Spline Rata-rata lama sekolah
mod_spline1 = lm(Y ~ bs(X1, knots=attr(bs(data21$X1, df=6),"knots"))
,data=data21)
summary(mod_spline1)
##
## Call:
## lm(formula = Y ~ bs(X1, knots = attr(bs(data21$X1, df = 6), "knots")),
## data = data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.0522 -1.8187 0.1209 2.1327 7.7550
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 36.353 2.489
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))1 11.365 4.604
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))2 29.129 2.373
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))3 32.876 2.587
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))4 36.484 2.586
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))5 48.890 3.025
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))6 47.002 3.235
## t value Pr(>|t|)
## (Intercept) 14.608 <2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))1 2.469 0.0139 *
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))2 12.278 <2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))3 12.706 <2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))4 14.110 <2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))5 16.161 <2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))6 14.528 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.986 on 507 degrees of freedom
## Multiple R-squared: 0.7912, Adjusted R-squared: 0.7888
## F-statistic: 320.3 on 6 and 507 DF, p-value: < 2.2e-16
Spline Umur Harapan Hidup
mod_spline2 = lm(Y ~ bs(X2, knots=attr(bs(data21$X2, df=6),"knots"))
,data=data21)
summary(mod_spline2)
##
## Call:
## lm(formula = Y ~ bs(X2, knots = attr(bs(data21$X2, df = 6), "knots")),
## data = data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.1574 -2.2946 0.2324 3.0045 12.9395
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 33.596 4.056
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))1 38.090 6.553
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))2 23.486 3.880
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))3 37.763 4.224
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))4 40.459 4.126
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))5 45.070 4.699
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))6 44.500 4.510
## t value Pr(>|t|)
## (Intercept) 8.284 1.07e-15 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))1 5.812 1.09e-08 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))2 6.053 2.77e-09 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))3 8.940 < 2e-16 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))4 9.805 < 2e-16 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))5 9.592 < 2e-16 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))6 9.866 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.498 on 507 degrees of freedom
## Multiple R-squared: 0.5264, Adjusted R-squared: 0.5208
## F-statistic: 93.91 on 6 and 507 DF, p-value: < 2.2e-16
Spline PDRB atas Dasar Harga Konstan
mod_spline3 = lm(Y ~ bs(X3, knots=attr(bs(data21$X3, df=6),"knots"))
,data=data21)
summary(mod_spline3)
##
## Call:
## lm(formula = Y ~ bs(X3, knots = attr(bs(data21$X3, df = 6), "knots")),
## data = data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.0126 -3.1441 -0.4077 2.7474 16.2074
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 48.794 1.958
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))1 16.711 2.782
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))2 22.061 1.893
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))3 22.228 2.068
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))4 33.253 3.680
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))5 29.557 7.061
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))6 34.925 4.207
## t value Pr(>|t|)
## (Intercept) 24.914 < 2e-16 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))1 6.006 3.62e-09 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))2 11.652 < 2e-16 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))3 10.751 < 2e-16 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))4 9.035 < 2e-16 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))5 4.186 3.35e-05 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))6 8.302 9.38e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.873 on 507 degrees of freedom
## Multiple R-squared: 0.444, Adjusted R-squared: 0.4374
## F-statistic: 67.49 on 6 and 507 DF, p-value: < 2.2e-16
Spline Rata-rata lama sekolah, Umur Harapan Hidup, dan PDRB atas
Dasar Harga Konstan
mod_spline123 = lm(Y ~ bs(X1, knots=attr(bs(data21$X1, df=6),"knots"))+
bs(X2, knots=attr(bs(data21$X2, df=6),"knots"))+
bs(X3, knots=attr(bs(data21$X3, df=6),"knots"))
,data=data21)
summary(mod_spline123)
##
## Call:
## lm(formula = Y ~ bs(X1, knots = attr(bs(data21$X1, df = 6), "knots")) +
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots")) + bs(X3,
## knots = attr(bs(data21$X3, df = 6), "knots")), data = data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5191 -0.9903 -0.0339 1.0765 4.9299
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 31.3889 1.5344
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))1 13.0087 3.2503
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))2 19.8961 1.6866
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))3 25.4753 1.9504
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))4 28.8773 1.8735
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))5 36.0650 2.1424
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))6 38.0093 2.1548
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))1 2.6330 3.1604
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))2 5.2988 1.8043
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))3 8.1963 2.1138
