library(FrF2)
## Warning: package 'FrF2' was built under R version 4.2.2
## Loading required package: DoE.base
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
design_1<- FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
design_1
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2
aliasprint(design_1)
## $legend
## [1] A=A B=B C=C D=D
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CD AC=BD AD=BC
Observation_1<- c(7.037,16.867,13.876,17.273,11.846,4.368,9.360,15.653)
design_2<- add.response(design_1,Observation_1)
design_2
##    A  B  C  D Observation_1
## 1 -1 -1 -1 -1         7.037
## 2  1 -1 -1  1        16.867
## 3 -1  1 -1  1        13.876
## 4  1  1 -1 -1        17.273
## 5 -1 -1  1  1        11.846
## 6  1 -1  1 -1         4.368
## 7 -1  1  1 -1         9.360
## 8  1  1  1  1        15.653
## class=design, type= FrF2
DanielPlot(design_2,half = TRUE)

MEPlot(design_2,show.alias = TRUE)

Answer:From the daniel plot we can say that no factor is Significant.

Question 8.24

library(FrF2)
design_3<- FrF2(nfactors = 5, nruns = 16,blocks = 2, randomize = TRUE)
summary(design_3)
## Call:
## FrF2(nfactors = 5, nruns = 16, blocks = 2, randomize = TRUE)
## 
## Experimental design of type  FrF2.blocked 
## 16  runs
## blocked design with  2  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $`generators for design itself`
## [1] E=ABC
## 
## $`block generators`
## [1] ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE AC=BE AE=BC
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1         8.1.4      1 -1  1  1  1 -1
## 2      2         1.1.1      1 -1 -1 -1 -1 -1
## 3      3        15.1.8      1  1  1  1 -1  1
## 4      4         3.1.2      1 -1 -1  1 -1  1
## 5      5         6.1.3      1 -1  1 -1  1  1
## 6      6        13.1.7      1  1  1 -1 -1 -1
## 7      7        12.1.6      1  1 -1  1  1 -1
## 8      8        10.1.5      1  1 -1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9         9.2.5      2  1 -1 -1 -1  1
## 10     10         4.2.2      2 -1 -1  1  1  1
## 11     11        11.2.6      2  1 -1  1 -1 -1
## 12     12        16.2.8      2  1  1  1  1  1
## 13     13         2.2.1      2 -1 -1 -1  1 -1
## 14     14        14.2.7      2  1  1 -1  1 -1
## 15     15         5.2.3      2 -1  1 -1 -1  1
## 16     16         7.2.4      2 -1  1  1 -1 -1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
aliasprint(design_3)
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE AC=BE AE=BC
design_3
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1         8.1.4      1 -1  1  1  1 -1
## 2      2         1.1.1      1 -1 -1 -1 -1 -1
## 3      3        15.1.8      1  1  1  1 -1  1
## 4      4         3.1.2      1 -1 -1  1 -1  1
## 5      5         6.1.3      1 -1  1 -1  1  1
## 6      6        13.1.7      1  1  1 -1 -1 -1
## 7      7        12.1.6      1  1 -1  1  1 -1
## 8      8        10.1.5      1  1 -1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9         9.2.5      2  1 -1 -1 -1  1
## 10     10         4.2.2      2 -1 -1  1  1  1
## 11     11        11.2.6      2  1 -1  1 -1 -1
## 12     12        16.2.8      2  1  1  1  1  1
## 13     13         2.2.1      2 -1 -1 -1  1 -1
## 14     14        14.2.7      2  1  1 -1  1 -1
## 15     15         5.2.3      2 -1  1 -1 -1  1
## 16     16         7.2.4      2 -1  1  1 -1 -1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

From this we can see The block does not interfere with any of the main effects or two-factor interactions.

