Membuat Objek Input dan Output

Paket Analysis

##install.packages("ioanalysis")
library(ioanalysis)
## Loading required package: ggplot2
## Loading required package: plot3D
## Loading required package: lpSolve
library(ggplot2)
library(plot3D)
library(lpSolve)

2.1 Buat Matriks Z

b001<-c(72,13,8,58,60,22,24,91,43,92)
b002<-c(5,1,28,64,94,65,96,15,76,30)
b003<-c(53,7,47,25,93,16,90,79,81,23)
b004<-c(46,41,66,96,90,49,2,29,35,66)
b005<-c(73,40,37,87,29,47,95,97,46,1)
b006<-c(55,67,26,95,10,16,96,67,70,99)
b007<-c(73,24,19,9,65,52,82,79,77,87)
b008<-c(96,63,46,97,68,36,47,40,76,61)
b009<-c(28,32,44,86,22,68,45,89,6,48)
b010<-c(81,62,91,64,52,100,58,94,65,17)
Z <-matrix(rbind(b001,b002,b003,b004,b005,b006,b007,b008,b009,b010), ncol=10)

2.2 Buat Label Matriks Tranksaksi

region <- c(rep("Sulawesi Selatan",5),rep("Jawa Timur",5))
sector <- c("Pertanian","Perikanan","Industri","Pemerintahan","Jasa")
sector <- c(sector,sector)
id <- rbind(region,sector)
blank <- matrix(NA, ncol = 2, nrow = 2)
Z <- rbind( cbind(blank, id), cbind(t(id), Z))

2.3 Membuat Matriks Nilai Tambah

V<-matrix(c(
297,284,126,196,179,211,132,147,141,259,
247,106,107,103,280,293,183,264,272,221,
173,266,100,199,191,119,251,238,286,227), ncol=10, byrow=TRUE)
label <- matrix(c("Upah", "Pendapatan Pemilik", "Pajak Tak Langsung"),
                ncol = 1)
blank <- matrix(NA, ncol = 1, nrow = 3)
V <- cbind(blank, label, V)

2.4 Membuat Matriks Permintaan Akhir

 f<-matrix(c(
177,296,236,169,285,52,208,64,
199,167,23,63,105,59,87,166,
270,35,51,97,218,223,155,106,
71,117,202,255,4,261,200,156,
153,18,24,108,91,123,60,267,
37,22,48,102,12,286,196,179,
241,147,165,26,150,209,269,228,
154,142,141,84,139,29,290,164,
299,211,289,219,284,78,203,122,
297,291,14,185,215,229,89,6),nrow =10,byrow=TRUE)
label <- c("Rumahtangga", "Pemerintah", "Investasi", "Ekspor")
label <- matrix(c(label, label), nrow = 1)
id <- rbind(region[c(1:4,6:9)], label)
f <- rbind(id, f)

2.5 Membuat Matriks Kolom Total Produksi

one.10 <- matrix(rep(1, 10), ncol = 1)
one.8 <- matrix(rep(1, 8), ncol = 1)
X <- matrix(as.numeric(Z[3:12, 3:12]), nrow = 10)%*%one.10 + 
     matrix(as.numeric(f[3:12,]), nrow = 10)%*%one.8
label <- matrix(c(NA,"Total"))
X <- rbind(label, X)

2.6 Membuat Matriks Kolom Import(dalam hal ini adalah Residual)

M <- matrix(NA, nrow = 1, ncol = 12)
one.3 <- matrix(rep(1, 3), ncol = 1)
M[1, 3:12] <- t(one.10)%*%matrix(as.numeric(Z[3:12, 3:12]), nrow = 10) + 
              t(one.3)%*%matrix(as.numeric(V[,3:12]), nrow = 3)
M[1, 2] <- "Impor"

2.6 Satukan Semuanya

blank <- matrix(NA, nrow=5, ncol = 9)
holder <- cbind(f, X)
holder <- rbind(holder, blank)
hold <- rbind(Z, V, M, t(X))
ss.FullIOTable <- cbind(hold, holder)

Membuat Matriks fV dan memasukkan ke Dalam Tabel IO

fV <- matrix(c(
21,22,55,27,33,77,
78,77,53,20,1,48), ncol=6, byrow=TRUE)
ss.FullIOTable[15:16, c(13:15, 17:19)] <- fV