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))4 9.3846 1.9986
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))5 12.0766 2.2395
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))6 13.1677 2.1393
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))1 2.1091 0.9720
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))2 4.7923 0.7286
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))3 5.8150 0.7787
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))4 5.5232 1.2816
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))5 8.2573 2.3058
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))6 6.9560 1.4398
## t value Pr(>|t|)
## (Intercept) 20.456 < 2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))1 4.002 7.23e-05 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))2 11.797 < 2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))3 13.062 < 2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))4 15.414 < 2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))5 16.834 < 2e-16 ***
## bs(X1, knots = attr(bs(data21$X1, df = 6), "knots"))6 17.639 < 2e-16 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))1 0.833 0.405192
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))2 2.937 0.003471 **
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))3 3.878 0.000120 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))4 4.696 3.45e-06 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))5 5.392 1.08e-07 ***
## bs(X2, knots = attr(bs(data21$X2, df = 6), "knots"))6 6.155 1.55e-09 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))1 2.170 0.030498 *
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))2 6.577 1.22e-10 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))3 7.468 3.71e-13 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))4 4.310 1.97e-05 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))5 3.581 0.000376 ***
## bs(X3, knots = attr(bs(data21$X3, df = 6), "knots"))6 4.831 1.81e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.562 on 495 degrees of freedom
## Multiple R-squared: 0.9442, Adjusted R-squared: 0.9422
## F-statistic: 465.6 on 18 and 495 DF, p-value: < 2.2e-16
sc_data21 <- data.frame(scale(data21))
sc_mod_spline123 = lm(Y ~ bs(X1, knots=attr(bs(sc_data21$X1, df=6),"knots"))+
bs(X2, knots=attr(bs(sc_data21$X2, df=6),"knots"))+
bs(X3, knots=attr(bs(sc_data21$X3, df=6),"knots"))
,data=sc_data21)
summary(sc_mod_spline123)
##
## Call:
## lm(formula = Y ~ bs(X1, knots = attr(bs(sc_data21$X1, df = 6),
## "knots")) + bs(X2, knots = attr(bs(sc_data21$X2, df = 6),
## "knots")) + bs(X3, knots = attr(bs(sc_data21$X3, df = 6),
## "knots")), data = sc_data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.69556 -0.15242 -0.00521 0.16570 0.75879
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -5.9316 0.2362
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))1 2.0022 0.5003
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))2 3.0623 0.2596
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))3 3.9211 0.3002
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))4 4.4447 0.2884
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))5 5.5510 0.3297
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))6 5.8503 0.3317
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))1 0.4053 0.4864
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))2 0.8156 0.2777
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))3 1.2615 0.3253
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))4 1.4444 0.3076
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))5 1.8588 0.3447
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))6 2.0267 0.3293
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))1 0.3246 0.1496
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))2 0.7376 0.1121
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))3 0.8950 0.1199
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))4 0.8501 0.1973
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))5 1.2709 0.3549
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))6 1.0706 0.2216
## t value Pr(>|t|)
## (Intercept) -25.115 < 2e-16 ***
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))1 4.002 7.23e-05 ***
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))2 11.797 < 2e-16 ***
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))3 13.062 < 2e-16 ***
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))4 15.414 < 2e-16 ***
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))5 16.834 < 2e-16 ***
## bs(X1, knots = attr(bs(sc_data21$X1, df = 6), "knots"))6 17.639 < 2e-16 ***
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))1 0.833 0.405192
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))2 2.937 0.003471 **
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))3 3.878 0.000120 ***
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))4 4.696 3.45e-06 ***
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))5 5.392 1.08e-07 ***
## bs(X2, knots = attr(bs(sc_data21$X2, df = 6), "knots"))6 6.155 1.55e-09 ***
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))1 2.170 0.030498 *
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))2 6.577 1.22e-10 ***
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))3 7.468 3.71e-13 ***
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))4 4.310 1.97e-05 ***
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))5 3.581 0.000376 ***
## bs(X3, knots = attr(bs(sc_data21$X3, df = 6), "knots"))6 4.831 1.81e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2404 on 495 degrees of freedom
## Multiple R-squared: 0.9442, Adjusted R-squared: 0.9422
## F-statistic: 465.6 on 18 and 495 DF, p-value: < 2.2e-16