NA 91
## [109] NA 0 NA NA NA NA 76 82 81 37 NA 78 61 52 92 18 51 NA
## [127] NA NA 88 NA NA NA 79 NA NA 81 100 90 NA 75 NA 53 NA NA
## [145] NA NA 74 NA NA 82 NA 76 NA 74 66 86 82 NA NA 32 22 77
## [163] NA 89 NA NA NA 63 NA 31 34 NA 81 67 100 NA NA NA 100 3
## [181] NA 100 100 60 NA NA 88 50 NA NA 22 NA 89 NA NA NA NA 56
## [199] NA 75 77 NA 83 23 51 17 NA 79 NA NA NA 85 75 NA 34 77
## [217] NA 70 75 NA NA 100 NA NA NA 85 NA NA 27 59 NA NA NA 15
## [235] 69 90 NA NA NA NA NA NA 79 39 48 68 NA NA NA 28 0 NA
## [253] NA 100 NA NA 52 NA NA 100 64 NA NA NA NA 18 NA 84 NA NA
## [271] NA NA 100 78 NA NA 79 NA NA NA 100 NA 17 NA 76 NA NA 52
## [289] NA 15 NA 44 NA NA NA 40 NA NA NA NA 49 NA 75 NA NA 69
## [307] NA NA NA 39 44 70 NA 42 NA 91 11 100 55 69 NA 63 NA 92
## [325] 83 NA NA NA NA NA NA 61 NA NA NA 51 69 NA 100 89 NA NA
## [343] NA 100 NA 52 28 52 NA NA 45 NA NA 52 79 31 NA NA 3 NA
## [361] NA NA NA 30 NA NA 87 84 NA NA 41 68 NA NA NA 61 NA NA
## [379] NA NA NA NA NA 88 62 NA NA NA NA 61 64 62 NA 60 NA 52
## [397] 74 NA NA NA NA 91 NA NA 85 NA NA 31 64 NA NA NA NA 85
## [415] NA 71 81 NA NA 45 66 71 NA 53 63 NA 68 NA NA NA NA 81
## [433] 60 35 NA 68 28 NA NA NA 26 79 NA NA NA 52 NA 100 NA NA
## [451] 87 NA 89 NA NA 80 NA 74 100 NA NA NA NA NA 21 NA 88 NA
## [469] NA 82 NA 92 NA NA NA 79 82 88 NA NA 100 NA 91 74 NA NA
## [487] 97 NA NA NA NA 13 NA NA NA 84 NA NA NA NA 84 NA 77 NA
## [505] 100 NA NA NA NA NA 100 NA NA 83 NA 100 100 NA 100 NA NA NA
## [523] 68 NA 52 NA 100 100 NA 100 100 NA NA NA NA NA NA NA 100 NA
## [541] 29 1 NA 86 68 65 100 58 NA 92 NA NA NA NA 95 24 85 NA
## [559] NA NA 40 NA NA NA NA 99 NA NA 75 NA NA NA NA NA 100 NA
## [577] 87 90 100 NA 53 NA NA 89 88 NA NA 0 NA 79 100 NA 35 NA
## [595] NA 87 100 NA 0 NA 83 NA 25 61 77 NA 31 100 0 100 NA 26
## [613] NA NA NA NA 72 20 NA NA NA NA 75 NA 93 NA 65 40 75 79
## [631] 67 32 82 NA NA 81 43 48 NA NA 64 NA NA 65 NA NA 0 67
## [649] NA NA 60 NA 40 NA 24 NA 38 NA 51 NA NA 50 74 NA NA NA
## [667] NA 52 0 52 52 NA NA 52 50 56 50 NA 34 NA NA NA 82 70
## [685] 90 82 23 NA 34 92 26 NA NA 52 NA 61 NA 100 NA 77 NA 85
## [703] NA NA NA NA 38 NA NA NA 52 82 NA 90 NA 68 NA NA NA NA
## [721] 35 NA 100 100 NA NA NA NA NA NA NA NA 90 88 NA NA 63 69
## [739] NA 87 NA NA 86 93 NA NA 65 NA NA NA 90 83 NA NA NA NA
## [757] NA 96 100 NA NA 70 NA NA NA NA NA 82 NA NA NA NA NA 97
## [775] 82 NA 18 NA 96 68 NA NA NA 88 17 NA 78 52 100 NA NA NA
## [793] 21 NA NA 80 NA NA 100 100 NA NA 80 100 97 76 69 NA NA NA
## [811] NA 60 NA NA NA 100 65 99 NA NA NA NA 93 63 79 100 88 NA
## [829] NA 100 NA 85 46 NA 19 67 81 69 100 61 79 99 NA 100 100 NA
## [847] 75 52 59 24 100 62 100 99 100 60 89 NA NA NA NA NA NA NA
## [865] NA NA 100 70 88 40 NA 63 NA 81 NA 15 NA 100 66 18 NA NA
## [883] NA 19 52 100 82 NA 73 64 NA NA 100 79 64 NA 98 NA 100 71
## [901] 100 NA NA 60 100 NA NA NA 100 33 84 63 NA NA NA NA 88 88
## [919] NA NA 8 73 NA 100 36 NA 100 93 NA 81 71 100 80 93 77 100
## [937] 75 NA 100 NA 36 NA 96 53 NA 100 67 49 NA 53 NA 72 NA 67
## [955] 50 73 73 0 37 31 NA 44 88 93 100 66 NA 73 99 NA NA NA
## [973] 90 NA 100 NA 100 52 31 100 71 88 83 52 51 50 48 52 70 NA
## [991] NA 46 NA NA 59 NA 72 100 39 58 51 NA 79 NA 33
PP$Disgust_GFFB
## [1] NA NA NA 95 59 NA 0 0 0 0 0 0 0 0 0 0 17 12
## [19] 15 0 0 0 68 51 100 72 91 NA NA NA NA NA NA NA NA NA
## [37] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [55] NA NA NA 62 NA NA NA 3 NA NA NA NA NA NA NA NA NA 0
## [73] 0 100 NA 0 72 NA NA 0 NA NA NA NA 0 NA NA NA NA 67
## [91] 50 NA NA NA NA 100 NA NA 10 3 NA NA NA NA 0 3 NA NA
## [109] 0 0 86 NA 12 NA NA NA NA NA NA NA NA NA 1 NA 76 NA
## [127] NA 13 NA 10 16 NA NA NA 87 NA NA 0 53 NA NA NA 0 NA
## [145] 0 51 84 NA 22 NA 28 NA 87 NA NA NA NA 22 33 NA NA NA
## [163] NA NA 30 NA NA NA 32 NA NA 31 NA NA 82 NA 0 2 100 NA
## [181] NA NA NA NA NA 40 NA NA 35 36 NA NA NA 11 71 25 46 NA
## [199] 69 NA NA 27 99 55 NA NA 21 66 NA NA NA NA NA NA NA NA
## [217] 100 NA NA NA 58 NA NA NA NA NA NA NA 88 NA NA 38 NA NA
## [235] NA NA 22 NA 33 NA 49 37 NA NA NA NA NA NA NA NA 0 NA
## [253] NA NA 48 100 52 33 NA NA NA 26 NA 89 NA 28 1 NA 27 NA
## [271] 32 100 NA NA NA NA 100 37 NA NA NA NA NA 69 77 32 NA NA
## [289] NA NA 73 NA NA 0 NA NA NA 41 16 36 NA 56 NA NA 56 NA
## [307] NA NA NA 37 61 32 NA NA 37 97 NA NA NA NA 50 64 NA NA
## [325] NA NA NA NA NA 43 100 NA NA NA 23 NA NA NA NA 0 85 20
## [343] 53 NA 52 NA NA NA NA NA NA 69 NA NA NA NA NA 53 NA NA
## [361] 28 57 NA NA 63 NA NA NA NA NA 48 64 NA 20 NA NA NA NA
## [379] NA NA 100 NA NA NA 43 100 NA NA 82 NA NA NA 36 68 28 NA
## [397] 79 34 30 70 34 NA 66 26 NA 74 36 NA NA 100 NA 65 NA NA
## [415] 100 NA NA NA NA 71 NA NA NA 62 NA NA NA NA 60 77 61 NA
## [433] NA NA 34 67 NA 7 NA NA NA NA 90 NA 32 NA NA NA 87 64
## [451] NA 75 NA NA 51 78 NA NA NA 95 NA 79 NA NA NA NA NA 100
## [469] 20 95 NA NA 77 86 100 NA NA 5 76 NA NA NA NA NA NA NA
## [487] 75 NA 50 77 88 NA NA 95 NA NA NA 99 NA 7 NA NA NA NA
## [505] NA NA 100 100 0 100 100 NA NA NA NA NA NA 0 0 1 0 0
## [523] 0 0 0 0 0 0 0 0 16 0 0 4 0 0 3 1 0 3
## [541] 1 4 2 3 6 0 0 9 2 0 10 1 22 17 15 18 16 18
## [559] 10 11 19 4 31 18 9 72 18 11 25 81 51 19 100 17 66 28
## [577] 75 22 0 7 10 3 75 85 10 32 20 34 33 59 0 3 24 38
## [595] 0 81 100 100 0 53 48 92 29 33 23 53 16 99 46 74 79 26
## [613] 25 100 91 7 44 30 52 43 39 30 25 32 66 28 26 52 40 39
## [631] 40 49 30 40 39 5 77 53 40 32 50 55 48 24 39 53 50 6
## [649] 60 33 58 38 38 100 45 50 100 28 51 51 52 54 6 51 66 52
## [667] 49 52 53 52 52 53 52 53 57 84 50 53 53 0 56 86 12 13
## [685] 54 89 38 49 86 81 35 41 82 77 57 60 52 64 72 73 46 75
## [703] 62 52 43 53 74 78 100 22 52 32 63 66 75 36 71 48 64 28
## [721] 39 92 62 52 53 30 67 100 66 42 77 77 15 100 100 68 65 81
## [739] 82 81 74 100 14 26 69 45 69 72 65 78 93 94 64 0 71 11
## [757] 80 42 0 100 72 60 68 1 84 87 72 87 89 91 94 82 65 100
## [775] 19 81 85 91 81 90 100 70 83 79 24 100 86 85 82 100 85 86
## [793] 90 86 88 84 95 100 100 100 100 98 100 100 97 81 100 5 100 100
## [811] 100 99 100 100 100 100 100 100 100 100 100 100 NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Disgust_GFPRB
## [1] 13 NA NA 83 0 0 0 0 4 0 0 0 0 0 0 0 0 1
## [19] 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0
## [37] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [55] 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 2
## [73] 2 0 0 0 7 1 1 0 1 4 2 0 4 4 0 2 0 5
## [91] 0 3 0 3 0 0 0 0 5 0 3 11 12 13 0 8 0 90
## [109] 3 13 0 6 7 0 0 5 3 0 0 81 0 23 90 11 0 51
## [127] 21 5 12 6 7 0 17 14 0 73 23 0 23 10 0 53 18 0
## [145] 9 12 20 7 22 15 30 10 18 19 0 18 17 21 5 0 20 17
## [163] 0 20 24 0 11 15 40 26 19 30 21 18 24 25 0 0 0 100
## [181] 100 50 0 0 0 71 0 24 19 13 17 14 12 30 11 27 5 86
## [199] 0 13 3 6 31 18 51 37 26 23 0 13 27 36 27 66 39 40
## [217] 19 15 0 32 40 25 22 33 100 76 62 19 59 22 67 32 17 22
## [235] 33 3 28 0 38 35 33 31 39 46 97 NA 34 0 65 18 32 18
## [253] 29 0 38 80 35 12 0 52 0 30 39 23 35 27 15 10 31 40
## [271] 79 70 100 80 15 34 77 50 9 35 12 9 20 3 25 81 85 52
## [289] 0 27 60 45 NA 4 66 33 2 52 74 58 45 80 43 10 4 69
## [307] 4 57 50 49 59 66 34 38 36 88 8 57 52 14 46 58 72 20
## [325] 0 30 50 100 50 77 59 56 50 50 7 51 86 51 50 53 18 24
## [343] 43 17 52 52 25 52 51 100 47 67 66 52 35 87 44 52 53 0
## [361] 25 44 24 93 35 29 57 66 6 94 57 40 14 50 38 74 57 67
## [379] 65 2 0 65 28 44 63 74 39 41 37 44 68 64 30 10 94 94
## [397] 27 25 37 60 75 63 36 76 92 74 36 49 56 100 3 71 100 0
## [415] 100 61 22 58 0 62 64 28 26 55 42 84 72 66 60 39 66 74
## [433] 71 100 73 68 83 20 86 50 33 38 12 64 59 52 17 94 81 65
## [451] 24 71 0 77 21 77 30 74 0 85 76 67 40 81 81 80 73 100
## [469] 95 91 68 75 59 87 100 35 95 87 85 12 97 96 92 38 92 91
## [487] 85 89 100 88 91 84 54 72 0 18 82 89 85 91 98 100 100 97
## [505] 100 100 100 100 100 100 100 100 100 100 100 100 NA NA NA NA NA NA
## [523] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [541] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [559] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [577] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [595] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [613] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [631] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [649] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [667] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [685] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [703] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [721] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [739] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [757] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [775] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [793] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [811] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Disgust_CBB
## [1] NA NA 100 NA NA 0 NA NA NA NA NA NA NA NA 14 100 NA 0
## [19] NA NA NA NA 100 0 NA NA NA NA NA NA 100 100 21 NA 82 0
## [37] NA NA 0 NA 0 NA NA NA 100 NA 0 0 100 NA 100 NA NA 89
## [55] NA 100 NA NA NA NA 0 NA 1 NA NA NA NA NA 0 NA NA NA
## [73] NA NA 0 NA NA 65 NA NA 100 NA 90 NA NA 13 0 NA 32 NA
## [91] NA NA 100 NA 52 NA NA 6 58 94 NA NA 28 NA NA NA 100 NA
## [109] NA NA NA 19 NA 1 NA 86 NA NA 0 NA 0 NA NA 9 NA NA
## [127] 56 NA NA NA 64 49 NA 100 0 NA NA NA 75 100 NA NA NA 15
## [145] NA NA NA 86 NA NA 10 NA 100 76 47 NA 81 18 60 100 37 NA
## [163] 95 NA 27 NA 100 82 NA NA NA 76 10 NA NA 6 NA NA NA 100
## [181] 100 NA NA NA NA 79 79 NA 78 NA NA 21 11 NA 90 NA 82 NA
## [199] NA NA NA NA NA NA 100 NA NA NA 0 44 18 NA NA NA NA NA
## [217] 28 NA NA NA NA NA NA 9 4 NA NA 8 NA 22 28 38 66 NA
## [235] NA NA NA 4 NA 86 91 40 30 NA NA NA NA 40 81 13 NA 18
## [253] 82 NA NA 51 NA 54 0 0 31 NA NA NA 60 NA NA 9 NA 39
## [271] NA NA NA NA 19 NA NA 61 NA NA NA 96 NA NA NA NA 61 NA
## [289] 52 52 NA 39 44 NA 31 NA NA NA NA NA NA NA 16 100 66 NA
## [307] NA 71 67 NA NA NA NA 55 NA NA 52 NA 32 NA NA NA 7 NA
## [325] NA NA 50 100 NA NA NA NA 53 67 63 NA 65 51 NA NA 87 36
## [343] NA 100 52 NA NA NA 0 100 NA NA 39 3 7 83 NA NA 0 0
## [361] NA 72 30 NA NA 37 NA NA NA 94 NA NA 53 NA NA NA 90 66
## [379] 75 10 NA 17 50 NA NA NA 70 NA NA NA NA NA 38 NA NA NA
## [397] NA NA 0 66 NA NA 7 75 NA NA NA NA NA 100 74 NA NA 10
## [415] 0 NA NA 82 NA NA NA NA 26 NA NA NA NA 64 NA NA NA 96
## [433] NA NA NA NA 100 NA NA NA 78 83 NA 69 NA NA 87 0 NA 65
## [451] NA NA NA NA NA NA 51 NA NA NA 83 NA 76 NA NA 100 NA NA
## [469] NA NA 64 NA NA 86 NA 85 NA NA 100 NA NA NA NA 85 100 86
## [487] NA NA 100 97 72 100 24 NA 8 NA NA NA 98 13 NA 100 NA 100
## [505] NA NA NA 99 100 100 NA 0 100 NA 100 100 NA 0 NA 100 NA NA
## [523] NA 51 NA NA NA NA NA NA 100 100 0 93 100 NA NA 100 NA NA
## [541] 100 NA 92 22 22 NA NA NA NA 100 10 61 85 89 4 NA 86 NA
## [559] 27 NA 5 21 NA 74 NA NA 9 0 26 100 0 21 100 NA NA 22
## [577] NA NA 1 NA NA NA 61 NA NA NA 100 NA 75 81 82 5 26 87
## [595] 100 NA NA 99 0 NA 85 100 23 NA 54 100 NA NA NA 67 NA NA
## [613] 100 52 9 82 19 NA 52 41 66 14 NA NA 94 36 NA NA 42 NA
## [631] NA 49 37 62 NA NA 53 37 NA 60 NA 51 0 74 34 61 45 NA
## [649] NA NA NA NA 66 0 63 50 NA NA NA NA NA 75 NA 18 29 NA
## [667] NA NA 0 0 52 NA NA 53 100 NA NA 75 NA NA NA NA NA 79
## [685] 22 59 NA 64 NA NA 54 NA NA NA 58 NA NA NA 80 NA 47 80
## [703] NA NA 31 100 69 59 0 NA NA 32 NA NA 50 NA 77 58 NA 28
## [721] 72 NA NA NA 1 NA 48 30 70 51 18 NA NA NA 42 58 67 NA
## [739] NA NA 85 NA NA 78 84 NA 18 67 NA 89 NA NA 70 13 NA NA
## [757] NA NA 97 100 5 60 68 100 35 NA 67 79 NA NA 89 NA 90 100
## [775] NA NA NA 84 89 NA 53 NA 86 NA 52 10 NA 80 NA 100 95 92
## [793] 96 NA 87 NA 100 0 88 65 NA NA NA NA NA NA 9 97 100 100
## [811] 100 91 100 100 100 NA NA 8 25 100 NA 100 NA 22 NA NA 87 15
## [829] 65 0 77 73 NA 0 NA 66 NA 0 34 59 88 9 35 0 82 100
## [847] NA 52 68 NA NA 56 0 NA 100 58 76 55 72 0 2 41 100 0
## [865] 8 60 100 98 50 43 25 NA 90 100 0 4 17 35 69 100 31 73
## [883] 43 NA NA 0 66 64 66 97 54 84 NA NA 16 47 NA 90 NA 0
## [901] NA 65 96 NA NA 42 0 72 NA 70 58 19 72 100 32 51 NA 73
## [919] 32 32 51 88 100 80 57 8 78 NA 22 19 66 0 51 NA NA 90
## [937] 80 NA 5 36 NA 42 100 41 38 NA NA NA 24 61 54 43 75 59
## [955] 60 NA 50 50 28 52 99 52 72 NA NA 58 43 NA 10 38 77 30
## [973] 16 94 0 NA 59 76 NA NA 44 NA 74 52 3 50 61 73 68 36
## [991] 52 0 90 59 NA 54 2 69 41 44 NA 73 80 1 NA
PP$Disgust_PBPB