we can see the block is confounded with ABD

Question 8.25

library(FrF2)
design_4<- FrF2(nfactors = 7, nruns = 32, blocks = 4, randomize = TRUE)
summary(design_4)
## Call:
## FrF2(nfactors = 7, nruns = 32, blocks = 4, randomize = TRUE)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1        20.1.5      1  1 -1 -1  1  1  1 -1
## 2      2        29.1.8      1  1  1  1 -1 -1  1 -1
## 3      3         7.1.2      1 -1 -1  1  1 -1  1  1
## 4      4        22.1.6      1  1 -1  1 -1  1 -1  1
## 5      5        10.1.3      1 -1  1 -1 -1  1  1  1
## 6      6        27.1.7      1  1  1 -1  1 -1 -1  1
## 7      7         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 8      8        16.1.4      1 -1  1  1  1  1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9        21.2.6      2  1 -1  1 -1 -1 -1  1
## 10     10        15.2.4      2 -1  1  1  1 -1 -1 -1
## 11     11         9.2.3      2 -1  1 -1 -1 -1  1  1
## 12     12        19.2.5      2  1 -1 -1  1 -1  1 -1
## 13     13        28.2.7      2  1  1 -1  1  1 -1  1
## 14     14         8.2.2      2 -1 -1  1  1  1  1  1
## 15     15        30.2.8      2  1  1  1 -1  1  1 -1
## 16     16         2.2.1      2 -1 -1 -1 -1  1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 18     18        24.3.6      3  1 -1  1  1  1 -1 -1
## 19     19        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 20     20        18.3.5      3  1 -1 -1 -1  1  1  1
## 21     21         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 22     22        12.3.3      3 -1  1 -1  1  1  1 -1
## 23     23        14.3.4      3 -1  1  1 -1  1 -1  1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25        13.4.4      4 -1  1  1 -1 -1 -1  1
## 26     26        23.4.6      4  1 -1  1  1 -1 -1 -1
## 27     27        26.4.7      4  1  1 -1 -1  1 -1 -1
## 28     28        17.4.5      4  1 -1 -1 -1 -1  1  1
## 29     29        32.4.8      4  1  1  1  1  1  1  1
## 30     30         6.4.2      4 -1 -1  1 -1  1  1 -1
## 31     31        11.4.3      4 -1  1 -1  1 -1  1 -1
## 32     32         4.4.1      4 -1 -1 -1  1  1 -1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
design_4
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1        20.1.5      1  1 -1 -1  1  1  1 -1
## 2      2        29.1.8      1  1  1  1 -1 -1  1 -1
## 3      3         7.1.2      1 -1 -1  1  1 -1  1  1
## 4      4        22.1.6      1  1 -1  1 -1  1 -1  1
## 5      5        10.1.3      1 -1  1 -1 -1  1  1  1
## 6      6        27.1.7      1  1  1 -1  1 -1 -1  1
## 7      7         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 8      8        16.1.4      1 -1  1  1  1  1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9        21.2.6      2  1 -1  1 -1 -1 -1  1
## 10     10        15.2.4      2 -1  1  1  1 -1 -1 -1
## 11     11         9.2.3      2 -1  1 -1 -1 -1  1  1
## 12     12        19.2.5      2  1 -1 -1  1 -1  1 -1
## 13     13        28.2.7      2  1  1 -1  1  1 -1  1
## 14     14         8.2.2      2 -1 -1  1  1  1  1  1
## 15     15        30.2.8      2  1  1  1 -1  1  1 -1
## 16     16         2.2.1      2 -1 -1 -1 -1  1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 18     18        24.3.6      3  1 -1  1  1  1 -1 -1
## 19     19        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 20     20        18.3.5      3  1 -1 -1 -1  1  1  1
## 21     21         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 22     22        12.3.3      3 -1  1 -1  1  1  1 -1
## 23     23        14.3.4      3 -1  1  1 -1  1 -1  1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25        13.4.4      4 -1  1  1 -1 -1 -1  1
## 26     26        23.4.6      4  1 -1  1  1 -1 -1 -1
## 27     27        26.4.7      4  1  1 -1 -1  1 -1 -1
## 28     28        17.4.5      4  1 -1 -1 -1 -1  1  1
## 29     29        32.4.8      4  1  1  1  1  1  1  1
## 30     30         6.4.2      4 -1 -1  1 -1  1  1 -1
## 31     31        11.4.3      4 -1  1 -1  1 -1  1 -1
## 32     32         4.4.1      4 -1 -1 -1  1  1 -1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

Answer:Here there are no two factor interactions and main effects confounded with blocks

