Input-Output

Author

Yaya Nurmadina (A032221007)

Analisis Input Output

library(ioanalysis)
Loading required package: ggplot2
Loading required package: plot3D
Loading required package: lpSolve

Membangun Object Input Output

Matriks Z

b001<-c(72,13,8,58,60,22,24,91,43,92)
b002<-c(5,1,28,64,94,65,96,15,76,30)
b003<-c(53,7,47,25,93,16,90,79,81,23)
b004<-c(46,41,66,96,90,49,2,29,35,66)
b005<-c(73,40,37,87,29,47,95,97,46,1)
b006<-c(55,67,26,95,10,16,96,67,70,99)
b007<-c(73,24,19,9,65,52,82,79,77,87)
b008<-c(96,63,46,97,68,36,47,40,76,61)
b009<-c(28,32,44,86,22,68,45,89,6,48)
b010<-c(81,62,91,64,52,100,58,94,65,17)
Z <-matrix(rbind(b001,b002,b003,b004,b005,b006,b007,b008,b009,b010), ncol=10)

###Label Matriks Transaksi

region <- c(rep("Sulawesi Selatan",5),rep("Jawa Timur",5))
sector <- c("Pertanian","Perikanan","Industri","Pemerintahan","Jasa")
sector <- c(sector,sector)
id <- rbind(region,sector)
blank <- matrix(NA, ncol = 2, nrow = 2)
Z <- rbind( cbind(blank, id), cbind(t(id), Z))

Matriks Nilai Tambah

V<-matrix(c(
297,284,126,196,179,211,132,147,141,259,
247,106,107,103,280,293,183,264,272,221,
173,266,100,199,191,119,251,238,286,227), ncol=10, byrow=TRUE)
label <- matrix(c("Upah", "Pendapatan Pemilik", "Pajak Tak Langsung"),
                ncol = 1)
blank <- matrix(NA, ncol = 1, nrow = 3)
V <- cbind(blank, label, V)

Matriks Permintaan Akhir

 f<-matrix(c(
177,296,236,169,285,52,208,64,
199,167,23,63,105,59,87,166,
270,35,51,97,218,223,155,106,
71,117,202,255,4,261,200,156,
153,18,24,108,91,123,60,267,
37,22,48,102,12,286,196,179,
241,147,165,26,150,209,269,228,
154,142,141,84,139,29,290,164,
299,211,289,219,284,78,203,122,
297,291,14,185,215,229,89,6),nrow =10,byrow=TRUE)
label <- c("Rumahtangga", "Pemerintah", "Investasi", "Ekspor")
label <- matrix(c(label, label), nrow = 1)
id <- rbind(region[c(1:4,6:9)], label)
f <- rbind(id, f)

Matriks Kolom Total Produksi

one.10 <- matrix(rep(1, 10), ncol = 1)
one.8 <- matrix(rep(1, 8), ncol = 1)
X <- matrix(as.numeric(Z[3:12, 3:12]), nrow = 10)%*%one.10 + 
     matrix(as.numeric(f[3:12,]), nrow = 10)%*%one.8
label <- matrix(c(NA,"Total"))
X <- rbind(label, X)

Matriks Kolom Impor (dalam hal ini adalah residual)

M <- matrix(NA, nrow = 1, ncol = 12)
one.3 <- matrix(rep(1, 3), ncol = 1)
M[1, 3:12] <- t(one.10)%*%matrix(as.numeric(Z[3:12, 3:12]), nrow = 10) + 
              t(one.3)%*%matrix(as.numeric(V[,3:12]), nrow = 3)
M[1, 2] <- "Impor"

###Satukan semuanya

blank <- matrix(NA, nrow=5, ncol = 9)
holder <- cbind(f, X)
holder <- rbind(holder, blank)
hold <- rbind(Z, V, M, t(X))
ss.FullIOTable <- cbind(hold, holder)