## [1] NA 44 100 NA 0 NA NA NA NA NA NA NA NA NA NA NA NA NA
## [19] NA 100 NA NA NA NA NA 0 NA NA NA NA 100 NA NA 50 100 NA
## [37] 100 0 NA 1 NA 47 28 NA NA 86 0 NA NA 64 NA 30 36 NA
## [55] 80 100 NA NA NA NA 93 NA NA NA 1 NA NA 7 100 31 63 0
## [73] NA 80 0 NA NA NA NA NA NA NA NA 8 100 NA NA 27 NA 100
## [91] 13 NA 100 NA 36 0 94 NA NA NA 88 37 NA 95 NA NA 97 NA
## [109] 15 NA 0 88 15 2 NA NA NA NA 100 79 NA 56 NA NA NA 100
## [127] 77 NA 14 NA NA NA 31 NA NA NA 57 NA NA NA 0 NA 0 71
## [145] NA NA NA 77 NA NA NA 4 NA NA NA 41 NA NA NA NA NA NA
## [163] 25 21 NA 100 100 NA 32 NA 28 NA NA NA NA NA 100 100 NA NA
## [181] 0 0 NA NA 1 NA NA 22 NA 32 19 27 NA NA NA 37 NA 100
## [199] 43 35 5 19 NA NA NA 23 23 NA 0 0 NA NA 53 12 70 NA
## [217] NA NA 100 69 24 NA 24 10 100 NA 100 NA NA NA NA NA 31 NA
## [235] NA NA NA NA NA 91 NA NA NA NA NA 7 16 25 NA NA NA NA
## [253] 21 27 66 NA NA NA NA NA NA 76 67 39 23 NA 0 NA NA 30
## [271] NA 36 100 23 NA 37 NA NA 32 68 0 8 NA NA NA NA 37 NA
## [289] 2 NA 75 NA 19 6 80 0 3 52 NA 64 63 48 NA NA NA 28
## [307] 0 30 54 NA NA NA 76 NA NA NA NA NA NA 29 50 NA NA NA
## [325] 100 0 50 100 50 72 0 NA NA 60 NA NA NA 49 NA NA NA NA
## [343] 27 NA NA NA 34 52 NA 50 46 NA 50 NA NA NA 67 53 NA NA
## [361] 64 NA 89 NA 66 87 NA 80 18 81 NA NA NA 35 24 58 54 NA
## [379] 74 NA NA 68 61 NA NA 0 44 54 78 NA 67 58 NA NA 100 7
## [397] NA 68 NA NA NA 79 NA NA NA 25 25 70 61 NA 59 14 0 NA
## [415] NA NA NA NA 29 NA NA NA 13 NA NA 64 NA NA NA NA 72 NA
## [433] 78 NA NA NA NA 83 NA 0 NA NA NA NA 73 64 25 NA 79 NA
## [451] NA 66 NA 94 12 NA NA 76 NA NA 96 NA NA 81 NA NA 65 NA
## [469] 89 NA 76 66 77 NA NA NA NA NA NA 82 NA 87 94 NA 0 NA
## [487] NA 36 NA NA NA NA NA NA NA NA 2 88 NA NA NA 79 NA NA
## [505] NA NA NA NA NA NA NA NA NA NA NA NA NA 70 NA 0 0 100
## [523] NA NA 54 0 100 0 0 0 NA 100 4 NA 0 NA 0 NA 100 9
## [541] NA NA 43 NA NA NA NA NA 46 NA 16 71 78 NA NA 35 NA 23
## [559] 24 98 NA NA 37 91 9 100 19 5 NA NA 78 23 72 74 NA 17
## [577] 8 NA NA 6 NA 2 79 7 3 11 NA 100 36 NA NA NA NA NA
## [595] 100 12 NA 5 NA 86 NA NA NA NA NA NA 43 NA 50 NA 84 29
## [613] 86 0 NA 88 NA 100 3 33 67 4 0 0 NA 36 32 NA NA NA
## [631] 63 NA NA 69 58 NA NA NA 29 NA 36 NA NA NA NA 30 NA NA
## [649] 10 46 63 35 NA 100 NA 50 100 79 NA 53 51 NA NA 15 63 14
## [667] 79 52 NA NA NA 52 53 NA NA NA NA NA NA 53 55 78 NA NA
## [685] NA NA 61 NA NA NA NA 27 76 53 74 74 51 NA 48 40 61 NA
## [703] 66 52 46 0 NA 26 NA 31 NA NA 100 74 0 64 40 53 78 NA
## [721] NA 7 0 100 NA 37 98 NA 52 NA 71 68 8 37 NA 70 NA 58
## [739] 23 100 NA 3 NA NA NA 66 NA 68 67 93 0 NA 71 25 69 19
## [757] 33 NA NA 0 5 NA 52 100 NA 88 NA NA 17 34 NA 0 71 NA
## [775] 61 84 95 78 NA 80 NA 54 NA NA NA NA 84 NA NA NA 100 79
## [793] NA 85 NA NA 37 36 NA NA 0 97 NA NA NA NA NA NA NA 100
## [811] NA NA 100 100 0 0 3 NA NA NA 0 NA 100 NA 80 0 NA 77
## [829] 75 NA 71 9 89 63 26 NA 40 8 NA 20 NA NA 42 50 24 50
## [847] 37 NA 68 1 10 NA NA 44 NA 73 80 36 32 0 69 78 79 0
## [865] 7 79 62 98 26 NA 23 64 0 NA 3 NA 27 0 34 75 77 86
## [883] 75 23 53 NA 41 19 NA NA 42 81 100 83 NA 0 100 98 100 NA
## [901] 0 64 100 48 93 34 66 77 82 42 100 19 22 77 69 67 58 NA
## [919] 29 71 NA 72 80 NA 27 100 40 79 30 NA 28 NA NA 88 71 73
## [937] NA 63 0 16 35 62 79 69 72 0 24 91 0 NA 53 NA 29 50
## [955] NA 69 48 NA NA NA 92 NA NA 12 2 64 100 20 2 27 0 7
## [973] 9 16 NA NA 0 83 100 17 84 26 77 44 14 50 25 64 NA 66
## [991] 52 NA 99 74 100 65 NA NA 37 NA 100 89 NA 3 65
PP$Disgust_PBFB
## [1] NA 40 NA NA NA 0 50 0 100 0 100 NA NA NA NA NA 21 NA
## [19] 100 NA 100 22 NA NA NA NA 0 53 100 83 NA 100 55 50 NA NA
## [37] NA 100 0 5 0 68 71 0 22 NA NA 100 NA 54 59 NA 0 100
## [55] 100 NA 19 NA 100 100 NA 100 NA 79 0 100 10 70 NA NA NA NA
## [73] 100 NA NA NA NA NA 98 NA 23 3 0 8 NA NA 0 31 100 NA
## [91] NA 100 NA 0 NA NA 82 NA NA NA 87 96 45 98 NA NA NA 99
## [109] NA NA NA NA NA NA 100 NA 14 100 NA NA NA NA NA NA NA 100
## [127] NA 19 NA 81 NA 0 NA 52 NA 64 NA NA NA NA 100 53 NA NA
## [145] 14 83 NA NA 15 69 NA NA NA NA NA NA NA NA NA NA NA 50
## [163] NA NA NA 100 NA NA NA 80 NA NA NA 23 NA 31 NA NA NA NA
## [181] NA NA 100 0 0 NA NA NA NA NA NA NA NA 87 NA NA NA NA
## [199] NA NA NA NA NA NA NA NA NA NA NA NA 24 12 NA 68 NA 0
## [217] NA 51 NA 63 NA 9 23 NA NA 0 35 38 NA NA 71 NA NA 17
## [235] 21 31 30 8 56 NA NA NA NA 78 99 NA 23 NA 84 NA NA 100
## [253] NA NA NA NA NA NA 0 NA NA NA 70 NA NA NA NA NA 30 NA
## [271] 16 NA NA NA 19 69 NA NA 42 63 NA NA NA 66 NA 17 NA 70
## [289] NA NA NA NA NA NA NA NA 8 NA 0 NA NA NA NA 24 NA NA
## [307] 3 NA NA NA NA NA 41 NA 65 NA NA 40 NA NA NA NA 78 66
## [325] NA 25 NA NA 50 NA NA 98 51 NA NA 51 NA NA 19 NA NA NA
## [343] NA NA NA 55 NA NA 51 NA NA 48 NA NA NA NA 17 NA NA 1
## [361] NA NA NA 2 NA NA 64 NA 37 NA NA NA 69 NA 22 NA NA 61
## [379] NA 0 87 NA NA 20 NA NA NA 35 NA 40 NA NA NA NA NA NA
## [397] NA NA NA NA NA NA NA NA 90 NA NA NA NA NA NA NA 0 NA
## [415] NA 69 15 69 66 NA 62 18 NA NA 66 77 75 62 69 38 NA NA
## [433] NA 100 11 NA NA NA 35 10 NA NA 95 68 NA NA NA NA NA NA
## [451] 86 NA 0 81 NA NA 19 NA 0 80 NA 23 74 85 79 83 NA 84
## [469] NA NA NA NA NA NA 59 NA 95 NA NA 83 99 89 NA NA NA 81
## [487] NA 77 NA NA NA NA 48 97 17 27 2 NA 78 NA 62 NA 6 100
## [505] 0 100 100 NA NA NA NA NA 100 100 100 NA NA NA 0 NA 3 100
## [523] 69 0 NA 0 NA NA 0 NA NA NA NA 26 NA 100 16 100 NA 26
## [541] NA 95 NA NA NA 14 100 16 16 NA NA NA NA 21 NA NA NA 5
## [559] NA 88 NA 0 100 NA 32 NA NA NA NA 91 NA NA NA 87 74 NA
## [577] NA 27 NA 15 48 6 NA NA NA 11 100 NA NA NA NA 80 NA 61
## [595] NA NA 100 NA NA 100 NA 83 NA 51 NA 96 NA 27 NA NA 97 NA
## [613] NA NA 9 NA NA NA NA NA NA NA NA 100 NA NA NA 77 NA 73
## [631] NA NA NA NA 60 5 NA NA 0 35 NA 64 100 NA 64 NA NA 17
## [649] 94 44 NA 31 NA NA NA NA NA 35 51 54 51 NA 34 NA NA 1
## [667] 95 NA NA NA NA 52 52 NA NA 28 50 100 53 57 38 100 90 NA
## [685] NA NA NA 56 93 92 NA 52 30 NA NA NA 55 32 NA NA NA NA
## [703] 61 70 NA NA NA NA 16 10 36 NA 62 NA NA NA NA NA 67 26
## [721] NA 65 NA NA 29 74 NA 5 NA 21 NA 36 NA NA 32 NA NA NA
## [739] 59 NA 78 2 13 NA 80 27 NA NA 67 NA NA 81 NA NA 74 12
## [757] 75 71 NA NA NA NA NA NA 73 32 22 NA 0 0 91 0 NA NA
## [775] NA 80 NA NA NA NA 15 3 84 81 NA 59 NA NA 88 100 NA NA
## [793] NA 75 53 11 NA NA NA NA 25 96 3 3 100 90 NA 56 100 NA
## [811] 100 NA NA NA NA NA NA NA 78 53 100 100 100 19 83 20 91 39
## [829] 65 0 65 NA 91 71 70 68 83 NA 12 NA 91 6 70 NA NA 50
## [847] 18 57 NA 33 16 66 100 89 50 NA NA 8 66 0 75 25 100 15
## [865] 3 39 NA NA NA 37 29 68 31 100 2 12 100 NA NA NA 34 79
## [883] 100 22 46 100 NA 66 67 97 58 64 100 100 36 47 100 87 100 21
## [901] 0 71 100 79 100 41 38 53 82 NA NA NA 19 34 67 52 63 75
## [919] 31 30 94 NA 76 77 NA 99 NA 84 58 22 NA 0 41 89 71 NA
## [937] 78 43 NA 34 22 38 NA NA 22 0 72 87 17 60 52 89 44 NA
## [955] 100 76 NA 80 17 52 89 31 30 28 100 NA 100 31 NA 38 18 29
## [973] NA 24 95 58 NA NA 99 13 NA 85 NA NA NA NA NA NA 67 20
## [991] 100 39 67 92 99 26 83 0 NA 46 100 19 74 0 66
PP$Disgust_VB
## [1] NA NA NA NA NA NA NA NA NA NA NA 100 0 0 NA NA NA NA
## [19] NA NA NA NA NA NA 48 NA NA 100 0 88 NA NA NA NA NA 50
## [37] 100 NA NA NA NA NA NA 0 NA 69 NA NA 40 NA NA 18 NA NA
## [55] NA NA 67 47 66 0 NA NA 99 3 NA 100 4 NA NA 33 30 NA
## [73] NA NA NA 100 58 20 100 100 NA 5 NA NA NA 0 NA NA NA NA
## [91] NA 72 NA 0 NA NA NA 22 NA NA NA NA NA NA 54 95 NA 74
## [109] NA 0 NA NA NA NA 100 7 19 100 NA 86 1 52 100 24 0 NA
## [127] NA NA 16 NA NA NA 19 NA NA 20 100 90 NA 10 NA 53 NA NA
## [145] NA NA 35 NA NA 61 NA 52 NA 36 51 62 18 NA NA 33 25 51
## [163] NA 18 NA NA NA 84 NA 78 16 NA 8 10 80 NA NA NA 0 35
## [181] NA 50 0 0 NA NA 80 94 NA NA 20 NA 0 NA NA NA NA 79
## [199] NA 48 7 NA 53 82 51 42 NA 0 NA NA NA 24 28 NA 32 0
## [217] NA 46 100 NA NA 38 NA NA NA 0 NA NA 17 26 NA NA NA 19
## [235] 27 52 NA NA NA NA NA NA 25 55 9 19 NA NA NA 22 0 NA
## [253] NA 92 NA NA 37 NA NA 0 28 NA NA NA NA 27 NA 10 NA NA
## [271] NA NA 98 35 NA NA 0 NA NA NA 60 NA 46 NA 16 NA NA 29
## [289] NA 100 NA 42 NA NA NA 0 NA NA NA NA 11 NA 46 NA NA 33
## [307] NA NA NA 33 58 33 NA 53 NA 8 10 84 65 48 NA 65 NA 16
## [325] 0 NA NA NA NA NA NA 43 NA NA NA 51 63 NA 9 0 NA NA
## [343] NA 70 NA 52 25 52 NA NA 60 NA NA 52 60 80 NA NA 3 NA
## [361] NA NA NA 4 NA NA 62 86 NA NA 61 42 NA NA NA 59 NA NA
## [379] NA NA NA NA NA 0 57 NA NA NA NA 38 71 58 NA 67 NA 11
## [397] 74 NA NA NA NA 70 NA NA 28 NA NA 50 63 NA NA NA NA 0
## [415] NA 76 28 NA NA 73 62 37 NA 53 29 NA 31 NA NA NA NA 82
## [433] 65 100 NA 72 16 NA NA NA 70 55 NA NA NA 53 NA 100 NA NA
## [451] 18 NA 92 NA NA 75 NA 76 0 NA NA NA NA NA 89 NA 0 NA
## [469] NA 91 NA 82 NA NA NA 27 81 86 NA NA 93 NA 84 29 NA NA
## [487] 82 NA NA NA NA 100 NA NA NA 23 NA NA NA NA 91 NA 50 NA
## [505] 0 NA NA NA NA NA 100 0 NA 100 NA 100 100 NA 0 NA NA NA
## [523] 67 NA 52 NA 100 0 NA 0 0 NA NA NA NA NA NA NA 100 NA
## [541] 5 0 NA 5 14 72 0 15 NA 5 NA NA NA NA 37 20 1 NA
## [559] NA NA 4 NA NA NA NA 86 NA NA 100 NA NA NA NA NA 3 NA
## [577] 10 24 21 NA 33 NA NA 13 3 NA NA 100 NA 68 76 NA 9 NA
## [595] NA 0 1 NA 100 NA 92 NA 29 43 70 NA 76 5 22 88 NA 26
## [613] NA NA NA NA 38 100 NA NA NA NA 0 NA 78 NA 61 51 35 76
## [631] 22 16 31 NA NA 0 44 98 NA NA 4 NA NA 39 NA NA 0 76
## [649] NA NA 27 NA 67 NA 51 NA NA NA 51 NA NA 34 24 NA NA NA
## [667] NA 52 27 54 52 NA NA 52 0 28 50 NA 52 NA NA NA 67 21
## [685] 21 30 74 NA 68 9 76 NA NA 26 NA 65 NA 40 NA 32 NA 27
## [703] NA NA NA NA 26 NA NA NA 53 31 NA 81 NA 41 NA NA NA NA
## [721] 65 NA 66 0 NA NA NA NA NA NA NA NA 13 23 NA NA 70 79
## [739] NA 100 NA NA 16 81 NA NA 12 NA NA NA 4 68 NA NA NA NA
## [757] NA 100 0 NA NA 77 NA NA NA NA NA 79 NA NA NA NA NA 0
## [775] 53 NA 84 NA 75 73 NA NA NA 90 21 NA 50 61 92 NA NA NA
## [793] 58 NA NA 1 NA NA 0 0 NA NA 2 1 100 92 61 NA NA NA
## [811] NA 63 NA NA NA 0 65 2 NA NA NA NA 89 49 80 0 85 NA
## [829] NA 0 NA NA 85 NA 91 32 24 19 1 24 57 36 NA 0 100 NA
## [847] 10 53 46 27 19 43 0 46 0 60 89 NA NA NA NA NA NA NA
## [865] NA NA 1 75 13 37 NA 65 NA 0 NA 32 NA 0 51 67 NA NA
## [883] NA 21 52 100 20 NA 74 96 NA NA 30 90 31 NA 0 NA 0 64
## [901] 0 NA NA 50 100 NA NA NA 23 54 42 80 NA NA NA NA 64 77
## [919] NA NA 77 81 NA 46 65 NA 85 25 NA 22 52 0 37 37 64 1
## [937] 83 NA 0 NA 32 NA 100 73 NA 15 78 51 NA 73 NA 52 NA 20
## [955] 80 82 74 100 33 52 NA 44 76 0 1 19 NA 42 6 NA NA NA
## [973] 1 NA 0 NA 0 50 99 0 31 25 23 52 25 50 23 58 49 NA
## [991] NA 45 NA NA 29 NA 99 0 34 40 100 NA 80 NA 74
PP$Control_GFFB
## [1] NA NA NA 40 35 NA 100 100 100 100 100 100 100 100 100 0 0 74
## [19] 85 92 100 0 68 51 71 82 96 NA NA NA NA NA NA NA NA NA
## [37] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [55] NA NA NA 3 NA NA NA 93 NA NA NA NA NA NA NA NA NA 100
## [73] 100 100 NA 0 36 NA NA 80 NA NA NA NA 100 NA NA NA NA 39
## [91] 100 NA NA NA NA 100 NA NA 80 81 NA NA NA NA 97 94 NA NA
## [109] 100 100 73 NA 11 NA NA NA NA NA NA NA NA NA 87 NA 77 NA
## [127] NA 82 NA 90 59 NA NA NA 100 NA NA 100 52 NA NA NA 100 NA
## [145] 73 63 85 NA 24 NA 8 NA 85 NA NA NA NA 77 66 NA NA NA
## [163] NA NA 53 NA NA NA 68 NA NA 71 NA NA 71 NA 0 0 0 NA
## [181] NA NA NA NA NA 23 NA NA 75 61 NA NA NA 85 66 76 45 NA
## [199] 72 NA NA 82 50 78 NA NA 56 44 NA NA NA NA NA NA NA NA
## [217] 87 NA NA NA 64 NA NA NA NA NA NA NA 81 NA NA 35 NA NA
## [235] NA NA 71 NA 54 NA 83 64 NA NA NA NA NA NA NA NA 0 NA
## [253] NA NA 61 56 40 78 NA NA NA 26 NA 96 NA 22 100 NA 33 NA
## [271] 31 78 NA NA NA NA 28 29 NA NA NA NA NA 72 77 76 NA NA
## [289] NA NA 77 NA NA 75 NA NA NA 52 100 61 NA 57 NA NA 51 NA
## [307] NA NA NA 42 40 5 NA NA 74 95 NA NA NA NA 51 61 NA NA
## [325] NA NA NA NA NA 55 0 NA NA NA 76 NA NA NA NA 95 88 68
## [343] 57 NA 46 NA NA NA NA NA NA 64 NA NA NA NA NA 56 NA NA
## [361] 33 56 NA NA 62 NA NA NA NA NA 55 49 NA 15 NA NA NA NA
## [379] NA NA 82 NA NA NA 61 100 NA NA 85 NA NA NA 74 83 89 NA
## [397] 81 39 73 66 82 NA 49 32 NA 33 59 NA NA 35 NA 85 NA NA
## [415] 100 NA NA NA NA 73 NA NA NA 57 NA NA NA NA 68 12 65 NA
## [433] NA NA 26 63 NA 77 NA NA NA NA 90 NA 37 NA NA NA 89 64
## [451] NA 72 NA NA 92 75 NA NA NA 87 NA 53 NA NA NA NA NA 69
## [469] 69 96 NA NA 81 81 82 NA NA 92 75 NA NA NA NA NA NA NA
## [487] 81 NA 50 82 87 NA NA 95 NA NA NA 10 NA 86 NA NA NA NA
## [505] NA NA 100 99 0 100 100 NA NA NA NA NA 100 100 100 51 67 100
## [523] 87 100 100 0 80 100 100 100 2 100 78 100 51 1 0 100 100 92
## [541] 31 97 100 93 79 81 63 84 88 0 100 71 50 69 76 9 76 19
## [559] 53 76 18 53 59 79 73 79 6 