Question 8.28

library(FrF2)
design_5 <- FrF2(nfactors = 6,nruns = 16,generators = c("ABC","ACD"), randomize = FALSE)
design_5
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1 -1
## 4   1  1 -1 -1 -1  1
## 5  -1 -1  1 -1  1  1
## 6   1 -1  1 -1 -1 -1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1  1
## 12  1  1 -1  1 -1 -1
## 13 -1 -1  1  1  1 -1
## 14  1 -1  1  1 -1  1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2.generators
summary(design_5)
## Call:
## FrF2(nfactors = 6, nruns = 16, generators = c("ABC", "ACD"), 
##     randomize = FALSE)
## 
## Experimental design of type  FrF2.generators 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $generators
## [1] E=ABC F=ACD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE    AC=BE=DF AD=CF    AE=BC    AF=CD    BD=EF    BF=DE   
## 
## 
## The design itself:
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1 -1
## 4   1  1 -1 -1 -1  1
## 5  -1 -1  1 -1  1  1
## 6   1 -1  1 -1 -1 -1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1  1
## 12  1  1 -1  1 -1 -1
## 13 -1 -1  1  1  1 -1
## 14  1 -1  1  1 -1  1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2.generators
aliasprint(design_5)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE    AC=BE=DF AD=CF    AE=BC    AF=CD    BD=EF    BF=DE
Observation_2 <- c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.0110,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.0090,0.0250,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.0040,0.0147,0.0092,0.0226,0.0077,0.0060,0.0028,0.0158,0.0101,0.0126,0.0145,0.0110,0.0185,0.0020,0.0050,0.0030,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)

A.a <- rep(design_5$A,4)
B.a <- rep(design_5$B,4)
C.a <- rep(design_5$C,4)
D.a <- rep(design_5$D,4)
E.a <- rep(design_5$E,4)
F.a <- rep(design_5$F,4)
design_6 <- aov(Observation_2~A.a*B.a*C.a*D.a*E.a*F.a)
summary(design_6)
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## A.a          1 0.0002422 0.0002422  27.793 3.17e-06 ***
## B.a          1 0.0000053 0.0000053   0.614  0.43725    
## C.a          1 0.0005023 0.0005023  57.644 9.14e-10 ***
## D.a          1 0.0000323 0.0000323   3.712  0.05995 .  
## E.a          1 0.0001901 0.0001901  21.815 2.45e-05 ***
## F.a          1 0.0009602 0.0009602 110.192 5.05e-14 ***
## A.a:B.a      1 0.0000587 0.0000587   6.738  0.01249 *  
## A.a:C.a      1 0.0000803 0.0000803   9.218  0.00387 ** 
## B.a:C.a      1 0.0000527 0.0000527   6.053  0.01754 *  
## A.a:D.a      1 0.0000239 0.0000239   2.741  0.10431    
## B.a:D.a      1 0.0000849 0.0000849   9.739  0.00305 ** 
## C.a:D.a      1 0.0000622 0.0000622   7.139  0.01027 *  
## D.a:E.a      1 0.0000088 0.0000088   1.007  0.32062    
## A.a:B.a:D.a  1 0.0000000 0.0000000   0.005  0.94291    
## B.a:C.a:D.a  1 0.0000481 0.0000481   5.523  0.02293 *  
## Residuals   48 0.0004183 0.0000087                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##c) The variables A,C,E,F lamination temperature,lamination pressure,firing cycle temperature,firing dew point

##d)

sd<- c(24.418,20.976,4.083,25.025,22.410,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)

value <- aov(sd~A*B*C*D*E*F,data = design_5)
halfnormal(value,ME.partial = TRUE)
## 
## The following effects are completely aliased:
##  [1] A:E         B:E         C:E         A:F         B:F         C:F        
##  [7] D:F         E:F         A:B:C       A:C:D       A:B:E       A:C:E      
## [13] B:C:E       A:D:E       B:D:E       C:D:E       A:B:F       A:C:F      
## [19] B:C:F       A:D:F       B:D:F       C:D:F       A:E:F       B:E:F      
## [25] C:E:F       D:E:F       A:B:C:D     A:B:C:E     A:B:D:E     A:C:D:E    
## [31] B:C:D:E     A:B:C:F     A:B:D:F     A:C:D:F     B:C:D:F     A:B:E:F    
## [37] A:C:E:F     B:C:E:F     A:D:E:F     B:D:E:F     C:D:E:F     A:B:C:D:E  
## [43] A:B:C:D:F   A:B:C:E:F   A:B:D:E:F   A:C:D:E:F   B:C:D:E:F   A:B:C:D:E:F
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] B1 A1

d) as we can see that the process variables A&B affect the variability in camber measurements.