Membuat Matriks fV dan memasukkan ke Dalam Tabel IO

fV <- matrix(c(
21,22,55,27,33,77,
78,77,53,20,1,48), ncol=6, byrow=TRUE)
ss.FullIOTable[15:16, c(13:15, 17:19)] <- fV

Memasukkan Data menjadi Objek IO

Z <- matrix(as.numeric(ss.FullIOTable[3:12, 3:12]), ncol = 10)
f <- matrix(as.numeric(ss.FullIOTable[3:12, c(13:15, 17:19)]), nrow = dim(Z)[1])
E <- matrix(as.numeric(ss.FullIOTable[3:12, c(16, 20)]), nrow = 10)
X <- matrix(as.numeric(ss.FullIOTable[3:12, 21]), ncol = 1)
V <- matrix(as.numeric(ss.FullIOTable[13:15, 3:12]), ncol = 10)
M <- as.numeric(ss.FullIOTable[16, 3:12])
fV <- matrix(as.numeric(ss.FullIOTable[15:16, c(13:15,17:19)]), nrow = 2)
ss.IO <- as.inputoutput(Z = Z, RS_label = ss.FullIOTable[3:12, 1:2],
                         f = f, f_label = ss.FullIOTable[1:2, c(13:15, 17:19)],
                         E = E, E_label = ss.FullIOTable[1:2, c(16, 20)],
                         X = X,
                         V = V, V_label = ss.FullIOTable[13:15, 2],
                         M = M, M_label = ss.FullIOTable[16,2],
                         fV = fV, fV_label = ss.FullIOTable[15:16, 2])

Analisi Input Output

Memeriksa kesamaan Sektor

check.RS(ss.IO)
[1] TRUE

###Analisis Keterkaitan

linkages(ss.IO, ES = NULL, regions = "all", sectors = "all", type = c("total"),
         normalize = FALSE, intra.inter = FALSE)
$`Sulawesi Selatan`
               BL.tot   FL.tot
Pertanian    1.435956 1.359417
Perikanan    1.386453 1.517649
Industri     1.360057 1.447335
Pemerintahan 1.563565 1.430537
Jasa         1.607494 1.574279

$`Jawa Timur`
               BL.tot   FL.tot
Pertanian    1.460790 1.586101
Perikanan    1.460265 1.413869
Industri     1.557731 1.515752
Pemerintahan 1.385242 1.319484
Jasa         1.381315 1.499344

###Total Ekspor

export.total(ss.IO)
      [,1]
 [1,] 1050
 [2,]  762
 [3,] 1088
 [4,] 1057
 [5,]  935
 [6,]  641
 [7,]  997
 [8,] 1055
 [9,] 1352
[10,] 1143

###Total Impor

import.total(ss.IO)
      [,1]
 [1,] 1299
 [2,] 1006
 [3,]  745
 [4,] 1179
 [5,] 1233
 [6,] 1094
 [7,] 1201
 [8,] 1329
 [9,] 1274
[10,] 1231
L1 <- leontief.inv(ss.IO, region = "Sulawesi Selatan")

# Otherwise
Z <- ss.IO$Z
X <- ss.IO$X
L2 <- leontief.inv(Z, X)
View(L1)

View(L2)

###Sektor Kunci

sektor_kunci <- key.sector(ss.IO)
View(sektor_kunci)

###-

extraction(ss.IO, ES = NULL, regions = 1, sectors = 1, type = "backward.total",
aggregate = FALSE, simultaneous = FALSE, normalize = FALSE)
                              Pertanian
Sulawesi Selatan.Pertanian     668.4299
Sulawesi Selatan.Perikanan     373.1259
Sulawesi Selatan.Industri      387.9606
Sulawesi Selatan.Pemerintahan  600.7683
Sulawesi Selatan.Jasa          584.2872
Jawa Timur.Pertanian           480.8720
Jawa Timur.Perikanan           463.1370
Jawa Timur.Industri            497.8907
Jawa Timur.Pemerintahan        495.6907
Jawa Timur.Jasa                444.4978