56 81 6 100 80 99 65 100 100
## [577] 84 28 100 25 82 94 71 95 94 81 11 100 90 56 100 50 21 64
## [595] 100 65 0 62 100 22 63 75 48 72 61 69 62 85 14 80 58 65
## [613] 80 87 84 12 41 29 23 65 67 62 84 86 100 75 60 68 60 25
## [631] 62 58 70 100 41 89 52 45 50 80 61 57 52 25 36 37 56 64
## [649] 66 62 50 64 74 0 49 50 0 37 51 51 51 53 69 52 35 52
## [667] 49 52 0 52 52 53 52 41 54 89 53 53 51 51 47 16 30 63
## [685] 54 78 76 55 34 69 75 41 58 40 60 57 59 32 71 55 52 57
## [703] 56 64 58 4 39 66 69 26 53 72 57 60 85 73 69 62 65 68
## [721] 67 76 73 52 51 87 78 32 63 40 53 69 85 60 90 66 71 61
## [739] 41 51 65 83 79 86 75 0 67 70 65 79 63 84 76 0 72 98
## [757] 65 84 100 0 100 76 89 100 66 87 86 86 53 68 95 100 84 100
## [775] 68 78 79 75 84 94 53 55 91 78 81 26 100 83 87 50 86 83
## [793] 78 80 85 64 NA 100 17 100 100 95 100 86 97 72 91 95 100 92
## [811] 100 98 100 100 99 0 4 88 100 0 50 100 NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Control_GFPRB
## [1] NA NA NA 32 89 61 100 100 100 100 100 100 100 100 0 54 76 100
## [19] 21 95 100 17 100 100 100 0 80 50 80 65 100 100 100 100 100 100
## [37] 100 100 0 81 100 31 76 0 100 72 0 88 95 75 100 75 100 100
## [55] 100 100 100 1 100 100 64 100 100 81 0 52 100 95 0 88 0 100
## [73] 97 94 0 100 90 100 50 100 92 100 92 67 98 100 100 38 85 100
## [91] 100 25 65 79 91 86 53 78 74 100 97 13 81 91 81 96 96 91
## [109] 96 9 100 40 11 22 100 100 20 86 74 74 64 52 100 25 100 83
## [127] 75 74 84 84 87 100 80 80 33 60 57 100 80 69 50 53 71 92
## [145] 66 59 96 70 92 81 83 84 22 80 40 88 87 77 24 64 11 77
## [163] 95 90 26 100 100 81 48 24 27 74 88 80 19 75 100 1 100 100
## [181] 0 100 0 55 99 33 50 54 70 73 71 8 62 85 88 89 82 12
## [199] 29 68 43 83 50 70 51 28 66 65 56 78 44 68 54 64 60 25
## [217] 79 76 38 70 63 77 74 76 100 100 73 83 66 70 73 9 36 46
## [235] 35 87 75 71 59 83 68 48 88 72 36 NA 42 75 71 73 35 50
## [253] 79 100 55 62 43 68 100 71 26 65 12 40 100 20 88 81 35 58
## [271] 27 68 88 21 94 37 71 59 100 60 70 100 32 64 38 34 80 53
## [289] 52 52 71 47 44 100 40 26 99 52 100 29 55 67 40 68 51 66
## [307] 73 31 55 69 59 35 36 53 36 90 76 92 56 74 50 54 74 79
## [325] 96 85 50 100 50 41 0 31 45 50 61 51 32 51 73 55 89 26
## [343] 74 87 52 53 78 52 76 0 46 66 53 48 83 76 88 53 53 44
## [361] 82 64 72 31 37 74 56 84 94 23 59 78 74 50 76 84 56 62
## [379] 53 13 85 64 72 63 42 88 65 85 78 62 62 42 88 61 76 51
## [397] 82 68 64 62 70 62 50 82 85 85 65 62 63 79 66 40 100 100
## [415] 51 63 84 68 30 57 60 75 76 53 38 41 56 66 63 45 65 90
## [433] 65 41 30 65 25 66 73 100 69 71 94 100 61 66 89 91 84 66
## [451] 91 68 93 91 16 71 74 83 0 37 52 76 28 82 27 70 25 14
## [469] 25 85 67 77 80 64 21 91 88 76 83 84 82 78 88 70 92 89
## [487] 88 95 0 78 85 82 25 89 89 87 80 19 81 94 95 82 81 99
## [505] 34 85 99 100 74 100 100 100 100 0 100 100 NA NA NA NA NA NA
## [523] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [541] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [559] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [577] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [595] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [613] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [631] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [649] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [667] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [685] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [703] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [721] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [739] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [757] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [775] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [793] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [811] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [829] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [847] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [883] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [901] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [919] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [955] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [973] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [991] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
PP$Control_CBB
## [1] NA NA 98 33 NA 100 NA NA NA NA NA NA NA NA 24 0 NA 99
## [19] NA NA NA NA 73 100 NA NA NA NA NA NA 0 100 89 NA 0 100
## [37] NA NA 0 NA 100 NA NA NA 20 NA 100 89 60 NA 56 NA NA 72
## [55] NA 100 NA NA NA NA 72 NA 31 NA NA NA NA NA 100 NA NA NA
## [73] NA NA 100 NA NA 60 NA NA 32 NA 32 NA NA 94 100 NA 71 NA
## [91] NA NA 47 NA 22 NA NA 82 80 91 NA NA 89 NA NA NA 0 NA
## [109] NA NA NA 81 NA 34 NA 90 NA NA 0 NA 31 NA NA 85 NA NA
## [127] 39 NA NA NA 94 50 NA 85 100 NA NA NA 78 87 NA NA NA 86
## [145] NA NA NA 40 NA NA 19 NA 100 68 99 NA 16 100 45 60 62 NA
## [163] 0 NA 52 NA 6 92 NA NA NA 96 17 NA NA 87 NA NA NA 100
## [181] 0 NA NA NA NA 76 70 NA 68 NA NA 72 61 NA 75 NA 73 NA
## [199] NA NA NA NA NA NA 51 NA NA NA 93 78 73 NA NA NA NA NA
## [217] 71 NA NA NA NA NA NA 86 77 NA NA 82 NA 61 69 29 67 NA
## [235] NA NA NA 32 NA 51 50 57 73 NA NA NA NA 40 38 20 NA 83
## [253] 59 NA NA 32 NA 64 100 78 71 NA NA NA 78 NA NA 82 NA 51
## [271] NA NA NA NA 70 NA NA 18 NA NA NA 24 NA NA NA NA 74 NA
## [289] 25 41 NA 37 47 NA 61 NA NA NA NA NA NA NA 70 20 21 NA
## [307] NA 35 43 NA NA NA NA 53 NA NA 52 NA 42 NA NA NA 81 NA
## [325] NA NA 50 0 NA NA NA NA 52 69 82 NA 81 51 NA NA 96 87
## [343] NA 18 52 NA NA NA 73 50 NA NA 39 69 87 78 NA NA 53 54
## [361] NA 63 72 NA NA 29 NA NA NA 90 NA NA 51 NA NA NA 67 36
## [379] 71 89 NA 81 72 NA NA NA 73 NA NA NA NA NA 75 NA NA NA
## [397] NA NA 100 65 52 NA 84 85 NA NA NA NA NA 0 28 NA NA 90
## [415] 51 NA NA 64 NA NA NA NA 28 NA NA NA NA 63 NA NA NA 79
## [433] NA NA NA NA 71 NA NA NA 77 72 NA 70 NA NA 70 100 NA 65
## [451] NA NA NA NA NA NA 84 NA NA NA 76 NA 86 NA NA 100 NA NA
## [469] NA NA 70 NA NA 93 NA 83 NA NA 91 NA NA NA NA 88 25 84
## [487] NA NA 100 80 100 100 91 NA 91 NA NA NA 22 91 NA 100 NA 96
## [505] NA NA NA 100 100 100 NA 0 100 NA 16 100 100 50 NA 15 NA NA
## [523] NA 51 NA NA NA NA NA NA 0 0 72 24 100 NA NA 74 NA NA
## [541] 100 NA 100 8 81 NA NA NA NA 0 85 82 88 69 65 NA 21 NA
## [559] 78 NA 6 29 NA 75 NA NA 1 7 40 100 0 23 89 NA NA 88
## [577] NA NA 100 NA NA NA 74 NA NA NA 21 NA 93 87 96 85 58 30
## [595] 100 NA NA 15 0 NA 52 89 45 NA 39 5 NA NA NA 66 NA NA
## [613] 34 91 96 93 37 NA 40 52 65 49 NA NA 92 62 NA NA 63 NA
## [631] NA 51 65 100 NA NA 52 35 NA 72 NA 44 0 34 64 52 47 NA
## [649] NA NA NA NA 67 53 51 52 NA NA NA NA NA 23 NA 13 60 NA
## [667] NA NA 0 100 56 NA NA 53 50 NA NA 53 NA NA NA NA NA 80
## [685] 75 76 NA 54 NA NA 43 NA NA NA 59 NA NA NA 72 NA 59 58
## [703] NA NA 27 0 40 68 100 NA NA 73 NA NA 98 NA 39 47 NA 71
## [721] 62 NA NA NA 9 NA 91 66 12 46 74 NA NA NA 100 50 33 NA
## [739] NA NA 57 NA NA 32 78 NA 32 74 NA 100 NA NA 66 81 NA NA
## [757] NA NA 84 9 100 78 58 98 64 NA 69 83 NA NA 88 NA 88 0
## [775] NA NA NA 87 90 NA 53 NA 81 NA 24 38 NA 83 NA 19 91 88
## [793] 93 NA 94 NA 52 100 24 66 NA NA NA NA NA NA 73 100 81 100
## [811] 100 83 100 100 99 NA NA 0 22 0 NA 100 NA 29 NA NA 89 81
## [829] 69 87 70 83 NA 100 NA 70 NA 0 98 57 27 99 60 50 21 3
## [847] NA 52 63 NA NA 63 0 NA 56 67 92 100 69 100 23 80 22 66
## [865] 91 64 0 76 60 70 96 NA 45 50 80 100 58 85 63 58 31 90
## [883] 12 NA NA 6 93 61 70 9 68 70 NA NA 82 49 NA 91 NA 100
## [901] NA 76 43 NA NA 65 100 61 NA 56 47 84 76 4 33 65 NA 100
## [919] 77 74 62 78 78 95 25 64 39 NA 78 73 52 100 0 NA NA 62
## [937] 74 NA 80 53 NA 71 100 74 69 NA NA NA 44 56 52 37 69 75
## [955] 50 NA 50 80 38 52 90 47 100 NA NA 64 52 NA 99 65 72 28
## [973] 78 78 1 32 69 24 NA NA 69 NA 13 53 87 50 48 65 30 67
## [991] 47 1 52 46 NA 32 69 73 40 52 NA 16 79 100 NA
PP$Control_PBPB
## [1] NA 45 87 NA 100 NA NA NA NA NA NA NA NA NA NA NA NA NA
## [19] NA 80 NA NA NA NA NA 2 NA NA NA NA 100 NA NA 100 0 NA
## [37] 0 100 NA 100 NA 76 100 NA NA 38 100 NA NA 100 NA 74 100 NA
## [55] 63 97 NA NA NA NA 68 NA NA NA 0 NA NA 79 0 16 0 100
## [73] NA 100 60 NA NA NA NA NA NA NA NA 79 100 NA NA 43 NA 87
## [91] 81 NA 36 NA 29 79 53 NA NA NA 90 64 NA 94 NA NA 40 NA
## [109] 80 NA 100 97 90 26 NA NA NA NA 0 86 NA 52 NA NA NA 83
## [127] 83 NA 59 NA NA NA 66 NA NA NA 67 NA NA NA 100 NA 100 71
## [145] NA NA NA 31 NA NA NA 82 NA NA NA 97 NA NA NA NA NA NA
## [163] 60 87 NA 52 74 NA 79 NA 31 NA NA NA NA NA 100 72 NA NA
## [181] 0 50 NA NA 99 NA NA 87 NA 72 80 84 NA NA NA 64 NA 0
## [199] 82 69 77 89 NA NA NA 33 64 NA 52 75 NA NA 73 66 53 NA
## [217] NA NA 79 42 58 NA 79 84 38 NA 100 NA NA NA NA NA 76 NA
## [235] NA NA NA NA NA 53 NA NA NA NA NA 38 81 80 NA NA NA NA
## [253] 85 87 71 NA NA NA NA NA NA 60 75 61 100 NA 100 NA NA 51
## [271] NA 65 100 21 NA 53 NA NA 100 65 78 85 NA NA NA NA 54 NA
## [289] 52 NA 28 NA 26 100 53 20 100 52 NA 28 49 55 NA NA NA 82
## [307] 94 35 45 NA NA NA 38 NA NA NA NA NA NA 28 47 NA NA NA
## [325] 100 75 50 0 50 67 100 NA NA 58 NA NA NA 51 NA NA NA NA
## [343] 60 NA NA NA 69 52 NA 55 55 NA 42 NA NA NA 76 53 NA NA
## [361] 75 NA 67 NA 35 58 NA 73 100 93 NA NA NA 50 53 59 66 NA
## [379] 72 NA NA 62 66 NA NA 100 63 58 75 NA 75 60 NA NA 80 80
## [397] NA 64 NA NA NA 65 NA NA NA 18 35 70 52 NA 60 88 100 NA
## [415] NA NA NA NA 91 NA NA NA 88 NA NA 54 NA NA NA NA 70 NA
## [433] 33 NA NA NA NA 82 NA 100 NA NA NA NA 64 60 72 NA 79 NA
## [451] NA 64 NA 93 78 NA NA 88 NA NA 80 NA NA 79 NA NA 27 NA
## [469] 78 NA 83 60 93 NA NA NA NA NA NA 88 NA 85 89 NA 100 NA
## [487] NA 28 NA NA NA NA NA NA NA NA 68 16 NA NA NA 11 NA NA
## [505] NA NA NA NA NA NA NA NA NA NA NA NA NA 85 NA 52 87 0
## [523] NA NA 58 0 100 100 100 100 NA 100 27 NA 64 NA 100 NA 77 82
## [541] NA NA 38 NA NA NA NA NA 47 NA 98 71 75 NA NA 74 NA 10
## [559] 23 30 NA NA 67 91 27 76 15 0 NA NA 0 89 37 41 NA 93
## [577] 82 NA NA 65 NA 79 74 100 89 81 NA 64 69 NA NA NA NA NA
## [595] 100 90 NA 98 NA 53 NA NA NA NA NA NA 53 NA 100 NA 58 28
## [613] 73 83 NA 80 NA 60 52 71 70 17 61 0 NA 39 40 NA NA NA
## [631] 14 NA NA 100 67 NA NA NA 61 NA 38 NA NA NA NA 52 NA NA
## [649] 77 74 66 79 NA 100 NA 90 100 NA NA 54 52 NA NA 87 6 100
## [667] 29 55 NA NA NA 53 53 NA NA NA NA NA NA 56 59 56 NA NA
## [685] NA NA 65 NA NA NA NA 34 84 53 66 NA 52 NA 73 43 54 NA
## [703] 72 52 43 71 NA 30 NA 19 NA NA 59 26 50 25 71 63 35 NA
## [721] NA 100 100 29 NA 67 71 NA 14 NA 70 76 85 61 NA 63 NA 58
## [739] 52 20 NA 3 NA NA NA 74 NA 62 64 79 3 NA 63 0 67 100
## [757] 56 NA NA 100 100 NA 63 100 NA 86 NA NA 52 100 NA 100 70 NA
## [775] 63 81 22 83 NA 75 NA 55 NA NA NA NA 82 NA NA NA 100 95
## [793] NA 85 NA NA 49 100 NA NA 100 96 NA NA NA NA NA NA NA 99
## [811] NA NA 100 100 100 66 100 NA NA NA 100 NA 85 NA 26 100 NA 76
## [829] 63 NA 38 71 55 29 35 NA 75 69 NA 75 NA NA 54 50 88 49
## [847] 47 NA 60 84 97 NA NA 62 NA 45 89 100 28 100 71 77 79 73
## [865] 95 70 37 85 79 NA 93 70 90 NA 90 NA 45 100 74 100 24 78
## [883] 37 72 53 NA 66 44 NA NA 61 87 100 15 NA 47 85 100 100 NA
## [901] 100 71 100 55 75 65 100 53 97 69 55 38 79 21 33 60 65 NA
## [919] 83 71 NA 76 82 NA 30 43 68 94 65 NA 84 NA NA 74 61 50
## [937] NA 65 90 82 34 56 92 64 70 80 33 75 74 NA 55 NA 69 51
## [955] NA 63 65 NA NA NA 99 NA NA 81 100 61 69 71 98 52 98 31
## [973] 100 82 NA NA 23 86 19 53 71 30 70 47 3 50 57 60 NA 27
## [991] 52 NA 77 65 37 79 NA NA 34 NA 51 12 NA 98 55
PP$Control_PBFB
## [1] NA 44 NA NA NA 100 52 100 100 100 0 NA NA NA NA NA 71 NA
## [19] 11 NA 100 18 NA NA NA NA 100 100 0 20 NA 0 87 100 NA NA
## [37] NA 100 100 0 100 83 100 0 84 NA NA 78 NA 68 58 NA 100 36
## [55] 100 NA 0 NA 1 100 NA 100 NA 100 0 52 93 23 NA NA NA NA
## [73] 0 NA NA NA NA NA 52 NA 71 100 88 86 NA NA 100 27 80 NA
## [91] NA 100 NA 3 NA NA 75 NA NA NA 63 91 90 80 NA NA NA 4
## [109] NA NA NA NA NA NA 80 NA 91 76 NA NA NA NA NA NA NA 51
## [127] NA 76 NA 83 NA 26 NA 88 NA 87 NA NA NA NA 50 53 NA NA
## [145] 70 85 NA NA 81 27 NA NA NA NA NA NA NA NA NA NA NA 36
## [163] NA NA NA 52 NA NA NA 74 NA NA NA 77 NA 80 NA NA NA NA
## [181] NA NA 98 50 100 NA NA NA NA NA NA NA NA 73 NA NA NA NA
## [199] NA NA NA NA NA NA NA NA NA NA NA NA 50 67 NA 64 NA 78
## [217] NA 57 NA 36 NA 73 74 NA NA 100 80 58 NA NA 42 NA NA 20
## [235] 29 85 73 91 66 NA NA NA NA 64 5 NA 77 NA 52 NA NA 100
## [253] NA NA NA NA NA NA 100 NA NA NA 34 NA NA NA NA NA 39 NA
## [271] 11 NA NA NA 95 69 NA NA 85 59 NA NA NA 84 NA 60 NA 52
## [289] NA NA NA NA NA NA NA NA 100 NA 100 NA NA NA NA 67 NA NA
## [307] 96 NA NA NA NA NA 20 NA 70 NA NA 44 NA NA NA NA 75 89
## [325] NA 80 NA NA 50 NA NA 0 52 NA NA 51 NA NA 94 NA NA NA
## [343] NA NA NA 52 NA NA 63 NA NA 53 NA NA NA NA 75 NA NA 50
## [361] NA NA NA 10 NA NA 59 NA 100 NA NA NA 38 NA 82 NA NA 60
## [379] NA 92 76 NA NA 78 NA NA NA 36 NA 66 NA NA NA NA NA NA
## [397] NA NA NA NA NA NA NA NA 76 NA NA NA NA NA NA NA 100 NA
## [415] NA 76 82 66 20 NA 73 68 NA NA 100 11 78 65 64 65 NA NA
## [433] NA 100 20 NA NA NA 85 100 NA NA 69 67 NA NA NA NA NA NA
## [451] 71 NA 90 93 NA NA 88 NA 100 55 NA 76 72 81 33 24 NA 60
## [469] NA NA NA NA NA NA 85 NA 100 NA NA 89 71 73 NA NA NA 81
## [487] NA 74 NA NA NA NA 83 95 77 71 79 NA 83 NA 66 NA 92 96
## [505] 100 35 100 NA NA NA NA NA 100 100 16 NA NA NA 100 NA 53 0
## [523] 93 51 NA 0 NA NA 59 NA NA NA NA 92 NA 0 15 100 NA 81
## [541] NA 5 NA NA NA 88 0 84 46 NA NA NA NA 83 NA NA NA 12
## [559] NA 78 NA 0 45 NA 81 NA NA NA NA 97 NA NA NA 33 100 NA
## [577] NA 16 NA 33 52 96 NA NA NA 83 30 NA NA NA NA 40 NA 63
## [595] NA NA 100 NA NA 52 NA 24 NA 60 NA 68 NA 88 NA NA 53 NA
## [613] NA NA 95 NA NA NA NA NA NA NA NA 50 NA NA NA 29 NA 18
## [631] NA NA NA NA 63 85 NA NA 66 28 NA 56 0 NA 8 NA NA 55
## [649] 68 61 NA 74 NA NA NA NA NA 64 51 54 51 NA 66 NA NA 98
## [667] 3 NA NA NA NA 52 52 NA NA 7 75 53 52 54 38 14 28 NA
## [685] NA NA NA 63 38 74 NA 43 62 NA NA NA 52 35 NA NA NA NA
## [703] 44 58 NA NA NA NA 71 94 43 NA 57 NA NA NA NA NA 66 59
## [721] NA 100 NA NA 29 29 NA 0 NA 46 NA 80 NA NA 100 NA NA NA
## [739] 62 NA 91 96 83 NA 75 77 NA NA 52 NA NA 78 NA NA 69 75
## [757] 74 72 NA NA NA NA NA NA 67 84 17 NA 85 100 88 100 NA NA
## [775] NA 75 NA NA NA NA 72 50 72 87 NA 57 NA NA 81 100 NA NA
## [793] NA 81 84 81 NA NA NA NA 100 97 71 98 100 12 NA 98 100 NA
## [811] 100 NA NA NA NA NA NA NA 75 53 65 100 73 38 34 90 96 72
## [829] 69 92 43 NA 64 79 80 34 89 NA 67 NA 69 96 64 NA NA 50
## [847] 15 35 NA 96 98 68 0 50 49 NA NA 97 79 100 38 80 59 52
## [865] 89 70 NA NA NA 35 100 72 80 50 91 4 64 NA NA NA 31 83
## [883] 29 38 52 12 NA 52 68 43 37 12 100 2 64 46 99 99 0 100
## [901] 94 78 0 39 29 65 100 47 80 NA NA NA 45 72 70 61 64 81
## [919] 81 76 87 NA 80 74 NA 27 NA 81 72 39 NA 100 62 58 81 NA
## [937] 71 71 NA 70 24 43 NA NA 63 71 22 80 73 60 44 89 51 NA
## [955] 98 70 NA 33 33 52 88 59 92 24 100 NA 79 63 NA 57 80 31
## [973] NA 89 92 40 NA NA 41 69 NA 81 NA NA NA NA NA NA 79 71
## [991] 54 37 52 58 12 82 85 43 NA 41 61 78 73 90 51
PP$Control_VB
## [1] NA NA NA NA NA NA NA NA NA NA NA 100 100 100 NA NA NA NA
## [19] NA NA NA NA NA NA 100 NA NA 100 100 26 NA NA NA NA NA 100
## [37] 100 NA NA NA NA NA NA 0 NA 67 NA NA 100 NA NA 23 NA NA
## [55] NA NA 86 1 13 100 NA NA 99 100 NA 52 100 NA NA 3 52 NA
## [73] NA NA NA 0 11 85 93 58 NA 100 NA NA NA 100 NA NA NA NA
## [91] NA 94 NA 0 NA NA NA 83 NA NA NA NA NA NA 45 94 NA 97
## [109] NA 100 NA NA NA NA 100 83 89 21 NA 77 41 52 88 22 80 NA
## [127] NA NA 80 NA NA NA 83 NA NA 28 100 100 NA 91 NA 53 NA NA
## [145] NA NA 85 NA NA 83 NA 83 NA 34 83 100 90 NA NA 96 23 76
## [163] NA 95 NA NA NA 42 NA 31 29 NA 22 67 64 NA NA NA 100 73
## [181] NA 50 100 50 NA NA 82 73 NA NA 79 NA 64 NA NA NA NA 51
## [199] NA 80 78 NA 31 48 20 21 NA 100 NA NA NA 65 73 NA 76 93
## [217] NA 66 70 NA NA 83 NA NA NA 85 NA NA 84 52 NA NA NA 43
## [235] 50 95 NA NA NA NA NA NA 77 76 53 45 NA NA NA 86 0 NA
## [253] NA 100 NA NA 52 NA NA 100 70 NA NA NA NA 29 NA 81 NA NA
## [271] NA NA 100 81 NA NA 73 NA NA NA 100 NA 88 NA 67 NA NA 52
## [289] NA 34 NA 57 NA NA NA 3 NA NA NA NA 51 NA 51 NA NA 71
## [307] NA NA NA 100 51 41 NA 67 NA 90 0 100 57 36 NA 59 NA 39
## [325] 8 NA NA NA NA NA NA 23 NA NA NA 51 75 NA 100 80 NA NA
## [343] NA 16 NA 52 58 52 NA NA 45 NA NA 52 96 81 NA NA 100 NA
## [361] NA NA NA 19 NA NA 61 33 NA NA 61 51 NA NA NA 60 NA NA
## [379] NA NA NA NA NA 100 60 NA NA NA NA 63 61 40 NA 61 NA 55
## [397] 39 NA NA NA NA 92 NA NA 69 NA NA 69 69 NA NA NA NA 95
## [415] NA 74 91 NA NA 66 61 64 NA 53 87 NA 70 NA NA NA NA 20
## [433] 18 100 NA 60 25 NA NA NA 70 68 NA NA NA 59 NA 100 NA NA
## [451] 88 NA 100 NA NA 73 NA 73 34 NA NA NA NA NA 21 NA 77 NA
## [469] NA 68 NA 82 NA NA NA 41 100 100 NA NA 96 NA 90 89 NA NA
## [487] 98 NA NA NA NA 11 NA NA NA 96 NA NA NA NA 66 NA 82 NA
## [505] 100 NA NA NA NA NA 100 53 NA 1 NA 100 100 NA 100 NA NA NA
## [523] 70 NA 52 NA 83 100 NA 100 60 NA NA NA NA NA NA NA 100 NA
## [541] 28 9 NA 80 64 69 100 65 NA 98 NA NA NA NA 73 14 90 NA
## [559] NA NA 65 NA NA NA NA 82 NA NA 1 NA NA NA NA NA 100 NA
## [577] 16 20 100 NA 82 NA NA 13 87 NA NA 0 NA 100 75 NA 26 NA
## [595] NA 89 100 NA 0 NA 99 NA 25 31 78 NA 60 100 29 92 NA 57
## [613] NA NA NA NA 43 100 NA NA NA NA 58 NA 88 NA 30 56 71 38
## [631] 59 67 69 NA NA 99 52 45 NA NA 50 NA NA 66 NA NA 0 4
## [649] NA NA 61 NA 62 NA 74 NA NA NA 51 NA NA 52 89 NA NA NA
## [667] NA 52 0 52 52 NA NA 52 100 25 50 NA 57 NA NA NA 26 53
## [685] 80 63 34 NA 62 100 77 NA NA 51 NA 34 NA 58 NA 85 NA 72
## [703] NA NA NA NA 65 NA NA NA 52 81 NA 80 NA 80 NA NA NA NA
## [721] 57 NA 98 100 NA NA NA NA NA NA NA NA 85 72 NA NA 67 70
## [739] NA 52 NA NA 79 86 NA NA 82 NA NA NA 76 72 NA NA NA NA
## [757] NA 100 69 NA NA 70 NA NA NA NA NA 94 NA NA NA NA NA 81
## [775] 66 NA 86 NA 83 74 NA NA NA 72 78 NA 83 65 95 NA NA NA
## [793] 28 NA NA 89 NA NA 100 64 NA NA 64 53 99 84 100 NA NA NA
## [811] NA 47 NA NA NA 44 77 93 NA NA NA NA 83 44 22 80 90 NA
## [829] NA 91 NA 77 29 NA 25 29 26 72 98 30 85 93 NA 61 100 NA
## [847] 81 52 75 82 76 55 0 44 100 64 86 NA NA NA NA NA NA NA
## [865] NA NA 100 20 71 32 NA 58 NA 50 NA 69 NA 100 53 96 NA NA
## [883] NA 75 52 2 85 NA 71 35 NA NA 100 79 74 NA 74 NA 68 74
## [901] 100 NA NA 53 90 NA NA NA 15 54 62 85 NA NA NA NA 65 80
## [919] NA NA 70 97 NA 89 71 NA 69 12 NA 75 40 97 42 82 65 100
## [937] 70 NA 95 NA 31 NA 98 60 NA 50 45 50 NA 55 NA 85 NA 77
## [955] 95 72 82 100 35 52 NA 46 71 44 100 95 NA 35 99 NA NA NA
## [973] 93 NA 100 NA 100 85 38 100 37 36 74 52 0 50 80 61 63 NA
## [991] NA 22 NA NA 62 NA 52 100 43 59 51 NA 77 NA 36
length(PP$Naturalness_Score_GFFB_Tot)
## [1] 1005
length(PP$Naturalness_Score_GFPRB_Tot)
## [1] 1005
length(PP$Naturalness_Score_CBB_Tot)
## [1] 1005
length(PP$Naturalness_Score_PBPB_Tot)
## [1] 1005
length(PP$Naturalness_Score_PBFB_Tot)
## [1] 1005
length(PP$Naturalness_Score_VB_Tot)
## [1] 1005
length(PP$Behav_Score_GFFB)
## [1] 1005
length(PP$Behav_Score_GFPRB)
## [1] 1005
length(PP$Behav_Score_CBB)
## [1] 1005
length(PP$Behav_Score_PBPB)
## [1] 1005
length(PP$Behav_Score_PBFB)
## [1] 1005
length(PP$Behav_Score_VB)
## [1] 1005
length(PP$Ben_Score_GFFB)
## [1] 1005
length(PP$Ben_Score_GFPRB)
## [1] 1005
length(PP$Ben_Score_CBB)
## [1] 1005
length(PP$Ben_Score_PBPB)
## [1] 1005
length(PP$Ben_Score_PBFB)
## [1] 1005
length(PP$Ben_Score_VB)
## [1] 1005
length(PP$Control_GFFB )
## [1] 1005
length(PP$Control_GFPRB)
## [1] 1005
length(PP$Control_CBB)
## [1] 1005
length(PP$Control_PBPB)
## [1] 1005
length(PP$Control_PBFB)
## [1] 1005
length(PP$Control_VB)
## [1] 1005
length(PP$Familiarity_GFFB)
## [1] 1005
length(PP$Familiarity_GFPRB)
## [1] 1005
length(PP$Familiarity_CBB)
## [1] 1005
length(PP$Familiarity_PBPB)
## [1] 1005
length(PP$Familiarity_PBFB)
## [1] 1005
length(PP$Familiarity_VB )
## [1] 1005
length(PP$Understanding_GFFB)
## [1] 1005
length(PP$Understanding_GFPRB)
## [1] 1005
length(PP$Understanding_CBB)
## [1] 1005
length(PP$Understanding_PBPB)
## [1] 1005
length(PP$Understanding_PBFB )
## [1] 1005
length(PP$Understanding_VB)
## [1] 1005
length(PP$Risk_Score_GFFB)
## [1] 1005
length(PP$Risk_Score_GFPRB)
## [1] 1005
length(PP$Risk_Score_CBB)
## [1] 1005
length(PP$Risk_Score_PBPB)
## [1] 1005
length(PP$Risk_Score_PBFB)
## [1] 1005
length(PP$Risk_Score_VB)
## [1] 1005
length(PP$Disgust_GFFB)
## [1] 1005
length(PP$Disgust_GFPRB)
## [1] 1005
length(PP$Disgust_CBB)
## [1] 1005
length(PP$Disgust_PBPB)
## [1] 1005
length(PP$Disgust_PBFB)
## [1] 1005
length(PP$Disgust_VB)
## [1] 1005
length(PP$CCBelief_Score)
## [1] 1005
length(PP$CNS_Score)
## [1] 1005
length(PP$DS_Score)
## [1] 1005
length(PP$Ideology)
## [1] 1005
length(PP$ATNS_Score )
## [1] 1005
length(PP$AW_Score )
## [1] 1005
length(PP$Collectivism_Score)
## [1] 1005
length(PP$Individualism_Score)
## [1] 1005
Long Form
#Renaming variables to fit pivot_longer command
PP$Naturalness.GFFB <- PP$Naturalness_Score_GFFB_Tot
length(PP$Naturalness.GFFB)
## [1] 1005
PP$Naturalness.GFPRB <- PP$Naturalness_Score_GFPRB_Tot
length(PP$Naturalness.GFPRB)
## [1] 1005
PP$Naturalness.CBB <- PP$Naturalness_Score_CBB_Tot
length(PP$Naturalness.CBB)
## [1] 1005
PP$Naturalness.PBPB <- PP$Naturalness_Score_PBPB_Tot
length(PP$Naturalness.PBPB)
## [1] 1005
PP$Naturalness.PBFB <- PP$Naturalness_Score_PBFB_Tot
length(PP$Naturalness.PBFB)
## [1] 1005
PP$Naturalness.VB <- PP$Naturalness_Score_VB_Tot
length(PP$Naturalness.VB)
## [1] 1005
PP$Behav.GFFB <- PP$Behav_Score_GFFB
length(PP$Behav.GFFB)
## [1] 1005
PP$Behav.GFPRB <- PP$Behav_Score_GFPRB
length(PP$Behav.GFPRB)
## [1] 1005
PP$Behav.CBB <- PP$Behav_Score_CBB
length(PP$Behav.CBB)
## [1] 1005
PP$Behav.PBPB <- PP$Behav_Score_PBPB
length(PP$Behav.PBPB)
## [1] 1005
PP$Behav.PBFB <- PP$Behav_Score_PBFB
length(PP$Behav.PBFB)
## [1] 1005
PP$Behav.VB <- PP$Behav_Score_VB
length(PP$Behav.VB)
## [1] 1005
PP$Familiarity.GFFB <- PP$Familiarity_GFFB
length(PP$Familiarity.GFFB)
## [1] 1005
PP$Familiarity.GFPRB <- PP$Familiarity_GFPRB
length(PP$Familiarity.GFPRB)
## [1] 1005
PP$Familiarity.CBB <- PP$Familiarity_CBB
length(PP$Familiarity.CBB)
## [1] 1005
PP$Familiarity.PBPB <- PP$Familiarity_PBPB
length(PP$Familiarity.PBPB)
## [1] 1005
PP$Familiarity.PBFB <- PP$Familiarity_PBFB
length(PP$Familiarity.PBFB)
## [1] 1005
PP$Familiarity.VB <- PP$Familiarity_VB
length(PP$Familiarity.VB)
## [1] 1005
PP$Understanding.GFFB <- PP$Understanding_GFFB
length(PP$Understanding.GFFB)
## [1] 1005
PP$Understanding.GFPRB <- PP$Understanding_GFPRB
length(PP$Understanding.GFPRB)
## [1] 1005
PP$Understanding.CBB <- PP$Understanding_CBB
length(PP$Understanding.CBB)
## [1] 1005
PP$Understanding.PBPB <- PP$Understanding_PBPB
length(PP$Understanding.PBPB)
## [1] 1005
PP$Understanding.PBFB <- PP$Understanding_PBFB
length(PP$Understanding.PBFB)
## [1] 1005
PP$Understanding.VB <- PP$Understanding_VB
length(PP$Understanding.VB)
## [1] 1005
PP$Disgust.GFFB <-PP$Disgust_GFFB
length(PP$Disgust.GFFB)
## [1] 1005
PP$Disgust.GFPRB <-PP$Disgust_GFPRB
length(PP$Disgust.GFPRB)
## [1] 1005
PP$Disgust.CBB <-PP$Disgust_CBB
length(PP$Disgust.CBB)
## [1] 1005
PP$Disgust.PBPB <-PP$Disgust_PBPB
length(PP$Disgust.PBPB)
## [1] 1005
PP$Disgust.PBFB <-PP$Disgust_PBFB
length(PP$Disgust.PBFB)
## [1] 1005
PP$Disgust.VB <-PP$Disgust_VB
length(PP$Disgust.VB)
## [1] 1005
PP$Control.GFFB <- PP$Control_GFFB
length(PP$Control.GFFB)
## [1] 1005
PP$Control.GFPRB <- PP$Control_GFPRB
length(PP$Control.GFPRB)
## [1] 1005
PP$Control.CBB <- PP$Control_CBB
length(PP$Control.CBB)
## [1] 1005
PP$Control.PBPB <- PP$Control_PBPB
length(PP$Control.PBPB)
## [1] 1005
PP$Control.PBFB <- PP$Control_PBFB
length(PP$Control.PBFB)
## [1] 1005
PP$Control.VB <- PP$Control_VB
length(PP$Control.VB)
## [1] 1005
PP$Ben.GFFB <- PP$Ben_Score_GFFB
length(PP$Ben.GFFB)
## [1] 1005
PP$Ben.GFPRB <- PP$Ben_Score_GFPRB
length(PP$Ben.GFPRB)
## [1] 1005
PP$Ben.CBB <- PP$Ben_Score_CBB
length(PP$Ben.CBB)
## [1] 1005
PP$Ben.PBPB <- PP$Ben_Score_PBPB
length(PP$Ben.PBPB)
## [1] 1005
PP$Ben.PBFB <- PP$Ben_Score_PBFB
length(PP$Ben.PBFB)
## [1] 1005
PP$Ben.VB <- PP$Ben_Score_VB
length(PP$Ben.VB)
## [1] 1005
##Risk Length
PP$Risk.GFFB <- PP$Risk_Score_GFFB
length(PP$Risk.GFFB)
## [1] 1005
PP$Risk.GFPRB <- PP$Risk_Score_GFPRB
length(PP$Risk.GFPRB)
## [1] 1005
PP$Risk.CBB <- PP$Risk_Score_CBB
length(PP$Risk.CBB)
## [1] 1005
PP$Risk.PBPB <- PP$Risk_Score_PBPB
length(PP$Risk.PBPB)
## [1] 1005
PP$Risk.PBFB <- PP$Risk_Score_PBFB
length(PP$Risk.PBFB)
## [1] 1005
PP$Risk.VB <- PP$Risk_Score_VB
length(PP$Risk.VB)
## [1] 1005
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(lme4)
#Reshape to long form