Question 8.40

library(FrF2)
design_8<- FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
y<- c(8,10,12,7,13,6,5,11)
Observation_3<- add.response(design_8,y)
summary(Observation_3)
## Call:
## FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] y
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D  y
## 1 -1 -1 -1 -1  8
## 2  1 -1 -1  1 10
## 3 -1  1 -1  1 12
## 4  1  1 -1 -1  7
## 5 -1 -1  1  1 13
## 6  1 -1  1 -1  6
## 7 -1  1  1 -1  5
## 8  1  1  1  1 11
## class=design, type= FrF2
A <- rep(c(-1,1),4)
B <- c(rep(-1,2),rep(1,2))
B <- rep(B,2)
C <- c(rep(-1,4),rep(1,4))
D<- A*B*C
system1<- aov(y~A*B*C*D)
coef(system1)
## (Intercept)           A           B           C           D         A:B 
##        9.00       -0.50       -0.25       -0.25        2.50        0.75 
##         A:C         B:C 
##        0.25       -0.50

Answers

A: 4 Factors

B: the resoultion is Four

C: A: -0.50 B: -0.25 C:-0.25 D:2.50 A:B 0.75 A:C 0.25 B:C -0.50

D : ABCD

Question 4.48

library(FrF2)
design_9<- FrF2(nfactors = 5,nruns = 8,generators = c("-ABC","BC"), randomize = FALSE)
design_9
##    A  B  C  D  E
## 1 -1 -1 -1  1  1
## 2  1 -1 -1 -1  1
## 3 -1  1 -1 -1 -1
## 4  1  1 -1  1 -1
## 5 -1 -1  1 -1 -1
## 6  1 -1  1  1 -1
## 7 -1  1  1  1  1
## 8  1  1  1 -1  1
## class=design, type= FrF2.generators
summary(design_9)
## Call:
## FrF2(nfactors = 5, nruns = 8, generators = c("-ABC", "BC"), randomize = FALSE)
## 
## Experimental design of type  FrF2.generators 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] D=-ABC E=BC  
## 
## 
## Alias structure:
## $main
## [1] A=-DE    B=CE     C=BE     D=-AE    E=-AD=BC
## 
## $fi2
## [1] AB=-CD AC=-BD
## 
## 
## The design itself:
##    A  B  C  D  E
## 1 -1 -1 -1  1  1
## 2  1 -1 -1 -1  1
## 3 -1  1 -1 -1 -1
## 4  1  1 -1  1 -1
## 5 -1 -1  1 -1 -1
## 6  1 -1  1  1 -1
## 7 -1  1  1  1  1
## 8  1  1  1 -1  1
## class=design, type= FrF2.generators
design.c <-fold.design(design_9)
aliasprint(design.c)
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E   
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=-CE    AC=-BE    AD=EF     AE=-BC=DF AF=DE     BD=-CF    BF=-CD

Answer:

A: -ABC

B: BC

C: If this design is folded over, the resolution of the combined design could be FOUR

Question 8.60

library(FrF2)
design_10 <- FrF2(nfactors = 7,resolution = 3, randomize = TRUE) 
design.c<- fold.design(design_10,column = 1)
design_10
##    A  B  C  D  E  F  G
## 1  1 -1  1 -1  1 -1 -1
## 2 -1 -1 -1  1  1  1 -1
## 3 -1  1 -1 -1  1 -1  1
## 4 -1  1  1 -1 -1  1 -1
## 5  1 -1 -1 -1 -1  1  1
## 6 -1 -1  1  1 -1 -1  1
## 7  1  1  1  1  1  1  1
## 8  1  1 -1  1 -1 -1 -1
## class=design, type= FrF2
design.c
##     A  B  C     fold  D  E  F  G
## 1   1 -1  1 original -1  1 -1 -1
## 2  -1 -1 -1 original  1  1  1 -1
## 3  -1  1 -1 original -1  1 -1  1
## 4  -1  1  1 original -1 -1  1 -1
## 5   1 -1 -1 original -1 -1  1  1
## 6  -1 -1  1 original  1 -1 -1  1
## 7   1  1  1 original  1  1  1  1
## 8   1  1 -1 original  1 -1 -1 -1
## 9  -1 -1  1   mirror -1  1 -1 -1
## 10  1 -1 -1   mirror  1  1  1 -1
## 11  1  1 -1   mirror -1  1 -1  1
## 12  1  1  1   mirror -1 -1  1 -1
## 13 -1 -1 -1   mirror -1 -1  1  1
## 14  1 -1  1   mirror  1 -1 -1  1
## 15 -1  1  1   mirror  1  1  1  1
## 16 -1  1 -1   mirror  1 -1 -1 -1
## class=design, type= FrF2.folded
aliasprint(design.c)
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG