================================================================================
NAMA MAHASISWA : MUHAMMAD FAQIH
NIM : 220605110069
MATA KULIAH : KALKULUS
DOSEN PENGAMPU : Prof. Dr. Suhartono, M.Kom
JURUSAN : TEKNIK INFORMATIKA
UNIVERSITAS : UIN MAULANA MALIK IBRAHIM MALANG
================================================================================
SATU ARGUMEN MENJADI DUA VARIABEL
library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
f1 <- makeFun(sin(x ^ 2) ~ x)
f2 <- makeFun(sin(x ^ 2) + 3 ~ x)
f3 <- makeFun(sin(x ^ 2) - 100 ~ x)
f1(1)
## [1] 0.841471
f2(1)
## [1] 3.841471
f3(1)
## [1] -99.15853
Mengesampingkan jika fungsi f1(x), f2(x), dan f3(x), masing masing berbeda ,tetapi mereka memiliki turunan yang sama.
df1 = D(f1(x) ~ x)
df2 = D(f2(x) ~ x)
df3 = D(f3(x) ~ x)
df1(1)
## [1] 1.080605
df2(1)
## [1] 1.080605
df3(1)
## [1] 1.080605
INTEGRAL
Turunannya menunjukkan bagaimana suatu fungsi berubah secara lokal. Anti-turunan mengakumulasi nilai-nilai lokal tersebut untuk menampilkan nilai global
df
## function (x, df1, df2, ncp, log = FALSE)
## {
## if (missing(ncp))
## .Call(C_df, x, df1, df2, log)
## else .Call(C_dnf, x, df1, df2, ncp, log)
## }
## <bytecode: 0x000001feb2501200>
## <environment: namespace:stats>
Operasi anti-turunan sedikit. Saat menggunakan antiD(), nama variabel fungsi diganti dengan dua argumen: nama asli (dalam contoh ini, x) dan konstanta C:
antiD(f(x) ~ x)
## function (x, C = 0)
## {
## F <- makeF(f(x))
## evalFun(F, x = x, .const = C)
## }
## <environment: 0x000001feb27bb658>
antiD(df(x) ~ x)
## function (x, C = 0)
## {
## F <- makeF(df(x))
## evalFun(F, x = x, .const = C)
## }
## <environment: 0x000001feb2b39f28>
Fungsi yang diintegrasikan dapat memiliki variabel atau parameter tambahan di luar variabel integrasi. Untuk mengevaluasi integral pasti, Kita perlu menentukan nilai untuk variabel tambahan tersebut.
Contoh, fungsi yang sangat penting dalam statistik dan fisika adalah Gaussian
gaussian <-
makeFun((1/sqrt(2*pi*sigma^2)) *
exp( -(x-mean)^2/(2*sigma^2)) ~ x,
mean=2, sigma=2.5)
slice_plot(gaussian(x) ~ x, domain(x = -5:10)) %>%
slice_plot(gaussian(x, mean=0, sigma=1) ~ x, color="purple")
DAFTAR PUSTAKA