library(ioanalysis)Loading required package: ggplot2
Loading required package: plot3D
Loading required package: lpSolve
library(ioanalysis)Loading required package: ggplot2
Loading required package: plot3D
Loading required package: lpSolve
b001<-c(72,13,8,58,60,22,24,91,43,92)
b002<-c(5,1,28,64,94,65,96,15,76,30)
b003<-c(53,7,47,25,93,16,90,79,81,23)
b004<-c(46,41,66,96,90,49,2,29,35,66)
b005<-c(73,40,37,87,29,47,95,97,46,1)
b006<-c(55,67,26,95,10,16,96,67,70,99)
b007<-c(73,24,19,9,65,52,82,79,77,87)
b008<-c(96,63,46,97,68,36,47,40,76,61)
b009<-c(28,32,44,86,22,68,45,89,6,48)
b010<-c(81,62,91,64,52,100,58,94,65,17)
Z <-matrix(rbind(b001,b002,b003,b004,b005,b006,b007,b008,b009,b010), ncol=10)###Label Matriks Transaksi
region <- c(rep("Sulawesi Selatan",5),rep("Jawa Timur",5))
sector <- c("Pertanian","Perikanan","Industri","Pemerintahan","Jasa")
sector <- c(sector,sector)
id <- rbind(region,sector)
blank <- matrix(NA, ncol = 2, nrow = 2)
Z <- rbind( cbind(blank, id), cbind(t(id), Z))V<-matrix(c(
297,284,126,196,179,211,132,147,141,259,
247,106,107,103,280,293,183,264,272,221,
173,266,100,199,191,119,251,238,286,227), ncol=10, byrow=TRUE)
label <- matrix(c("Upah", "Pendapatan Pemilik", "Pajak Tak Langsung"),
ncol = 1)
blank <- matrix(NA, ncol = 1, nrow = 3)
V <- cbind(blank, label, V) f<-matrix(c(
177,296,236,169,285,52,208,64,
199,167,23,63,105,59,87,166,
270,35,51,97,218,223,155,106,
71,117,202,255,4,261,200,156,
153,18,24,108,91,123,60,267,
37,22,48,102,12,286,196,179,
241,147,165,26,150,209,269,228,
154,142,141,84,139,29,290,164,
299,211,289,219,284,78,203,122,
297,291,14,185,215,229,89,6),nrow =10,byrow=TRUE)
label <- c("Rumahtangga", "Pemerintah", "Investasi", "Ekspor")
label <- matrix(c(label, label), nrow = 1)
id <- rbind(region[c(1:4,6:9)], label)
f <- rbind(id, f)one.10 <- matrix(rep(1, 10), ncol = 1)
one.8 <- matrix(rep(1, 8), ncol = 1)
X <- matrix(as.numeric(Z[3:12, 3:12]), nrow = 10)%*%one.10 +
matrix(as.numeric(f[3:12,]), nrow = 10)%*%one.8
label <- matrix(c(NA,"Total"))
X <- rbind(label, X)M <- matrix(NA, nrow = 1, ncol = 12)
one.3 <- matrix(rep(1, 3), ncol = 1)
M[1, 3:12] <- t(one.10)%*%matrix(as.numeric(Z[3:12, 3:12]), nrow = 10) +
t(one.3)%*%matrix(as.numeric(V[,3:12]), nrow = 3)
M[1, 2] <- "Impor"###Satukan semuanya
blank <- matrix(NA, nrow=5, ncol = 9)
holder <- cbind(f, X)
holder <- rbind(holder, blank)
hold <- rbind(Z, V, M, t(X))
ss.FullIOTable <- cbind(hold, holder)fV <- matrix(c(
21,22,55,27,33,77,
78,77,53,20,1,48), ncol=6, byrow=TRUE)
ss.FullIOTable[15:16, c(13:15, 17:19)] <- fVZ <- matrix(as.numeric(ss.FullIOTable[3:12, 3:12]), ncol = 10)
f <- matrix(as.numeric(ss.FullIOTable[3:12, c(13:15, 17:19)]), nrow = dim(Z)[1])
E <- matrix(as.numeric(ss.FullIOTable[3:12, c(16, 20)]), nrow = 10)
X <- matrix(as.numeric(ss.FullIOTable[3:12, 21]), ncol = 1)
V <- matrix(as.numeric(ss.FullIOTable[13:15, 3:12]), ncol = 10)
M <- as.numeric(ss.FullIOTable[16, 3:12])
fV <- matrix(as.numeric(ss.FullIOTable[15:16, c(13:15,17:19)]), nrow = 2)ss.IO <- as.inputoutput(Z = Z, RS_label = ss.FullIOTable[3:12, 1:2],
f = f, f_label = ss.FullIOTable[1:2, c(13:15, 17:19)],
E = E, E_label = ss.FullIOTable[1:2, c(16, 20)],
X = X,
V = V, V_label = ss.FullIOTable[13:15, 2],
M = M, M_label = ss.FullIOTable[16,2],
fV = fV, fV_label = ss.FullIOTable[15:16, 2])check.RS(ss.IO)[1] TRUE
###Analisis Keterkaitan
linkages(ss.IO, ES = NULL, regions = "all", sectors = "all", type = c("total"),
normalize = FALSE, intra.inter = FALSE)$`Sulawesi Selatan`
BL.tot FL.tot
Pertanian 1.435956 1.359417
Perikanan 1.386453 1.517649
Industri 1.360057 1.447335
Pemerintahan 1.563565 1.430537
Jasa 1.607494 1.574279
$`Jawa Timur`
BL.tot FL.tot
Pertanian 1.460790 1.586101
Perikanan 1.460265 1.413869
Industri 1.557731 1.515752
Pemerintahan 1.385242 1.319484
Jasa 1.381315 1.499344
###Total Ekspor
export.total(ss.IO) [,1]
[1,] 1050
[2,] 762
[3,] 1088
[4,] 1057
[5,] 935
[6,] 641
[7,] 997
[8,] 1055
[9,] 1352
[10,] 1143
###Total Impor
import.total(ss.IO) [,1]
[1,] 1299
[2,] 1006
[3,] 745
[4,] 1179
[5,] 1233
[6,] 1094
[7,] 1201
[8,] 1329
[9,] 1274
[10,] 1231
L1 <- leontief.inv(ss.IO, region = "Sulawesi Selatan")
# Otherwise
Z <- ss.IO$Z
X <- ss.IO$X
L2 <- leontief.inv(Z, X)
View(L1)
View(L2)###Sektor Kunci
sektor_kunci <- key.sector(ss.IO)
View(sektor_kunci)###-
extraction(ss.IO, ES = NULL, regions = 1, sectors = 1, type = "backward.total",
aggregate = FALSE, simultaneous = FALSE, normalize = FALSE) Pertanian
Sulawesi Selatan.Pertanian 668.4299
Sulawesi Selatan.Perikanan 373.1259
Sulawesi Selatan.Industri 387.9606
Sulawesi Selatan.Pemerintahan 600.7683
Sulawesi Selatan.Jasa 584.2872
Jawa Timur.Pertanian 480.8720
Jawa Timur.Perikanan 463.1370
Jawa Timur.Industri 497.8907
Jawa Timur.Pemerintahan 495.6907
Jawa Timur.Jasa 444.4978