PPvector <- c("Naturalness.GFFB", "Naturalness.GFPRB", "Naturalness.CBB","Naturalness.PBPB", "Naturalness.PBFB", "Naturalness.VB", "Behav.GFFB", "Behav.GFPRB", "Behav.CBB","Behav.PBPB", "Behav.PBFB", "Behav.VB", "Familiarity.GFFB","Familiarity.GFPRB", "Familiarity.CBB", "Familiarity.PBPB","Familiarity.PBFB", "Familiarity.VB", "Understanding.GFFB", "Understanding.GFPRB", "Understanding.CBB", "Understanding.PBPB", "Understanding.PBFB", "Understanding.VB", "Disgust.GFFB", "Disgust.GFPRB", "Disgust.CBB", "Disgust.PBPB", "Disgust.PBFB","Disgust.VB", "Ben.GFFB","Ben.GFPRB","Ben.CBB", "Ben.PBPB", "Ben.PBFB", "Ben.VB", "Risk.GFFB", "Risk.GFPRB","Risk.CBB","Risk.PBPB", "Risk.PBFB", "Risk.VB", "BRDiff.GFFB", "BRDiff.GFPRB", "BRDiff.CBB", "BRDiff.PBPB", "BRDiff.PBFB", "BRDiff.VB", "FR.GFFB", "FR.GFFB", "FR.GFPRB", "FR.PBPB", "FR.PBFB", "FR.VB")
L <- reshape(data = PP,
varying = PPvector,
timevar = "Type",
direction = "long")
Correlations
length(L$Ben)
## [1] 6030
length(L$FR)
## [1] 6030
length(L$Naturalness)
## [1] 6030
length(L$Risk)
## [1] 6030
length(L$Behav)
## [1] 6030
length(L$AW_Score)
## [1] 6030
length(L$ATNS_Score)
## [1] 6030
length(L$CCBelief_Score)
## [1] 6030
length(L$CNS_Score)
## [1] 6030
length(L$DS_Score)
## [1] 6030
length(L$Individualism_Score)
## [1] 6030
length(L$Ideology)
## [1] 6030
length(L$Ideology)
## [1] 6030
length(L$SESNum)
## [1] 6030
length(L$EdNum)
## [1] 6030
length(L$Dem_Age)
## [1] 6030
length(L$Dem_Gen)
## [1] 6030
L$corR <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Behav, L$Dem_Age, L$Dem_Gen, L$EdNum, L$SESNum, L$AW_Score, L$ATNS_Score, L$CCBelief_Score, L$Collectivism_Score, L$CNS_Score, L$DS_Score, L$Individualism_Score, L$Ideology)
mydata.cor11A = cor(L$corR, use = "pairwise.complete.obs")
head(round(mydata.cor11A,2))
## L.Ben L.FR L.Naturalness L.Risk L.Behav L.Dem_Age L.Dem_Gen
## L.Ben 1.00 0.44 0.27 -0.26 0.80 -0.10 0.06
## L.FR 0.44 1.00 0.10 -0.09 0.48 -0.01 0.06
## L.Naturalness 0.27 0.10 1.00 -0.39 0.28 0.05 0.01
## L.Risk -0.26 -0.09 -0.39 1.00 -0.25 -0.08 -0.02
## L.Behav 0.80 0.48 0.28 -0.25 1.00 -0.18 0.07
## L.Dem_Age -0.10 -0.01 0.05 -0.08 -0.18 1.00 0.00
## L.EdNum L.SESNum L.AW_Score L.ATNS_Score L.CCBelief_Score
## L.Ben 0.06 0.06 0.20 0.05 0.23
## L.FR 0.08 0.08 0.20 0.10 0.22
## L.Naturalness 0.02 0.02 0.02 0.00 0.02
## L.Risk -0.03 -0.03 0.02 0.11 -0.03
## L.Behav 0.08 0.06 0.22 0.01 0.25
## L.Dem_Age 0.08 0.06 0.06 0.03 0.02
## L.Collectivism_Score L.CNS_Score L.DS_Score L.Individualism_Score
## L.Ben 0.24 0.06 0.05 0.17
## L.FR 0.19 0.09 -0.03 0.20
## L.Naturalness -0.01 0.04 -0.01 0.01
## L.Risk 0.08 -0.08 0.04 -0.03
## L.Behav 0.19 0.06 0.02 0.12
## L.Dem_Age 0.10 0.11 0.04 0.08
## L.Ideology
## L.Ben -0.06
## L.FR -0.03
## L.Naturalness 0.03
## L.Risk -0.05
## L.Behav -0.05
## L.Dem_Age 0.00
library("Hmisc")
mydata.rcorr11A = rcorr(as.matrix(mydata.cor11A))
mydata.rcorr11A
## L.Ben L.FR L.Naturalness L.Risk L.Behav L.Dem_Age
## L.Ben 1.00 0.71 0.46 -0.57 0.97 -0.38
## L.FR 0.71 1.00 0.21 -0.36 0.73 -0.27
## L.Naturalness 0.46 0.21 1.00 -0.74 0.46 -0.04
## L.Risk -0.57 -0.36 -0.74 1.00 -0.55 -0.09
## L.Behav 0.97 0.73 0.46 -0.55 1.00 -0.45
## L.Dem_Age -0.38 -0.27 -0.04 -0.09 -0.45 1.00
## L.Dem_Gen -0.02 -0.04 -0.02 -0.09 0.01 -0.09
## L.EdNum -0.08 -0.05 -0.05 -0.12 -0.04 0.03
## L.SESNum -0.08 -0.07 -0.05 -0.11 -0.07 0.00
## L.AW_Score 0.20 0.24 -0.09 -0.05 0.21 -0.08
## L.ATNS_Score -0.13 -0.04 -0.23 0.18 -0.17 -0.05
## L.CCBelief_Score 0.27 0.29 -0.05 -0.15 0.28 -0.14
## L.Collectivism_Score 0.21 0.19 -0.17 0.06 0.15 -0.03
## L.CNS_Score -0.04 0.02 -0.04 -0.16 -0.04 0.08
## L.DS_Score -0.08 -0.20 -0.15 0.11 -0.12 -0.01
## L.Individualism_Score 0.12 0.18 -0.13 -0.07 0.07 -0.01
## L.Ideology -0.26 -0.24 -0.01 -0.08 -0.24 -0.04
## L.Dem_Gen L.EdNum L.SESNum L.AW_Score L.ATNS_Score
## L.Ben -0.02 -0.08 -0.08 0.20 -0.13
## L.FR -0.04 -0.05 -0.07 0.24 -0.04
## L.Naturalness -0.02 -0.05 -0.05 -0.09 -0.23
## L.Risk -0.09 -0.12 -0.11 -0.05 0.18
## L.Behav 0.01 -0.04 -0.07 0.21 -0.17
## L.Dem_Age -0.09 0.03 0.00 -0.08 -0.05
## L.Dem_Gen 1.00 0.24 0.34 -0.39 -0.38
## L.EdNum 0.24 1.00 0.57 -0.28 -0.31
## L.SESNum 0.34 0.57 1.00 -0.36 -0.33
## L.AW_Score -0.39 -0.28 -0.36 1.00 0.47
## L.ATNS_Score -0.38 -0.31 -0.33 0.47 1.00
## L.CCBelief_Score -0.32 -0.19 -0.26 0.70 0.39
## L.Collectivism_Score -0.28 -0.27 -0.13 0.39 0.43
## L.CNS_Score -0.27 -0.15 -0.26 0.49 0.43
## L.DS_Score -0.34 -0.21 -0.23 0.04 0.21
## L.Individualism_Score -0.36 -0.30 -0.24 0.62 0.54
## L.Ideology -0.11 -0.11 -0.07 -0.18 -0.09
## L.CCBelief_Score L.Collectivism_Score L.CNS_Score
## L.Ben 0.27 0.21 -0.04
## L.FR 0.29 0.19 0.02
## L.Naturalness -0.05 -0.17 -0.04
## L.Risk -0.15 0.06 -0.16
## L.Behav 0.28 0.15 -0.04
## L.Dem_Age -0.14 -0.03 0.08
## L.Dem_Gen -0.32 -0.28 -0.27
## L.EdNum -0.19 -0.27 -0.15
## L.SESNum -0.26 -0.13 -0.26
## L.AW_Score 0.70 0.39 0.49
## L.ATNS_Score 0.39 0.43 0.43
## L.CCBelief_Score 1.00 0.25 0.58
## L.Collectivism_Score 0.25 1.00 0.04
## L.CNS_Score 0.58 0.04 1.00
## L.DS_Score -0.05 0.30 -0.19
## L.Individualism_Score 0.56 0.67 0.41
## L.Ideology -0.23 -0.29 -0.02
## L.DS_Score L.Individualism_Score L.Ideology
## L.Ben -0.08 0.12 -0.26
## L.FR -0.20 0.18 -0.24
## L.Naturalness -0.15 -0.13 -0.01
## L.Risk 0.11 -0.07 -0.08
## L.Behav -0.12 0.07 -0.24
## L.Dem_Age -0.01 -0.01 -0.04
## L.Dem_Gen -0.34 -0.36 -0.11
## L.EdNum -0.21 -0.30 -0.11
## L.SESNum -0.23 -0.24 -0.07
## L.AW_Score 0.04 0.62 -0.18
## L.ATNS_Score 0.21 0.54 -0.09
## L.CCBelief_Score -0.05 0.56 -0.23
## L.Collectivism_Score 0.30 0.67 -0.29
## L.CNS_Score -0.19 0.41 -0.02
## L.DS_Score 1.00 0.16 -0.16
## L.Individualism_Score 0.16 1.00 -0.14
## L.Ideology -0.16 -0.14 1.00
##
## n= 17
##
##
## P
## L.Ben L.FR L.Naturalness L.Risk L.Behav L.Dem_Age
## L.Ben 0.0015 0.0607 0.0163 0.0000 0.1283
## L.FR 0.0015 0.4153 0.1547 0.0009 0.2855
## L.Naturalness 0.0607 0.4153 0.0007 0.0609 0.8795
## L.Risk 0.0163 0.1547 0.0007 0.0209 0.7178
## L.Behav 0.0000 0.0009 0.0609 0.0209 0.0706
## L.Dem_Age 0.1283 0.2855 0.8795 0.7178 0.0706
## L.Dem_Gen 0.9465 0.8936 0.9350 0.7394 0.9819 0.7280
## L.EdNum 0.7729 0.8455 0.8534 0.6544 0.8662 0.9101
## L.SESNum 0.7580 0.7975 0.8484 0.6839 0.7988 0.9892
## L.AW_Score 0.4330 0.3558 0.7417 0.8359 0.4115 0.7498
## L.ATNS_Score 0.6190 0.8698 0.3821 0.4988 0.5120 0.8560
## L.CCBelief_Score 0.2959 0.2657 0.8602 0.5729 0.2702 0.5800
## L.Collectivism_Score 0.4152 0.4632 0.5234 0.8100 0.5684 0.8949
## L.CNS_Score 0.8839 0.9309 0.8823 0.5425 0.8916 0.7538
## L.DS_Score 0.7539 0.4498 0.5781 0.6846 0.6384 0.9772
## L.Individualism_Score 0.6538 0.4875 0.6065 0.8035 0.8013 0.9553
## L.Ideology 0.3179 0.3532 0.9565 0.7636 0.3473 0.8713
## L.Dem_Gen L.EdNum L.SESNum L.AW_Score L.ATNS_Score
## L.Ben 0.9465 0.7729 0.7580 0.4330 0.6190
## L.FR 0.8936 0.8455 0.7975 0.3558 0.8698
## L.Naturalness 0.9350 0.8534 0.8484 0.7417 0.3821
## L.Risk 0.7394 0.6544 0.6839 0.8359 0.4988
## L.Behav 0.9819 0.8662 0.7988 0.4115 0.5120
## L.Dem_Age 0.7280 0.9101 0.9892 0.7498 0.8560
## L.Dem_Gen 0.3566 0.1791 0.1209 0.1341
## L.EdNum 0.3566 0.0175 0.2734 0.2299
## L.SESNum 0.1791 0.0175 0.1601 0.1909
## L.AW_Score 0.1209 0.2734 0.1601 0.0557
## L.ATNS_Score 0.1341 0.2299 0.1909 0.0557
## L.CCBelief_Score 0.2072 0.4740 0.3149 0.0018 0.1207
## L.Collectivism_Score 0.2727 0.2964 0.6081 0.1265 0.0814
## L.CNS_Score 0.2983 0.5535 0.3102 0.0448 0.0879
## L.DS_Score 0.1777 0.4257 0.3732 0.8901 0.4246
## L.Individualism_Score 0.1542 0.2447 0.3448 0.0079 0.0238
## L.Ideology 0.6791 0.6778 0.7821 0.4797 0.7298
## L.CCBelief_Score L.Collectivism_Score L.CNS_Score
## L.Ben 0.2959 0.4152 0.8839
## L.FR 0.2657 0.4632 0.9309
## L.Naturalness 0.8602 0.5234 0.8823
## L.Risk 0.5729 0.8100 0.5425
## L.Behav 0.2702 0.5684 0.8916
## L.Dem_Age 0.5800 0.8949 0.7538
## L.Dem_Gen 0.2072 0.2727 0.2983
## L.EdNum 0.4740 0.2964 0.5535
## L.SESNum 0.3149 0.6081 0.3102
## L.AW_Score 0.0018 0.1265 0.0448
## L.ATNS_Score 0.1207 0.0814 0.0879
## L.CCBelief_Score 0.3251 0.0144
## L.Collectivism_Score 0.3251 0.8684
## L.CNS_Score 0.0144 0.8684
## L.DS_Score 0.8543 0.2389 0.4668
## L.Individualism_Score 0.0186 0.0031 0.1028
## L.Ideology 0.3799 0.2645 0.9282
## L.DS_Score L.Individualism_Score L.Ideology
## L.Ben 0.7539 0.6538 0.3179
## L.FR 0.4498 0.4875 0.3532
## L.Naturalness 0.5781 0.6065 0.9565
## L.Risk 0.6846 0.8035 0.7636
## L.Behav 0.6384 0.8013 0.3473
## L.Dem_Age 0.9772 0.9553 0.8713
## L.Dem_Gen 0.1777 0.1542 0.6791
## L.EdNum 0.4257 0.2447 0.6778
## L.SESNum 0.3732 0.3448 0.7821
## L.AW_Score 0.8901 0.0079 0.4797
## L.ATNS_Score 0.4246 0.0238 0.7298
## L.CCBelief_Score 0.8543 0.0186 0.3799
## L.Collectivism_Score 0.2389 0.0031 0.2645
## L.CNS_Score 0.4668 0.1028 0.9282
## L.DS_Score 0.5505 0.5336
## L.Individualism_Score 0.5505 0.6009
## L.Ideology 0.5336 0.6009
library(corrplot)
corrplot(mydata.cor11A, method="color")

corrplot(mydata.cor11A, addCoef.col = 1, number.cex = 0.3, method = 'number')

Tech Ratings
L$corT <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Behav)
mydata.cor11AT = cor(L$corT, use = "pairwise.complete.obs")
head(round(mydata.cor11AT,2))
## L.Ben L.FR L.Naturalness L.Risk L.Behav
## L.Ben 1.00 0.44 0.27 -0.26 0.80
## L.FR 0.44 1.00 0.10 -0.09 0.48
## L.Naturalness 0.27 0.10 1.00 -0.39 0.28
## L.Risk -0.26 -0.09 -0.39 1.00 -0.25
## L.Behav 0.80 0.48 0.28 -0.25 1.00
library("Hmisc")
mydata.rcorr11AT = rcorr(as.matrix(mydata.cor11AT))
mydata.rcorr11AT
## L.Ben L.FR L.Naturalness L.Risk L.Behav
## L.Ben 1.00 0.55 0.35 -0.78 0.96
## L.FR 0.55 1.00 0.01 -0.49 0.58
## L.Naturalness 0.35 0.01 1.00 -0.82 0.34
## L.Risk -0.78 -0.49 -0.82 1.00 -0.78
## L.Behav 0.96 0.58 0.34 -0.78 1.00
##
## n= 5
##
##
## P
## L.Ben L.FR L.Naturalness L.Risk L.Behav
## L.Ben 0.3385 0.5665 0.1194 0.0109
## L.FR 0.3385 0.9929 0.4066 0.3024
## L.Naturalness 0.5665 0.9929 0.0883 0.5705
## L.Risk 0.1194 0.4066 0.0883 0.1196
## L.Behav 0.0109 0.3024 0.5705 0.1196
library(corrplot)
corrplot(mydata.cor11AT, method="color")

corrplot(mydata.cor11AT, addCoef.col = 1, number.cex = 0.3, method = 'number')

Scatterplots
library(car)
attach(L)
plot(Behav, Naturalness, main="Naturalness and Support",
xlab="Support", ylab="Naturalness", pch=19)

plot(Risk, Ben, main="Risk and Benefit",
xlab= "Risk", ylab="Benefit", pch=19)

Mixed Effects Models
Center Variables
table(L$Type)
##
## CBB GFFB GFPRB PBFB PBPB VB
## 1005 1005 1005 1005 1005 1005
describe(L$Ben)
## L$Ben
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 296 0.999 60.36 30.63 2.333 22.667
## .25 .50 .75 .90 .95
## 44.667 61.000 82.000 98.167 100.000
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
## highest: 98.6666667 99.0000000 99.3333333 99.6666667 100.0000000
describe(L$Control)
##
## NULL
describe(L$Familiarity)
## L$Familiarity
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 101 0.998 57.8 36.28 0 6
## .25 .50 .75 .90 .95
## 32 63 85 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
describe(L$Naturalness)
## L$Naturalness
## n missing distinct Info Mean Gmd .05 .10
## 3006 3024 399 1 50.22 26.67 7.00 22.50
## .25 .50 .75 .90 .95
## 34.75 49.38 65.50 82.00 96.19
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
describe(L$Risk)
## L$Risk
## n missing distinct Info Mean Gmd .05 .10
## 3319 2711 506 1 44.56 32.81 0.00 2.50
## .25 .50 .75 .90 .95
## 21.25 46.50 65.00 84.00 95.00
##
## lowest : 0.0000000 0.2500000 0.3333333 0.5000000 0.7500000
## highest: 99.2500000 99.5000000 99.6666667 99.7500000 100.0000000
describe(L$Behav)
## L$Behav
## n missing distinct Info Mean Gmd .05 .10
## 3008 3022 402 0.999 56.27 34.23 0.000 6.925
## .25 .50 .75 .90 .95
## 36.000 58.500 80.250 96.750 100.000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
describe(L$Understanding)
## L$Understanding
## n missing distinct Info Mean Gmd .05 .10
## 2999 3031 101 0.995 65.01 32.66 5 21
## .25 .50 .75 .90 .95
## 47 70 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
describe(L$BRDiff)
## L$BRDiff
## n missing distinct Info Mean Gmd .05 .10
## 2993 3037 1596 1 15.62 48.87 -68.333 -33.200
## .25 .50 .75 .90 .95
## -5.917 7.250 45.750 80.400 96.700
##
## lowest : -100.00000 -99.75000 -99.66667 -99.33333 -99.00000
## highest: 99.33333 99.50000 99.66667 99.75000 100.00000
describe(L$FR)
## L$FR
## n missing distinct Info Mean Gmd .05 .10
## 2986 3044 197 0.999 63.81 29.08 16.00 28.25
## .25 .50 .75 .90 .95
## 49.12 64.50 85.00 99.50 100.00
##
## lowest : 0.0 0.5 1.0 1.5 2.5, highest: 98.0 98.5 99.0 99.5 100.0
L$Benefit.c <- L$Ben - 60.36
L$Familiarity.c <- L$Familiarity - 57.8
L$Naturalness.c <- L$Naturalness - 46.43
L$Risk.c <- L$Risk - 44.56
L$Behav.c <- L$Behav - mean(L$Behav) - 56.27
L$Understanding.c <- L$Understanding - 65.01
L$FR.c <- L$FR - 63.81
