8.2

library(FrF2)
obs <- c(7.037, 16.867, 13.876, 17.273, 11.846, 4.368, 9.360, 15.653)
des <- FrF2(nfactors = 4,resolution = 4,randomize = FALSE)
des <- add.response(des,obs)
summary(des)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] obs
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D    obs
## 1 -1 -1 -1 -1  7.037
## 2  1 -1 -1  1 16.867
## 3 -1  1 -1  1 13.876
## 4  1  1 -1 -1 17.273
## 5 -1 -1  1  1 11.846
## 6  1 -1  1 -1  4.368
## 7 -1  1  1 -1  9.360
## 8  1  1  1  1 15.653
## class=design, type= FrF2
DanielPlot(des,half=TRUE)

model <- aov(des)
summary(model)
## Number of observations used: 8 
## Formula:
## obs ~ (A + B + C + D)^2
##             Df Sum Sq Mean Sq
## A            1  18.13   18.13
## B            1  32.18   32.18
## C            1  23.89   23.89
## D            1  51.03   51.03
## A:B          1   6.73    6.73
## A:C          1  25.96   25.96
## A:D          1   0.30    0.30

Based on these results none of the effects seem to be significant.

8.24

des1 <- FrF2(nruns = 16, nfactors = 5,resolution = 5, randomize = FALSE, blocks = 2, alias.block.2fis = TRUE, alias.info = 3)
print(des1)
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1         5.1.1      1 -1  1 -1 -1 -1
## 2      2         6.1.2      1 -1  1 -1  1  1
## 3      3         7.1.3      1 -1  1  1 -1  1
## 4      4         8.1.4      1 -1  1  1  1 -1
## 5      5         9.1.5      1  1 -1 -1 -1 -1
## 6      6        10.1.6      1  1 -1 -1  1  1
## 7      7        11.1.7      1  1 -1  1 -1  1
## 8      8        12.1.8      1  1 -1  1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9         1.2.1      2 -1 -1 -1 -1  1
## 10     10         2.2.2      2 -1 -1 -1  1 -1
## 11     11         3.2.3      2 -1 -1  1 -1 -1
## 12     12         4.2.4      2 -1 -1  1  1  1
## 13     13        13.2.5      2  1  1 -1 -1  1
## 14     14        14.2.6      2  1  1 -1  1 -1
## 15     15        15.2.7      2  1  1  1 -1 -1
## 16     16        16.2.8      2  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
b <- design.info(design = des1)
print(b$aliased.with.blocks)
## [1] "AB"  "CDE"

Both AB and CDE interactions are confonded within the blocks.

8.25

des2 <- FrF2(nruns = 32, nfactors = 7,resolution = 4, randomize = TRUE, blocks = 4, alias.block.2fis = TRUE, block.old = FALSE, alias.info = 3)
print(des2)
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1        13.1.1      1 -1  1  1 -1 -1 -1 -1
## 2      2        16.1.4      1 -1  1  1  1  1 -1 -1
## 3      3        18.1.6      1  1 -1 -1 -1  1  1  1
## 4      4        15.1.3      1 -1  1  1  1 -1 -1  1
## 5      5        17.1.5      1  1 -1 -1 -1 -1  1 -1
## 6      6        14.1.2      1 -1  1  1 -1  1 -1  1
## 7      7        19.1.7      1  1 -1 -1  1 -1  1  1
## 8      8        20.1.8      1  1 -1 -1  1  1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9        21.2.5      2  1 -1  1 -1 -1 -1 -1
## 10     10        12.2.4      2 -1  1 -1  1  1  1 -1
## 11     11        10.2.2      2 -1  1 -1 -1  1  1  1
## 12     12        22.2.6      2  1 -1  1 -1  1 -1  1
## 13     13        24.2.8      2  1 -1  1  1  1 -1 -1
## 14     14        11.2.3      2 -1  1 -1  1 -1  1  1
## 15     15        23.2.7      2  1 -1  1  1 -1 -1  1
## 16     16         9.2.1      2 -1  1 -1 -1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17        28.3.8      3  1  1 -1  1  1 -1  1
## 18     18        27.3.7      3  1  1 -1  1 -1 -1 -1
## 19     19         6.3.2      3 -1 -1  1 -1  1  1 -1
## 20     20         5.3.1      3 -1 -1  1 -1 -1  1  1
## 21     21         8.3.4      3 -1 -1  1  1  1  1  1
## 22     22        25.3.5      3  1  1 -1 -1 -1 -1  1
## 23     23         7.3.3      3 -1 -1  1  1 -1  1 -1
## 24     24        26.3.6      3  1  1 -1 -1  1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25        32.4.8      4  1  1  1  1  1  1  1
## 26     26        31.4.7      4  1  1  1  1 -1  1 -1
## 27     27         2.4.2      4 -1 -1 -1 -1  1 -1 -1
## 28     28         4.4.4      4 -1 -1 -1  1  1 -1  1
## 29     29        30.4.6      4  1  1  1 -1  1  1 -1
## 30     30         1.4.1      4 -1 -1 -1 -1 -1 -1  1
## 31     31         3.4.3      4 -1 -1 -1  1 -1 -1 -1
## 32     32        29.4.5      4  1  1  1 -1 -1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
a <- design.info(design = des2)
print(a$aliased.with.blocks)
## [1] "AB"  "AC"  "AF"  "BC"  "BF"  "CF"  "DEG"

As these results shows, the two term interactions AB, AC, AF, BC, BF, CF, DEG, and the three term interaction DEG are confonded to the blocks.

8.28

a)

They used a \(2^{6-2}_{IV}\) design.

b)

des4 <- FrF2(nfactors = 6,resolution = 4,randomize = FALSE, alias.info = 3, alias.block.2fis = TRUE)
aliasprint(des4)
## $legend
##                         
## A=A B=B C=C D=D E=E F=F 
## 
## $aliases
##                                                                       
##  A=BCE=BDF = B=ACE=ADF = C=ABE=DEF = D=ABF=CEF = E=ABC=CDF = F=ABD=CDE
##  AB=CE=DF = AC=BE = AD=BF = AE=BC = AF=BD = CD=EF = CF=DE             
##  ACD=AEF=BCF=BDE = ACF=ADE=BCD=BEF