3.1 Memaasukkan Data Menjadi Objek IO

Z <- matrix(as.numeric(ss.FullIOTable[3:12, 3:12]), ncol = 10)
f <- matrix(as.numeric(ss.FullIOTable[3:12, c(13:15, 17:19)]), nrow = dim(Z)[1])
E <- matrix(as.numeric(ss.FullIOTable[3:12, c(16, 20)]), nrow = 10)
X <- matrix(as.numeric(ss.FullIOTable[3:12, 21]), ncol = 1)
V <- matrix(as.numeric(ss.FullIOTable[13:15, 3:12]), ncol = 10)
M <- as.numeric(ss.FullIOTable[16, 3:12])
fV <- matrix(as.numeric(ss.FullIOTable[15:16, c(13:15,17:19)]), nrow = 2)
ss.IO <- as.inputoutput(Z = Z, RS_label = ss.FullIOTable[3:12, 1:2],
                         f = f, f_label = ss.FullIOTable[1:2, c(13:15, 17:19)],
                         E = E, E_label = ss.FullIOTable[1:2, c(16, 20)],
                         X = X,
                         V = V, V_label = ss.FullIOTable[13:15, 2],
                         M = M, M_label = ss.FullIOTable[16,2],
                         fV = fV, fV_label = ss.FullIOTable[15:16, 2])

Analysis Input Output

4.1 Memeriksa Kesamaan Sektor

check.RS(ss.IO)
## [1] TRUE

4.2 Analysis Ketertaitan

linkages(ss.IO, ES = NULL, regions = "all", sectors = "all", type = c("total"),
         normalize = FALSE, intra.inter = FALSE)
## $`Sulawesi Selatan`
##                BL.tot   FL.tot
## Pertanian    1.435956 1.359417
## Perikanan    1.386453 1.517649
## Industri     1.360057 1.447335
## Pemerintahan 1.563565 1.430537
## Jasa         1.607494 1.574279
## 
## $`Jawa Timur`
##                BL.tot   FL.tot
## Pertanian    1.460790 1.586101
## Perikanan    1.460265 1.413869
## Industri     1.557731 1.515752
## Pemerintahan 1.385242 1.319484
## Jasa         1.381315 1.499344

4.3 total Ekspor

export.total(ss.IO)
##       [,1]
##  [1,] 1050
##  [2,]  762
##  [3,] 1088
##  [4,] 1057
##  [5,]  935
##  [6,]  641
##  [7,]  997
##  [8,] 1055
##  [9,] 1352
## [10,] 1143

4.4 total Impor

import.total(ss.IO)
##       [,1]
##  [1,] 1299
##  [2,] 1006
##  [3,]  745
##  [4,] 1179
##  [5,] 1233
##  [6,] 1094
##  [7,] 1201
##  [8,] 1329
##  [9,] 1274
## [10,] 1231

4.6 Ekstraksi

extraction(ss.IO, ES = NULL, regions = 1, sectors = 1, type = "backward.total",
aggregate = FALSE, simultaneous = FALSE, normalize = FALSE)
##                               Pertanian
## Sulawesi Selatan.Pertanian     668.4299
## Sulawesi Selatan.Perikanan     373.1259
## Sulawesi Selatan.Industri      387.9606
## Sulawesi Selatan.Pemerintahan  600.7683
## Sulawesi Selatan.Jasa          584.2872
## Jawa Timur.Pertanian           480.8720
## Jawa Timur.Perikanan           463.1370
## Jawa Timur.Industri            497.8907
## Jawa Timur.Pemerintahan        495.6907
## Jawa Timur.Jasa                444.4978

4.7 Head Map

RS_label = ss.IO$RS_label
obj = ss.IO$L
heatmap.io(obj, RS_label, FUN = log, max = 3)

cuberoot = function(x){x^(1/3)}
heatmap.io(obj, RS_label, FUN = cuberoot)

# Total field of influence
fit = f.influence.total(ss.IO)
heatmap.io(fit, RS_label, sectors_x = c(1,3,4,5), regions_y = c(2), sectors = 1:3)

4.8 Histogram 3D

obj = ss.IO$Z[1:5, 1:5]
hist3d.io(obj, alpha = 0.7)

4.9 Total Ekspor dan Impor

export.total(ss.IO)
##       [,1]
##  [1,] 1050
##  [2,]  762
##  [3,] 1088
##  [4,] 1057
##  [5,]  935
##  [6,]  641
##  [7,]  997
##  [8,] 1055
##  [9,] 1352
## [10,] 1143
import.total(ss.IO)
##       [,1]
##  [1,] 1299
##  [2,] 1006
##  [3,]  745
##  [4,] 1179
##  [5,] 1233
##  [6,] 1094
##  [7,] 1201
##  [8,] 1329
##  [9,] 1274
## [10,] 1231

—————————————————————–Thanks————————————