describe(L$AW_Score)
## L$AW_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 172 0.995 70.53 27.4 25.0 39.5
## .25 .50 .75 .90 .95
## 52.0 73.5 92.5 100.0 100.0
##
## lowest : 0.0 1.0 2.0 2.5 3.0, highest: 98.0 98.5 99.0 99.5 100.0
L$AW_Score.c <- L$AW_Score - 70.53
describe(L$ATNS_Score)
## L$ATNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 313 1 62.48 19.38 34.2 42.4
## .25 .50 .75 .90 .95
## 51.2 62.0 73.4 84.4 94.8
##
## lowest : 0.0 1.0 2.4 3.6 7.2, highest: 98.8 99.2 99.6 99.8 100.0
L$ATNS_Score.c <- L$ATNS_Score - 62.48
describe(L$CCBelief_Score)
## L$CCBelief_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 275 0.997 72.51 25.71 31.75 44.75
## .25 .50 .75 .90 .95
## 56.00 75.25 93.25 100.00 100.00
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
L$CCBelief_Score.c <- L$CCBelief_Score - 72.51
describe(L$CNS_Score)
## L$CNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 240 1 57.53 12.96 40.0 45.0
## .25 .50 .75 .90 .95
## 50.6 56.6 61.8 71.8 80.2
##
## lowest : 18.0 20.0 21.8 22.2 22.6, highest: 98.0 98.8 99.6 99.8 100.0
L$CNS_Score.c <- L$CNS_Score - 57.53
describe(L$DS_Score)
## L$DS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 237 1 57.55 23.19 20.67 32.67
## .25 .50 .75 .90 .95
## 45.33 58.67 67.67 86.00 96.00
##
## lowest : 0.0000000 0.6666667 1.6666667 2.6666667 3.6666667
## highest: 98.0000000 98.3333333 99.3333333 99.6666667 100.0000000
L$DS_Score.c <- L$DS_Score - 57.55
describe(L$Individualism_Score)
## L$Individualism_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 250 0.999 73.77 20.34 45.50 51.00
## .25 .50 .75 .90 .95
## 60.50 75.00 88.00 98.75 100.00
##
## lowest : 0.00 11.50 22.75 25.00 27.75, highest: 99.00 99.25 99.50 99.75 100.00
L$Individualism_Score.c <- L$Individualism_Score - 73.77
describe(L$Collectivism_Score)
## L$Collectivism_Score
## n missing distinct Info Mean Gmd .05 .10
## 6018 12 292 1 66.53 23.13 30.25 40.00
## .25 .50 .75 .90 .95
## 52.25 66.75 81.75 94.00 100.00
##
## lowest : 0.00 1.25 7.00 9.50 10.50, highest: 99.00 99.25 99.50 99.75 100.00
L$Collectivism_Score.c <- L$Collectivism_Score - 66.53
describe(L$Ben)
## L$Ben
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 296 0.999 60.36 30.63 2.333 22.667
## .25 .50 .75 .90 .95
## 44.667 61.000 82.000 98.167 100.000
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
## highest: 98.6666667 99.0000000 99.3333333 99.6666667 100.0000000
L$Benefit.c <- L$Ben - 60.36
describe(L$Disgust)
## L$Disgust
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 101 0.997 47.64 39.28 0 0
## .25 .50 .75 .90 .95
## 17 50 77 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
L$Disgust.c <- L$Disgust - 47.64
describe(L$Familiarity)
## L$Familiarity
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 101 0.998 57.8 36.28 0 6
## .25 .50 .75 .90 .95
## 32 63 85 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
L$Familiarity.c <- L$Familiarity - 57.8
describe(L$Naturalness)
## L$Naturalness
## n missing distinct Info Mean Gmd .05 .10
## 3006 3024 399 1 50.22 26.67 7.00 22.50
## .25 .50 .75 .90 .95
## 34.75 49.38 65.50 82.00 96.19
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
L$Naturalness.c <- L$Naturalness - 46.43
describe(L$Risk)
## L$Risk
## n missing distinct Info Mean Gmd .05 .10
## 3319 2711 506 1 44.56 32.81 0.00 2.50
## .25 .50 .75 .90 .95
## 21.25 46.50 65.00 84.00 95.00
##
## lowest : 0.0000000 0.2500000 0.3333333 0.5000000 0.7500000
## highest: 99.2500000 99.5000000 99.6666667 99.7500000 100.0000000
L$Risk.c <- L$Risk - 44.56
describe(L$Behav)
## L$Behav
## n missing distinct Info Mean Gmd .05 .10
## 3008 3022 402 0.999 56.27 34.23 0.000 6.925
## .25 .50 .75 .90 .95
## 36.000 58.500 80.250 96.750 100.000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
L$Behav.c <- L$Behav - 56.27
describe(L$Understanding)
## L$Understanding
## n missing distinct Info Mean Gmd .05 .10
## 2999 3031 101 0.995 65.01 32.66 5 21
## .25 .50 .75 .90 .95
## 47 70 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
L$Understanding.c <- L$Understanding - 65.01
describe(L$FR)
## L$FR
## n missing distinct Info Mean Gmd .05 .10
## 2986 3044 197 0.999 63.81 29.08 16.00 28.25
## .25 .50 .75 .90 .95
## 49.12 64.50 85.00 99.50 100.00
##
## lowest : 0.0 0.5 1.0 1.5 2.5, highest: 98.0 98.5 99.0 99.5 100.0
L$FR.c <- L$FR - 63.81
describe(L$BRDiff)
## L$BRDiff
## n missing distinct Info Mean Gmd .05 .10
## 2993 3037 1596 1 15.62 48.87 -68.333 -33.200
## .25 .50 .75 .90 .95
## -5.917 7.250 45.750 80.400 96.700
##
## lowest : -100.00000 -99.75000 -99.66667 -99.33333 -99.00000
## highest: 99.33333 99.50000 99.66667 99.75000 100.00000
#Center moderator variables
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).
describe(L$Dem_Age)
## L$Dem_Age
## n missing distinct Info Mean Gmd .05 .10
## 5922 108 66 1 42.08 17.24 21 23
## .25 .50 .75 .90 .95
## 30 40 53 65 70
##
## lowest : 13 18 19 20 21, highest: 78 79 81 82 83
describe(L$ATNS_Score)
## L$ATNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 313 1 62.48 19.38 34.2 42.4
## .25 .50 .75 .90 .95
## 51.2 62.0 73.4 84.4 94.8
##
## lowest : 0.0 1.0 2.4 3.6 7.2, highest: 98.8 99.2 99.6 99.8 100.0
describe(L$AW_Score)
## L$AW_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 172 0.995 70.53 27.4 25.0 39.5
## .25 .50 .75 .90 .95
## 52.0 73.5 92.5 100.0 100.0
##
## lowest : 0.0 1.0 2.0 2.5 3.0, highest: 98.0 98.5 99.0 99.5 100.0
describe(L$CNS_Score)
## L$CNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 240 1 57.53 12.96 40.0 45.0
## .25 .50 .75 .90 .95
## 50.6 56.6 61.8 71.8 80.2
##
## lowest : 18.0 20.0 21.8 22.2 22.6, highest: 98.0 98.8 99.6 99.8 100.0
describe(L$CCBelief_Score)
## L$CCBelief_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 275 0.997 72.51 25.71 31.75 44.75
## .25 .50 .75 .90 .95
## 56.00 75.25 93.25 100.00 100.00
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
describe(L$DS_Score)
## L$DS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 237 1 57.55 23.19 20.67 32.67
## .25 .50 .75 .90 .95
## 45.33 58.67 67.67 86.00 96.00
##
## lowest : 0.0000000 0.6666667 1.6666667 2.6666667 3.6666667
## highest: 98.0000000 98.3333333 99.3333333 99.6666667 100.0000000
describe(L$Collectivism_Score)
## L$Collectivism_Score
## n missing distinct Info Mean Gmd .05 .10
## 6018 12 292 1 66.53 23.13 30.25 40.00
## .25 .50 .75 .90 .95
## 52.25 66.75 81.75 94.00 100.00
##
## lowest : 0.00 1.25 7.00 9.50 10.50, highest: 99.00 99.25 99.50 99.75 100.00
describe(L$Individualism_Score)
## L$Individualism_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 250 0.999 73.77 20.34 45.50 51.00
## .25 .50 .75 .90 .95
## 60.50 75.00 88.00 98.75 100.00
##
## lowest : 0.00 11.50 22.75 25.00 27.75, highest: 99.00 99.25 99.50 99.75 100.00
describe(L$Ideology)
## L$Ideology
## n missing distinct Info Mean Gmd .05 .10
## 6018 12 14 0.949 1.785 1.154 -0.5 0.5
## .25 .50 .75 .90 .95
## 1.5 2.0 2.5 3.0 3.5
##
## lowest : -1.0 -0.5 0.0 0.5 1.0, highest: 3.5 4.0 4.5 5.0 6.0
##
## Value -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
## Frequency 150 162 210 480 474 852 2142 756 312 294 84
## Proportion 0.025 0.027 0.035 0.080 0.079 0.142 0.356 0.126 0.052 0.049 0.014
##
## Value 4.5 5.0 6.0
## Frequency 36 54 12
## Proportion 0.006 0.009 0.002
L$Age.c <- L$Dem_Age- 42.08
L$ATNS_Score.c <- L$ATNS_Score - 62.48
L$AW_Score.c <- L$AW_Score - 70.53
L$CNS_Score.c <- L$CNS_Score - 57.53
L$CCBelief_Score.c <- L$CCBelief_Score - 72.51
L$DS_Score.c <- L$DS_Score - 57.55
L$Collectivism_Score.c <- L$Collectivism_Score - 66.53
L$Individualism_Score.c <- L$Individualism_Score - 73.77
L$Ideology.c <- L$Ideology - 2.956
Contrast Codes

#CBB, PBPB,PBFB vs. VB, GFPRB, GFFB - NEWTECH
L$C1 <- (1/2)*(L$Type == 'CBB') + (-1/2)*(L$Type == 'GFFB') + (-1/2)*(L$Type == 'GFPRB') +(1/2)*(L$Type == 'PBFB') +(1/2)*(L$Type == 'PBPB') + (-1/2)*(L$Type == 'VB')
#CBB vs. PFPB, PBPB - LABCULTURED
L$C2 <- (2/3)*(L$Type == 'CBB') + (-1/3)*(L$Type == 'PBFB') + (-1/3)*(L$Type == 'PBPB') +(0)*(L$Type == 'VB') + (0)*(L$Type == 'GFFB') + (0)*(L$Type == 'GFPRB')
#GFFB, GFPRB vs. CBB, PFPB, PBPB, VB - TRADITIONAL BEEF
L$C3 <- (0)*(L$Type == 'CBB') + (0)*(L$Type == 'PBFB') + (0)*(L$Type == 'PBPB') +(2/3)*(L$Type == 'VB') + (-1/3)*(L$Type == 'GFFB') + (-1/3)*(L$Type == 'GFPRB')
#GFFB vs. GFPRB - GRAIN FED BEEF vs. GRASS FED BEEF
L$C4 <- (0)*(L$Type == 'CBB') + (0)*(L$Type == 'PBFB') + (0)*(L$Type == 'PBPB') + (0)*(L$Type == 'VB') + (1/2)*(L$Type == 'GFFB') + (-1/2)*(L$Type == 'GFPRB')
#VB vs. GFPRB - VEGGIE vs. GRASS FED (Orthogonality Code - Not meaningful comparison)
L$C5 <- (0)*(L$Type == 'CBB') + (1/2)*(L$Type == 'PBFB') + (-1/2)*(L$Type == 'PBPB') + (0)*(L$Type == 'VB') + (0)*(L$Type == 'GFFB') + (0)*(L$Type == 'GFPRB')
# Sex
## F vs M
L$MF <- (1/2)*(L$Dem_Gen == '1') + (-1/2)*(L$Dem_Gen == '2') + (0)*(L$Dem_Gen == '3')
## O vs MF
L$OMF <- (-1/3)*(L$Dem_Gen == '1') + (-1/3)*(L$Dem_Gen == '2') + (2/3)*(L$Dem_Gen == '3')
# Living Environment
PP$LIVING <- factor(PP$LivNum, levels = c(1, 2, 3),
labels = c("Urban", "Suburban", "Rural"))
##Urban vs. Rural
L$UR <- (1/2)*(L$LivNum == '1') + (0)*(L$LivNum == '2') + (-1/2)*(L$LivNum == '3')
L$RUS <- (-1/3)*(L$LivNum == '1') + (-1/3)*(L$LivNum == '2') + (2/3)*(L$LivNum == '3')
Models
Aversion to Tampering with Nature

Q.1 How does aversion to tampering with nature predict support, over
and above burger contrasts?
modA.23 <- lmer(Behav ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + (1|id), data = L)
summary(modA.23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + ATNS_Score.c *
## C1 + ATNS_Score.c * C2 + ATNS_Score.c * C3 + ATNS_Score.c *
## C4 + ATNS_Score.c * C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28124.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5218 -0.3930 0.0439 0.4277 3.3857
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 456.5 21.37
## Residual 419.8 20.49
## Number of obs: 3007, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.51938 0.77734 998.95409 72.709 < 2e-16 ***
## ATNS_Score.c 0.02073 0.04486 1006.01573 0.462 0.644066
## C1 -6.51128 0.79495 2188.56906 -8.191 4.36e-16 ***
## C2 -6.55557 1.21602 2277.88893 -5.391 7.73e-08 ***
## C3 5.16168 1.26371 2325.12260 4.085 4.57e-05 ***
## C4 0.19965 1.40048 2277.86144 0.143 0.886651
## C5 -5.01140 1.42432 2300.31014 -3.518 0.000443 ***
## ATNS_Score.c:C1 -0.28971 0.04638 2207.30709 -6.247 5.01e-10 ***
## ATNS_Score.c:C2 -0.22090 0.07142 2287.78167 -3.093 0.002006 **
## ATNS_Score.c:C3 0.05207 0.07430 2360.48116 0.701 0.483489
## ATNS_Score.c:C4 0.14716 0.08090 2272.15851 1.819 0.069050 .
## ATNS_Score.c:C5 -0.25028 0.08229 2319.94653 -3.041 0.002381 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) ATNS_Sc. C1 C2 C3 C4 C5 ATNS_S.:C1
## ATNS_Scor.c 0.002
## C1 -0.002 -0.004
## C2 -0.020 0.006 0.005
## C3 -0.008 -0.005 -0.057 0.027
## C4 -0.018 -0.011 -0.064 0.052 0.000
## C5 -0.013 -0.021 0.068 -0.031 0.065 0.075
## ATNS_Sc.:C1 -0.004 -0.004 0.008 0.026 0.006 0.014 -0.027
## ATNS_Sc.:C2 0.006 -0.010 0.026 -0.002 0.000 -0.004 0.046 0.033
## ATNS_Sc.:C3 -0.005 -0.008 0.006 0.000 -0.009 0.021 0.003 -0.067
## ATNS_Sc.:C4 -0.011 -0.017 0.014 -0.004 0.020 0.008 0.005 -0.058
## ATNS_Sc.:C5 -0.022 -0.020 -0.027 0.046 0.003 0.006 -0.017 0.060
## ATNS_S.:C2 ATNS_S.:C3 ATNS_S.:C4
## ATNS_Scor.c
## C1
## C2
## C3
## C4
## C5
## ATNS_Sc.:C1
## ATNS_Sc.:C2
## ATNS_Sc.:C3 0.029
## ATNS_Sc.:C4 0.052 0.013
## ATNS_Sc.:C5 -0.010 0.077 0.077
tab_model(modA.23,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
56.52
|
0.78
|
55.00 – 58.04
|
72.71
|
<0.001
|
|
ATNS Score c
|
0.02
|
0.04
|
-0.07 – 0.11
|
0.46
|
0.644
|
|
C1
|
-6.51
|
0.79
|
-8.07 – -4.95
|
-8.19
|
<0.001
|
|
C2
|
-6.56
|
1.22
|
-8.94 – -4.17
|
-5.39
|
<0.001
|
|
C3
|
5.16
|
1.26
|
2.68 – 7.64
|
4.08
|
<0.001
|
|
C4
|
0.20
|
1.40
|
-2.55 – 2.95
|
0.14
|
0.887
|
|
C5
|
-5.01
|
1.42
|
-7.80 – -2.22
|
-3.52
|
<0.001
|
|
ATNS Score c * C1
|
-0.29
|
0.05
|
-0.38 – -0.20
|
-6.25
|
<0.001
|
|
ATNS Score c * C2
|
-0.22
|
0.07
|
-0.36 – -0.08
|
-3.09
|
0.002
|
|
ATNS Score c * C3
|
0.05
|
0.07
|
-0.09 – 0.20
|
0.70
|
0.483
|
|
ATNS Score c * C4
|
0.15
|
0.08
|
-0.01 – 0.31
|
1.82
|
0.069
|
|
ATNS Score c * C5
|
-0.25
|
0.08
|
-0.41 – -0.09
|
-3.04
|
0.002
|
|
Random Effects
|
|
σ2
|
419.85
|
|
τ00 id
|
456.55
|
|
ICC
|
0.52
|
|
N id
|
1002
|
|
Observations
|
3007
|
|
Marginal R2 / Conditional R2
|
0.033 / 0.537
|
Q.2: Does living environment predict aversion to tampering with
nature?
# Aversion to Tampering with Nature ~ Living Environment (urban, rural, suburban)
modA.101 <- lmer(ATNS_Score ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + UR + RUS + (1|id), data = L)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.498986 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
summary(modA.101)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ATNS_Score ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + UR + RUS +
## (1 | id)
## Data: L
##
## REML criterion at convergence: -33606.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.260e-06 -1.631e-07 4.195e-08 2.703e-07 9.322e-07
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 1.029e+02 1.014e+01
## Residual 3.718e-11 6.098e-06
## Number of obs: 3002, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.992e+01 3.170e-01 4.812e+01 189.000 <2e-16 ***
## Naturalness.c 1.279e-14 6.398e-09 2.688e+02 0.000 1.0000
## C1 4.658e-14 2.557e-07 2.688e+02 0.000 1.0000
## C2 3.939e-13 3.849e-07 2.688e+02 0.000 1.0000
## C3 5.566e-13 3.809e-07 2.688e+02 0.000 1.0000
## C4 2.267e-13 4.372e-07 2.688e+02 0.000 1.0000
## C5 1.797e-14 4.466e-07 2.688e+02 0.000 1.0000
## UR 4.541e+00 1.363e+00 2.747e+00 3.330 0.0508 .
## RUS 4.741e+00 1.094e+00 7.869e-01 4.335 0.1939
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. C1 C2 C3 C4 C5 UR
## Naturlnss.c 0.000
## C1 0.000 0.205
## C2 0.000 0.278 0.040
## C3 0.000 0.084 -0.024 0.026
## C4 0.000 0.175 0.036 0.057 -0.006
## C5 0.000 -0.276 -0.034 -0.113 -0.005 -0.062
## UR 0.081 0.000 0.000 0.000 0.000 0.000 0.000
## RUS 0.162 0.000 0.000 0.000 0.000 0.000 0.000 0.775
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.498986 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
tab_model(modA.101,
show.stat = T, show.se = T)
|
|
ATNS_Score
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
59.92
|
0.32
|
59.29 – 60.54
|
189.00
|
<0.001
|
|
Naturalness c
|
0.00
|
0.00
|
-0.00 – 0.00
|
0.00
|
1.000
|
|
C1
|
0.00
|
0.00
|
-0.00 – 0.00
|
0.00
|
1.000
|
|
C2
|
0.00
|
0.00
|
-0.00 – 0.00
|
0.00
|
1.000
|
|
C3
|
0.00
|
0.00
|
-0.00 – 0.00
|
0.00
|
1.000
|
|
C4
|
0.00
|
0.00
|
-0.00 – 0.00
|
0.00
|
1.000
|
|
C5
|
0.00
|
0.00
|
-0.00 – 0.00
|
0.00
|
1.000
|
|
UR
|
4.54
|
1.36
|
1.87 – 7.21
|
3.33
|
0.001
|
|
RUS
|
4.74
|
1.09
|
2.60 – 6.89
|
4.33
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.00
|
|
τ00 id
|
102.86
|
|
ICC
|
1.00
|
|
N id
|
1002
|
|
Observations
|
3002
|
|
Marginal R2 / Conditional R2
|
0.013 / 1.000
|
Benefit

Q.1: How do burger contrasts predict perceived benefit?
#How do burger contrasts predict perceived benefit?
modA.20 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.20)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27808
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3345 -0.4773 0.0739 0.5582 2.6462
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 238.7 15.45
## Residual 463.2 21.52
## Number of obs: 2996, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 60.3899 0.6270 999.7844 96.314 < 2e-16 ***
## C1 -6.6494 0.8415 2369.0189 -7.901 4.18e-15 ***
## C2 -7.1582 1.2462 2352.7388 -5.744 1.04e-08 ***
## C3 6.3360 1.2802 2351.7235 4.949 7.98e-07 ***
## C4 -10.4003 1.4478 2368.4324 -7.184 9.05e-13 ***
## C5 -4.9473 1.4516 2347.8427 -3.408 0.000665 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.007
## C2 -0.006 -0.014
## C3 0.016 -0.033 0.002
## C4 0.006 -0.004 0.005 -0.017
## C5 0.016 0.023 -0.032 0.010 -0.008
tab_model(modA.20,
show.stat = T, show.se = T)
|
|
Ben
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
60.39
|
0.63
|
59.16 – 61.62
|
96.31
|
<0.001
|
|
C1
|
-6.65
|
0.84
|
-8.30 – -5.00
|
-7.90
|
<0.001
|
|
C2
|
-7.16
|
1.25
|
-9.60 – -4.71
|
-5.74
|
<0.001
|
|
C3
|
6.34
|
1.28
|
3.83 – 8.85
|
4.95
|
<0.001
|
|
C4
|
-10.40
|
1.45
|
-13.24 – -7.56
|
-7.18
|
<0.001
|
|
C5
|
-4.95
|
1.45
|
-7.79 – -2.10
|
-3.41
|
0.001
|
|
Random Effects
|
|
σ2
|
463.15
|
|
τ00 id
|
238.71
|
|
ICC
|
0.34
|
|
N id
|
1003
|
|
Observations
|
2996
|
|
Marginal R2 / Conditional R2
|
0.044 / 0.369
|
Q.2: Does familiarity with technology predict perceived
benefits?
#Benefit ~ Familiarity
modA.102 <- lmer(Ben ~ Familiarity.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.102)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Familiarity.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27151.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8447 -0.4837 0.0695 0.5790 3.1430
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 120.3 10.97
## Residual 427.3 20.67
## Number of obs: 2985, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 60.38704 0.51343 946.68301 117.614 < 2e-16 ***
## Familiarity.c 0.36633 0.01422 2968.47107 25.766 < 2e-16 ***
## C1 -0.43845 0.83076 2537.11227 -0.528 0.598
## C2 -5.15623 1.18138 2433.23380 -4.365 1.33e-05 ***
## C3 8.46576 1.21404 2429.65879 6.973 3.98e-12 ***
## C4 -6.98902 1.38060 2462.50709 -5.062 4.45e-07 ***
## C5 -2.16778 1.37622 2434.60325 -1.575 0.115
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Fmlrt. C1 C2 C3 C4
## Familirty.c 0.001
## C1 -0.009 0.286
## C2 -0.006 0.061 0.006
## C3 0.016 0.068 -0.007 0.005
## C4 0.008 0.107 0.024 0.010 -0.009
## C5 0.018 0.075 0.043 -0.025 0.012 0.003
tab_model(modA.102,
show.stat = T, show.se = T)
|
|
Ben
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
60.39
|
0.51
|
59.38 – 61.39
|
117.61
|
<0.001
|
|
Familiarity c
|
0.37
|
0.01
|
0.34 – 0.39
|
25.77
|
<0.001
|
|
C1
|
-0.44
|
0.83
|
-2.07 – 1.19
|
-0.53
|
0.598
|
|
C2
|
-5.16
|
1.18
|
-7.47 – -2.84
|
-4.36
|
<0.001
|
|
C3
|
8.47
|
1.21
|
6.09 – 10.85
|
6.97
|
<0.001
|
|
C4
|
-6.99
|
1.38
|
-9.70 – -4.28
|
-5.06
|
<0.001
|
|
C5
|
-2.17
|
1.38
|
-4.87 – 0.53
|
-1.58
|
0.115
|
|
Random Effects
|
|
σ2
|
427.34
|
|
τ00 id
|
120.33
|
|
ICC
|
0.22
|
|
N id
|
1003
|
|
Observations
|
2985
|
|
Marginal R2 / Conditional R2
|
0.221 / 0.392
|
Q.3: Does living environment predict perceived benefits of
technology, over and above aversion to tampering with nature and
familiarity?
#Benefit ~ Aversion to Tampering with Nature (across all 6 tech) + Living Environment + Familiarity
modA.103 <- lmer(Ben ~ + ATNS_Score.c + Familiarity.c + UR + RUS + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.103)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ +ATNS_Score.c + Familiarity.c + UR + RUS + C1 + C2 + C3 +
## C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27133
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7797 -0.4739 0.0635 0.5771 3.1631
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 119.4 10.93
## Residual 426.9 20.66
## Number of obs: 2984, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 60.49179 0.52279 945.63698 115.708 < 2e-16 ***
## ATNS_Score.c 0.05134 0.02967 949.64322 1.731 0.0839 .
## Familiarity.c 0.36352 0.01424 2965.95351 25.523 < 2e-16 ***
## UR 5.88912 2.41798 948.11942 2.436 0.0151 *
## RUS 3.60590 2.08458 945.14249 1.730 0.0840 .
## C1 -0.51822 0.83065 2536.72625 -0.624 0.5328
## C2 -5.14711 1.18068 2435.10162 -4.359 1.36e-05 ***
## C3 8.36414 1.21381 2429.32978 6.891 7.04e-12 ***
## C4 -7.10073 1.38059 2461.85568 -5.143 2.91e-07 ***
## C5 -2.29337 1.37614 2432.75323 -1.667 0.0957 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) ATNS_S Fmlrt. UR RUS C1 C2 C3 C4
## ATNS_Scor.c -0.016
## Familirty.c 0.002 -0.041
## UR 0.113 -0.054 -0.047
## RUS 0.184 -0.075 -0.017 0.828
## C1 -0.010 -0.015 0.287 -0.024 -0.014
## C2 -0.005 0.005 0.061 0.000 0.006 0.006
## C3 0.014 -0.007 0.070 -0.023 -0.014 -0.006 0.005
## C4 0.008 -0.017 0.108 -0.013 -0.006 0.025 0.010 -0.008
## C5 0.015 -0.027 0.076 -0.018 -0.019 0.044 -0.025 0.013 0.003
tab_model(modA.103,
show.stat = T, show.se = T)
|
|
Ben
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
60.49
|
0.52
|
59.47 – 61.52
|
115.71
|
<0.001
|
|
ATNS Score c
|
0.05
|
0.03
|
-0.01 – 0.11
|
1.73
|
0.084
|
|
Familiarity c
|
0.36
|
0.01
|
0.34 – 0.39
|
25.52
|
<0.001
|
|
UR
|
5.89
|
2.42
|
1.15 – 10.63
|
2.44
|
0.015
|
|
RUS
|
3.61
|
2.08
|
-0.48 – 7.69
|
1.73
|
0.084
|
|
C1
|
-0.52
|
0.83
|
-2.15 – 1.11
|
-0.62
|
0.533
|
|
C2
|
-5.15
|
1.18
|
-7.46 – -2.83
|
-4.36
|
<0.001
|
|
C3
|
8.36
|
1.21
|
5.98 – 10.74
|
6.89
|
<0.001
|
|
C4
|
-7.10
|
1.38
|
-9.81 – -4.39
|
-5.14
|
<0.001
|
|
C5
|
-2.29
|
1.38
|
-4.99 – 0.40
|
-1.67
|
0.096
|
|
Random Effects
|
|
σ2
|
426.92
|
|
τ00 id
|
119.44
|
|
ICC
|
0.22
|
|
N id
|
1002
|
|
Observations
|
2984
|
|
Marginal R2 / Conditional R2
|
0.225 / 0.395
|
Political Ideology

Q.1 How does ideology predict support, over and above burger
contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).
modA.37 <- lmer(Behav ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)
summary(modA.37)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + Ideology.c * C1 +
## Ideology.c * C2 + Ideology.c * C3 + Ideology.c * C4 + Ideology.c *
## C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28140.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6265 -0.4199 0.0565 0.4312 3.3608
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 447.5 21.15
## Residual 432.0 20.78
## Number of obs: 3007, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 54.7566 1.1382 998.8284 48.108 < 2e-16 ***
## Ideology.c -1.4829 0.7109 992.4019 -2.086 0.037238 *
## C1 -6.7146 1.1822 2190.4367 -5.680 1.53e-08 ***
## C2 -6.8995 1.7657 2261.4164 -3.908 9.60e-05 ***
## C3 5.8702 1.9157 2360.6238 3.064 0.002207 **
## C4 -2.0718 2.1048 2291.9477 -0.984 0.325065
## C5 -6.9879 2.1202 2321.3533 -3.296 0.000996 ***
## Ideology.c:C1 -0.2251 0.7386 2198.5176 -0.305 0.760531
## Ideology.c:C2 -0.6187 1.1112 2257.3697 -0.557 0.577767
## Ideology.c:C3 0.5754 1.2069 2366.4176 0.477 0.633577
## Ideology.c:C4 -1.9463 1.2800 2266.6762 -1.521 0.128490
## Ideology.c:C5 -1.6006 1.3156 2312.7229 -1.217 0.223895
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Idlgy. C1 C2 C3 C4 C5 Id.:C1 Id.:C2
## Ideology.c 0.733
## C1 -0.011 -0.010
## C2 -0.026 -0.019 -0.013
## C3 -0.007 0.001 -0.063 0.029
## C4 -0.014 -0.006 -0.073 0.045 0.007
## C5 -0.017 -0.006 0.050 -0.025 0.077 0.080
## Idelgy.c:C1 -0.010 -0.008 0.732 -0.011 -0.056 -0.059 0.040
## Idelgy.c:C2 -0.018 -0.019 -0.011 0.717 0.020 0.029 -0.025 0.001
## Idelgy.c:C3 0.000 0.008 -0.055 0.021 0.744 0.006 0.064 -0.083 0.025
## Idelgy.c:C4 -0.007 -0.005 -0.060 0.030 0.006 0.739 0.056 -0.082 0.042
## Idelgy.c:C5 -0.007 0.002 0.040 -0.025 0.065 0.055 0.734 0.074 -0.048
## Id.:C3 Id.:C4
## Ideology.c
## C1
## C2
## C3
## C4
## C5
## Idelgy.c:C1
## Idelgy.c:C2
## Idelgy.c:C3
## Idelgy.c:C4 0.004
## Idelgy.c:C5 0.088 0.065
tab_model(modA.37,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
54.76
|
1.14
|
52.52 – 56.99
|
48.11
|
<0.001
|
|
Ideology c
|
-1.48
|
0.71
|
-2.88 – -0.09
|
-2.09
|
0.037
|
|
C1
|
-6.71
|
1.18
|
-9.03 – -4.40
|
-5.68
|
<0.001
|
|
C2
|
-6.90
|
1.77
|
-10.36 – -3.44
|
-3.91
|
<0.001
|
|
C3
|
5.87
|
1.92
|
2.11 – 9.63
|
3.06
|
0.002
|
|
C4
|
-2.07
|
2.10
|
-6.20 – 2.06
|
-0.98
|
0.325
|
|
C5
|
-6.99
|
2.12
|
-11.15 – -2.83
|
-3.30
|
0.001
|
|
Ideology c * C1
|
-0.23
|
0.74
|
-1.67 – 1.22
|
-0.30
|
0.761
|
|
Ideology c * C2
|
-0.62
|
1.11
|
-2.80 – 1.56
|
-0.56
|
0.578
|
|
Ideology c * C3
|
0.58
|
1.21
|
-1.79 – 2.94
|
0.48
|
0.634
|
|
Ideology c * C4
|
-1.95
|
1.28
|
-4.46 – 0.56
|
-1.52
|
0.128
|
|
Ideology c * C5
|
-1.60
|
1.32
|
-4.18 – 0.98
|
-1.22
|
0.224
|
|
Random Effects
|
|
σ2
|
431.97
|
|
τ00 id
|
447.51
|
|
ICC
|
0.51
|
|
N id
|
1002
|
|
Observations
|
3007
|
|
Marginal R2 / Conditional R2
|
0.026 / 0.521
|
Q.2 Does ideology depend on perceptions of naturalness in predicting
support, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).
modA.38 <- lmer(Behav ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)
summary(modA.38)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +
## Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *
## C4 + Ideology.c * C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25142.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7800 -0.4433 0.0485 0.4906 3.1291
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 398.5 19.96
## Residual 414.2 20.35
## Number of obs: 2696, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 52.57968 1.12541 1083.02344 46.720 < 2e-16 ***
## Ideology.c -1.93546 0.69882 1055.81089 -2.770 0.00571 **
## Naturalness.c 0.40296 0.03157 2135.82332 12.764 < 2e-16 ***
## C1 -2.00928 1.32707 1925.97722 -1.514 0.13017
## C2 0.36414 1.81278 1964.61048 0.201 0.84082
## C3 8.53962 2.09465 2078.07832 4.077 4.74e-05 ***
## C4 5.03251 2.81187 2098.19979 1.790 0.07364 .
## C5 -14.28212 2.15750 1996.79917 -6.620 4.61e-11 ***
## Ideology.c:Naturalness.c 0.01207 0.02211 2131.96046 0.546 0.58517
## Ideology.c:C1 0.95706 0.80954 1913.60990 1.182 0.23726
## Ideology.c:C2 -0.27343 1.14477 1957.53397 -0.239 0.81125
## Ideology.c:C3 1.12498 1.31132 2089.30297 0.858 0.39105
## Ideology.c:C4 -0.33589 1.70259 2072.75754 -0.197 0.84363
## Ideology.c:C5 -1.32200 1.36668 1996.61648 -0.967 0.33351
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
tab_model(modA.38,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
52.58
|
1.13
|
50.37 – 54.79
|
46.72
|
<0.001
|
|
Ideology c
|
-1.94
|
0.70
|
-3.31 – -0.57
|
-2.77
|
0.006
|
|
Naturalness c
|
0.40
|
0.03
|
0.34 – 0.46
|
12.76
|
<0.001
|
|
C1
|
-2.01
|
1.33
|
-4.61 – 0.59
|
-1.51
|
0.130
|
|
C2
|
0.36
|
1.81
|
-3.19 – 3.92
|
0.20
|
0.841
|
|
C3
|
8.54
|
2.09
|
4.43 – 12.65
|
4.08
|
<0.001
|
|
C4
|
5.03
|
2.81
|
-0.48 – 10.55
|
1.79
|
0.074
|
|
C5
|
-14.28
|
2.16
|
-18.51 – -10.05
|
-6.62
|
<0.001
|
Ideology c * Naturalness c
|
0.01
|
0.02
|
-0.03 – 0.06
|
0.55
|
0.585
|
|
Ideology c * C1
|
0.96
|
0.81
|
-0.63 – 2.54
|
1.18
|
0.237
|
|
Ideology c * C2
|
-0.27
|
1.14
|
-2.52 – 1.97
|
-0.24
|
0.811
|
|
Ideology c * C3
|
1.12
|
1.31
|
-1.45 – 3.70
|
0.86
|
0.391
|
|
Ideology c * C4
|
-0.34
|
1.70
|
-3.67 – 3.00
|
-0.20
|
0.844
|
|
Ideology c * C5
|
-1.32
|
1.37
|
-4.00 – 1.36
|
-0.97
|
0.333
|
|
Random Effects
|
|
σ2
|
414.25
|
|
τ00 id
|
398.51
|
|
ICC
|
0.49
|
|
N id
|
1002
|
|
Observations
|
2696
|
|
Marginal R2 / Conditional R2
|
0.102 / 0.542
|
Risk

Q.1: How do burger contrasts predict risk perception?
modA.16 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.16)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 30939.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.94921 -0.55876 0.01162 0.51048 2.97133
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 329.8 18.16
## Residual 455.4 21.34
## Number of obs: 3319, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.4194 0.6869 1017.0632 64.663 < 2e-16 ***
## C1 5.9265 0.8118 2645.8442 7.300 3.79e-13 ***
## C2 9.4518 1.1967 2620.9392 7.898 4.13e-15 ***
## C3 -7.7368 1.2733 2595.6429 -6.076 1.41e-09 ***
## C4 8.3421 1.4406 2612.5948 5.791 7.84e-09 ***
## C5 2.5476 1.2299 2412.7516 2.071 0.0384 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.044
## C2 0.031 0.049
## C3 0.013 -0.039 0.006
## C4 0.005 -0.001 0.004 -0.016
## C5 -0.065 -0.134 0.129 0.008 -0.007
tab_model(modA.16,
show.stat = T, show.se = T)
|
|
Risk
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
44.42
|
0.69
|
43.07 – 45.77
|
64.66
|
<0.001
|
|
C1
|
5.93
|
0.81
|
4.33 – 7.52
|
7.30
|
<0.001
|
|
C2
|
9.45
|
1.20
|
7.11 – 11.80
|
7.90
|
<0.001
|
|
C3
|
-7.74
|
1.27
|
-10.23 – -5.24
|
-6.08
|
<0.001
|
|
C4
|
8.34
|
1.44
|
5.52 – 11.17
|
5.79
|
<0.001
|
|
C5
|
2.55
|
1.23
|
0.14 – 4.96
|
2.07
|
0.038
|
|
Random Effects
|
|
σ2
|
455.41
|
|
τ00 id
|
329.82
|
|
ICC
|
0.42
|
|
N id
|
1004
|
|
Observations
|
3319
|
|
Marginal R2 / Conditional R2
|
0.035 / 0.440
|
Q.2: Does naturalness predict risk perception, over and above burger
contrasts?
modA.17 <- lmer(Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.17)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27675.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8800 -0.5493 0.0168 0.5278 3.3519
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 247.5 15.73
## Residual 419.6 20.49
## Number of obs: 3004, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 46.51704 0.62662 1015.11586 74.235 < 2e-16 ***
## Naturalness.c -0.43977 0.01975 2612.03755 -22.268 < 2e-16 ***
## C1 3.20064 0.81950 2352.40531 3.906 9.66e-05 ***
## C2 0.60365 1.23617 2328.05312 0.488 0.6254
## C3 -9.67707 1.22582 2320.33685 -7.894 4.46e-15 ***
## C4 2.89680 1.40397 2337.11854 2.063 0.0392 *
## C5 14.18949 1.43527 2327.72386 9.886 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. C1 C2 C3 C4
## Naturlnss.c -0.124
## C1 -0.033 0.197
## C2 -0.040 0.276 0.041
## C3 0.006 0.077 -0.019 0.023
## C4 -0.017 0.174 0.032 0.053 -0.002
## C5 0.049 -0.269 -0.030 -0.105 -0.010 -0.055
tab_model(modA.17,
show.stat = T, show.se = T)
|
|
Risk
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
46.52
|
0.63
|
45.29 – 47.75
|
74.23
|
<0.001
|
|
Naturalness c
|
-0.44
|
0.02
|
-0.48 – -0.40
|
-22.27
|
<0.001
|
|
C1
|
3.20
|
0.82
|
1.59 – 4.81
|
3.91
|
<0.001
|
|
C2
|
0.60
|
1.24
|
-1.82 – 3.03
|
0.49
|
0.625
|
|
C3
|
-9.68
|
1.23
|
-12.08 – -7.27
|
-7.89
|
<0.001
|
|
C4
|
2.90
|
1.40
|
0.14 – 5.65
|
2.06
|
0.039
|
|
C5
|
14.19
|
1.44
|
11.38 – 17.00
|
9.89
|
<0.001
|
|
Random Effects
|
|
σ2
|
419.64
|
|
τ00 id
|
247.53
|
|
ICC
|
0.37
|
|
N id
|
1004
|
|
Observations
|
3004
|
|
Marginal R2 / Conditional R2
|
0.155 / 0.469
|
Q.3: Does benefit predict risk perception, over and above burger
contrasts?
modA.18 <- lmer(Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.18)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27553.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2328 -0.5024 0.0051 0.5075 3.9700
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 414.2 20.35
## Residual 353.9 18.81
## Number of obs: 2993, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.7685 0.7293 941.2526 61.386 < 2e-16 ***
## Benefit.c -0.4238 0.0173 2805.7194 -24.494 < 2e-16 ***
## C1 3.9575 0.7607 2172.5107 5.203 2.15e-07 ***
## C2 4.9718 1.1186 2156.4956 4.445 9.24e-06 ***
## C3 -4.9123 1.1478 2151.5246 -4.280 1.95e-05 ***
## C4 3.4597 1.3046 2162.5878 2.652 0.00806 **
## C5 3.4698 1.2978 2148.3517 2.674 0.00756 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Bnft.c C1 C2 C3 C4
## Benefit.c -0.001
## C1 -0.006 0.151
## C2 -0.005 0.113 0.001
## C3 0.013 -0.098 -0.051 -0.008
## C4 0.004 0.135 0.018 0.022 -0.032
## C5 0.013 0.069 0.031 -0.026 0.007 -0.001
tab_model(modA.18,
show.stat = T, show.se = T)
|
|
Risk
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
44.77
|
0.73
|
43.34 – 46.20
|
61.39
|
<0.001
|
|
Benefit c
|
-0.42
|
0.02
|
-0.46 – -0.39
|
-24.49
|
<0.001
|
|
C1
|
3.96
|
0.76
|
2.47 – 5.45
|
5.20
|
<0.001
|
|
C2
|
4.97
|
1.12
|
2.78 – 7.17
|
4.44
|
<0.001
|
|
C3
|
-4.91
|
1.15
|
-7.16 – -2.66
|
-4.28
|
<0.001
|
|
C4
|
3.46
|
1.30
|
0.90 – 6.02
|
2.65
|
0.008
|
|
C5
|
3.47
|
1.30
|
0.93 – 6.01
|
2.67
|
0.008
|
|
Random Effects
|
|
σ2
|
353.87
|
|
τ00 id
|
414.23
|
|
ICC
|
0.54
|
|
N id
|
1003
|
|
Observations
|
2993
|
|
Marginal R2 / Conditional R2
|
0.171 / 0.618
|
Q.4: Does benefit predict risk perception, over and above
naturalness and burger contrasts?
modA.19 <- lmer(Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.19)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 |
## id)
## Data: L
##
## REML criterion at convergence: 27296.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7009 -0.5023 0.0214 0.5125 3.7111
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 336.5 18.34
## Residual 339.2 18.42
## Number of obs: 2992, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 45.99534 0.67469 932.84282 68.172 < 2e-16 ***
## Naturalness.c -0.31493 0.01917 2479.94864 -16.426 < 2e-16 ***
## Benefit.c -0.32160 0.01758 2911.62821 -18.290 < 2e-16 ***
## C1 2.04713 0.75164 2172.57689 2.724 0.00651 **
## C2 0.33157 1.12910 2148.67917 0.294 0.76904
## C3 -7.11117 1.12747 2165.63425 -6.307 3.43e-10 ***
## C4 0.75027 1.28460 2158.22296 0.584 0.55925
## C5 10.16559 1.32882 2185.32793 7.650 2.99e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Bnft.c C1 C2 C3 C4
## Naturlnss.c -0.112
## Benefit.c 0.034 -0.313
## C1 -0.024 0.160 0.091
## C2 -0.033 0.256 0.023 0.043
## C3 0.000 0.116 -0.128 -0.031 0.021
## C4 -0.011 0.138 0.083 0.039 0.056 -0.015
## C5 0.047 -0.304 0.156 -0.019 -0.101 -0.030 -0.042
tab_model(modA.19,
show.stat = T, show.se = T)
|
|
Risk
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
46.00
|
0.67
|
44.67 – 47.32
|
68.17
|
<0.001
|
|
Naturalness c
|
-0.31
|
0.02
|
-0.35 – -0.28
|
-16.43
|
<0.001
|
|
Benefit c
|
-0.32
|
0.02
|
-0.36 – -0.29
|
-18.29
|
<0.001
|
|
C1
|
2.05
|
0.75
|
0.57 – 3.52
|
2.72
|
0.006
|
|
C2
|
0.33
|
1.13
|
-1.88 – 2.55
|
0.29
|
0.769
|
|
C3
|
-7.11
|
1.13
|
-9.32 – -4.90
|
-6.31
|
<0.001
|
|
C4
|
0.75
|
1.28
|
-1.77 – 3.27
|
0.58
|
0.559
|
|
C5
|
10.17
|
1.33
|
7.56 – 12.77
|
7.65
|
<0.001
|
|
Random Effects
|
|
σ2
|
339.15
|
|
τ00 id
|
336.50
|
|
ICC
|
0.50
|
|
N id
|
1003
|
|
Observations
|
2992
|
|
Marginal R2 / Conditional R2
|
0.210 / 0.604
|
Support

Q.1: How do burger contrasts predict support?
#Do burger contrasts predict support?
modA.9 <- lmer(Behav ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28169.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5456 -0.4179 0.0521 0.4301 3.3434
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 449.2 21.19
## Residual 431.8 20.78
## Number of obs: 3008, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.4847 0.7747 1001.8181 72.908 < 2e-16 ***
## C1 -6.4914 0.8047 2201.0504 -8.066 1.18e-15 ***
## C2 -6.1986 1.2296 2292.4556 -5.041 4.99e-07 ***
## C3 5.1803 1.2795 2341.2427 4.049 5.32e-05 ***
## C4 0.2924 1.4180 2293.3067 0.206 0.836669
## C5 -5.1045 1.4401 2316.5191 -3.545 0.000401 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.003
## C2 -0.020 0.006
## C3 -0.007 -0.057 0.027
## C4 -0.017 -0.063 0.051 0.000
## C5 -0.014 0.067 -0.029 0.064 0.074
tab_model(modA.9,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
56.48
|
0.77
|
54.97 – 58.00
|
72.91
|
<0.001
|
|
C1
|
-6.49
|
0.80
|
-8.07 – -4.91
|
-8.07
|
<0.001
|
|
C2
|
-6.20
|
1.23
|
-8.61 – -3.79
|
-5.04
|
<0.001
|
|
C3
|
5.18
|
1.28
|
2.67 – 7.69
|
4.05
|
<0.001
|
|
C4
|
0.29
|
1.42
|
-2.49 – 3.07
|
0.21
|
0.837
|
|
C5
|
-5.10
|
1.44
|
-7.93 – -2.28
|
-3.54
|
<0.001
|
|
Random Effects
|
|
σ2
|
431.78
|
|
τ00 id
|
449.18
|
|
ICC
|
0.51
|
|
N id
|
1003
|
|
Observations
|
3008
|
|
Marginal R2 / Conditional R2
|
0.022 / 0.521
|
confint(modA.9)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 19.962311 22.470893
## .sigma 20.130427 21.412665
## (Intercept) 54.966128 58.003963
## C1 -8.067509 -4.915172
## C2 -8.606936 -3.790127
## C3 2.674390 7.686242
## C4 -2.484845 3.069674
## C5 -7.924868 -2.283917
Q.2: Does naturalness predict support, over and above burger
contrasts?
#Does naturalness predict support?
modA.10 <- lmer(Behav ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25168.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8393 -0.4549 0.0449 0.4905 3.1256
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 401.6 20.04
## Residual 413.7 20.34
## Number of obs: 2697, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 54.86608 0.76821 1093.90157 71.421 < 2e-16 ***
## Naturalness.c 0.38839 0.02155 2147.25232 18.023 < 2e-16 ***
## C1 -3.20872 0.91118 1942.24470 -3.521 0.000439 ***
## C2 0.67094 1.26579 1984.39275 0.530 0.596131
## C3 7.17041 1.41061 2064.02901 5.083 4.05e-07 ***
## C4 5.42802 1.91507 2091.24654 2.834 0.004636 **
## C5 -12.72932 1.47319 1998.79491 -8.641 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. C1 C2 C3 C4
## Naturlnss.c -0.119
## C1 -0.137 0.206
## C2 -0.058 0.298 0.076
## C3 -0.126 0.085 0.174 0.056
## C4 -0.195 0.157 0.294 0.094 0.310
## C5 0.011 -0.284 0.018 -0.114 0.048 0.034
tab_model(modA.10,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
54.87
|
0.77
|
53.36 – 56.37
|
71.42
|
<0.001
|
|
Naturalness c
|
0.39
|
0.02
|
0.35 – 0.43
|
18.02
|
<0.001
|
|
C1
|
-3.21
|
0.91
|
-5.00 – -1.42
|
-3.52
|
<0.001
|
|
C2
|
0.67
|
1.27
|
-1.81 – 3.15
|
0.53
|
0.596
|
|
C3
|
7.17
|
1.41
|
4.40 – 9.94
|
5.08
|
<0.001
|
|
C4
|
5.43
|
1.92
|
1.67 – 9.18
|
2.83
|
0.005
|
|
C5
|
-12.73
|
1.47
|
-15.62 – -9.84
|
-8.64
|
<0.001
|
|
Random Effects
|
|
σ2
|
413.74
|
|
τ00 id
|
401.64
|
|
ICC
|
0.49
|
|
N id
|
1003
|
|
Observations
|
2697
|
|
Marginal R2 / Conditional R2
|
0.097 / 0.542
|
confint(modA.10)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 18.8126988 21.3089627
## .sigma 19.6435140 21.0107228
## (Intercept) 53.3606674 56.3721977
## Naturalness.c 0.3461825 0.4305892
## C1 -4.9927247 -1.4246943
## C2 -1.8076880 3.1496554
## C3 4.4085408 9.9322837
## C4 1.6785146 9.1775222
## C5 -15.6137199 -9.8449348
Q.3: Does perceived benefit predict support, over and above
perceived risk, naturalness, and burger contrasts?
modA.11 <- lmer(Behav ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 +
## C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 23048.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8391 -0.3659 0.0895 0.4452 4.9929
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 79.89 8.938
## Residual 242.68 15.578
## Number of obs: 2691, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.20126 0.43445 1056.32411 129.362 < 2e-16 ***
## Naturalness.c 0.09444 0.01706 2429.95086 5.534 3.46e-08 ***
## Risk.c -0.05006 0.01401 2450.02011 -3.573 0.000359 ***
## Benefit.c 0.80715 0.01436 2383.79904 56.202 < 2e-16 ***
## C1 -0.26934 0.68067 2093.89990 -0.396 0.692367
## C2 1.77549 0.93697 2142.81124 1.895 0.058238 .
## C3 -0.32842 1.04699 2285.11302 -0.314 0.753795
## C4 9.10408 1.40188 2333.04733 6.494 1.02e-10 ***
## C5 -2.73598 1.11153 2188.32855 -2.461 0.013914 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Risk.c Bnft.c C1 C2 C3 C4
## Naturlnss.c -0.167
## Risk.c -0.045 0.283
## Benefit.c 0.040 -0.214 0.226
## C1 -0.171 0.146 -0.057 0.055
## C2 -0.063 0.263 -0.013 0.010 0.067
## C3 -0.162 0.136 0.097 -0.092 0.159 0.040
## C4 -0.241 0.122 -0.029 0.037 0.298 0.076 0.285
## C5 0.045 -0.335 -0.143 0.110 0.016 -0.104 -0.012 0.014
tab_model(modA.11,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
56.20
|
0.43
|
55.35 – 57.05
|
129.36
|
<0.001
|
|
Naturalness c
|
0.09
|
0.02
|
0.06 – 0.13
|
5.53
|
<0.001
|
|
Risk c
|
-0.05
|
0.01
|
-0.08 – -0.02
|
-3.57
|
<0.001
|
|
Benefit c
|
0.81
|
0.01
|
0.78 – 0.84
|
56.20
|
<0.001
|
|
C1
|
-0.27
|
0.68
|
-1.60 – 1.07
|
-0.40
|
0.692
|
|
C2
|
1.78
|
0.94
|
-0.06 – 3.61
|
1.89
|
0.058
|
|
C3
|
-0.33
|
1.05
|
-2.38 – 1.72
|
-0.31
|
0.754
|
|
C4
|
9.10
|
1.40
|
6.36 – 11.85
|
6.49
|
<0.001
|
|
C5
|
-2.74
|
1.11
|
-4.92 – -0.56
|
-2.46
|
0.014
|
|
Random Effects
|
|
σ2
|
242.68
|
|
τ00 id
|
79.89
|
|
ICC
|
0.25
|
|
N id
|
1002
|
|
Observations
|
2691
|
|
Marginal R2 / Conditional R2
|
0.620 / 0.714
|
confint(modA.11)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 7.96639981 9.87924404
## .sigma 15.02983125 16.10015419
## (Intercept) 55.34990497 57.05201768
## Naturalness.c 0.06103335 0.12784468
## Risk.c -0.07812545 -0.02216429
## Benefit.c 0.77678432 0.83715971
## C1 -1.60166267 1.06306171
## C2 -0.05880171 3.61048875
## C3 -2.37960399 1.72196700
## C4 6.36006908 11.84832783
## C5 -4.91198833 -0.56030197
Q.4: Does perceived familiarity/understanding predict support, over
and above perceived benefit, risk, naturalness, and burger
contrasts?
#How does perceived benefit and naturalness predict behavioral intent?
modA.12 <- lmer(Behav ~ Naturalness.c + Risk.c + Benefit.c + FR.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Naturalness.c + Risk.c + Benefit.c + FR.c + C1 + C2 +
## C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 18524.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.8284 -0.4074 0.0962 0.4808 4.6953
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 37.96 6.161
## Residual 205.86 14.348
## Number of obs: 2226, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.73467 0.48133 1724.49406 117.870 < 2e-16 ***
## Naturalness.c 0.09145 0.01681 2127.05776 5.439 5.97e-08 ***
## Risk.c -0.06404 0.01301 1935.82128 -4.920 9.38e-07 ***
## Benefit.c 0.79644 0.01484 2084.54177 53.669 < 2e-16 ***
## FR.c 0.18381 0.01504 2180.78555 12.222 < 2e-16 ***
## C1 -0.33178 0.90432 2044.61149 -0.367 0.71374
## C2 -1.08858 1.24579 2146.28489 -0.874 0.38232
## C3 -1.69893 1.30566 2104.13184 -1.301 0.19333
## C4 6.48938 2.14025 1902.17336 3.032 0.00246 **
## C5 -1.51689 1.02050 1859.29135 -1.486 0.13734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Risk.c Bnft.c FR.c C1 C2 C3 C4
## Naturlnss.c -0.137
## Risk.c -0.038 0.255
## Benefit.c 0.021 -0.154 0.198
## FR.c -0.001 -0.064 -0.029 -0.413
## C1 -0.413 0.106 -0.024 0.029 0.040
## C2 0.145 0.226 0.012 0.107 -0.252 0.234
## C3 -0.511 0.091 0.083 -0.073 0.044 0.533 0.009
## C4 -0.605 0.073 -0.008 0.040 -0.014 0.650 0.032 0.672
## C5 0.042 -0.361 -0.142 0.067 0.087 0.006 -0.108 -0.011 0.003
tab_model(modA.12,
show.stat = T, show.se = T)
|
|
Behav
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
56.73
|
0.48
|
55.79 – 57.68
|
117.87
|
<0.001
|
|
Naturalness c
|
0.09
|
0.02
|
0.06 – 0.12
|
5.44
|
<0.001
|
|
Risk c
|
-0.06
|
0.01
|
-0.09 – -0.04
|
-4.92
|
<0.001
|
|
Benefit c
|
0.80
|
0.01
|
0.77 – 0.83
|
53.67
|
<0.001
|
|
FR c
|
0.18
|
0.02
|
0.15 – 0.21
|
12.22
|
<0.001
|
|
C1
|
-0.33
|
0.90
|
-2.11 – 1.44
|
-0.37
|
0.714
|
|
C2
|
-1.09
|
1.25
|
-3.53 – 1.35
|
-0.87
|
0.382
|
|
C3
|
-1.70
|
1.31
|
-4.26 – 0.86
|
-1.30
|
0.193
|
|
C4
|
6.49
|
2.14
|
2.29 – 10.69
|
3.03
|
0.002
|
|
C5
|
-1.52
|
1.02
|
-3.52 – 0.48
|
-1.49
|
0.137
|
|
Random Effects
|
|
σ2
|
205.86
|
|
τ00 id
|
37.96
|
|
ICC
|
0.16
|
|
N id
|
1002
|
|
Observations
|
2226
|
|
Marginal R2 / Conditional R2
|
0.721 / 0.764
|
confint(modA.12)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 4.94048544 7.21599509
## .sigma 13.76295121 14.90318247
## (Intercept) 55.79290406 57.67654079
## Naturalness.c 0.05855217 0.12434102
## Risk.c -0.08996558 -0.03822462
## Benefit.c 0.76680555 0.82597144
## FR.c 0.15438087 0.21322815
## C1 -2.10110693 1.43745142
## C2 -3.52589895 1.34896348
## C3 -4.25334137 0.85552522
## C4 2.30215141 10.67716744
## C5 -3.51618886 0.48046518