#memanggil paket umum untuk input output
library(leontief)
X <- transaction_matrix
## <- read.table("matriks.csv", header = TRUE, sep = ",", row.names = "colum" )
w <- wage_demand_matrix[, "wage"]
c <- wage_demand_matrix[, "household_consumption"]
d <- wage_demand_matrix[, "final_total_demand"]
e <- employment_matrix[, "employees"]
##w <- read.table("upah.csv", header = TRUE, sep = ",", row.names = "baris" )
##c <- read.table("konsumsiRT.csv", header = TRUE, sep = ",", row.names = "baris")
##d <- read.table("final_total_demand.csv", header = TRUE, sep = ",", row.names = "baris" )
##e <- read.table("kerja.csv", header = TRUE, sep = ",", row.names = "baris")Tabel IO Ismail Kadir
Definisi
Analisis Input–Output adalah suatu analisis atas perekonomian negara secara komprehensif karena melihat keterkaitan antar sektor ekonomi di negara tersebut secara keseluruhan.
Untuk melihat keterkaitan ini digunakan Metode Analisis Input–Output. Prof. Wassily Leontif (1930) memperkenalkan Tabel Input–Output (Tabel I–O) beserta analisisnya. Tabel I– O adalah alat yang ampuh untuk menganalisis perekonomian wilayah (negara) dan sangat berguna dalam perencanaan pembangunan suatu negara.
Tabel Transaksi dalam Analisis Input Output
Dalam Metode Input–Output, sebagai tabel dasarnya adalah tabel transaksi yang terdiri dari: tabel koefisien input (matriks koefisien), tabel pengganda, tabel indeks daya menarik dan indeks daya mendorong serta tabel pendukung dan tabel analisis lainnya tergantung kepada luasnya bidang yang hendak dibahas. Format tabel transaksi yang lengkap seperti berikut ini:
| Sumber Input | Permintaan Anrtara | Permintaan Akhir | Impor | Jumlah Output |
|---|---|---|---|---|
| Input Antara | Sektor Produksi Kuadran II | Kuadran I | ||
| Sektor 1 | ||||
| Sektor 2 | ||||
| Sektor 3 | ||||
| Kuadran II | Pembelian Faktor Langsung | |||
| b. Input Primer | ||||
| Jumlah Input |
Keterangan :
Tabel transaksi input-output diatas terdiri dari 4 kuadran yaitu: 1) Kuadran I terdiri atas permintaan akhir yaitu barang dan jasa yang dibeli oleh masyarakat untuk dikonsumsi dan untuk investasi; 2) Kuadran II terdiri atas transaksi antar sektor yaitu arus barang dan jasa yang dihasilkan oleh suatu sektor untuk digunakan oleh sektor lain (termasuk sektor itu sendiri), baik sebagai bahan baku maupun sebagai bahan penolong. Kuadran II bersifat endogen dan kuadran I, III, IV bersifat eksogen; 3) Kuadran III berisikan input primer yaitu semua daya dan dana yang diperlukan untuk menghasilkan suatu produk tetapi diluar kategori input antara, seperti: tenaga kerja, keahlian, modal dan lain-lain; 4) Kuadran IV menggambarkan bagaimana balas jasa yang diterima input primer yang didistribusikan ke dalam permintaan akhir.
Matriks Koefisien Input
Matriks Koefisien Input adalah sama dengan tabel koefisien input tetapi tanpa mengikutsertakan input primer. Maka tabel akan berbentuk n x n (jumlah baris sama dengan jumlah kolom) maka sering disebut matriks koefisien input. Rumus nya adalah : aij = x ij / Xj dimana aij = koefisien input sektor j dari sektor i (berada pada baris i kolom j); xij = penggunaan input oleh sektor J dari sektor i ; Xj = output sektor j. Sebagai contohnya adalah:
Matriks A
0,12 0 0,20 0 0,20
0 0 0 0 0
0,08 0 0,25 0,20 0,10
0,04 0,375 0,15 0 0, 30
0,04 0,25 0,15 0 0,10
Matriks Pengganda
Matriks Pengganda adalah faktor yang menentukan besarnya perubahan pada keseluruhan sektor seadainya jumlah produksi suatu sektor ada yang berubah. Matriks ini dibutuhkan dalam memproyeksikan dampak dari perubahan salah satu sektor terhadap keseluruhan sektor. Apabila matriks pengganda dikalikan dengan matriks permintaan akhir (yang diproyeksikan berubah) akan menghasilkan output baru untuk keseluruhan sektor. Matriks pengganda adalah matriks kebalikan (inverse) dari matriks (I – A) adalah B = (I – A) – 1 . Matriks (I – A) dinamakan Matriks Leontif. Dimana B = matriks pengganda; I = matriks identitas; dan A = matriks koefisien input.
Hubungan antara Output, Koefisien Pengganda dan Permintaan Akhir
Untuk melihat hubungan antara output, koefisien pengganda dan permintaan akhir dapat dilihat dalam matriks berikut ini:
Di mana: bij = isi sel baris ke i kolom ke j dari matrik invers (I – A) – 1 ; Xi = output sektor i; Fi = permintaan akhir sektor i.; ij = 1,2 ,…. n.
Hal diatas dapat ditulis dalam persamaan matriks adalah X = (I – A) – 1 F , Dari persamaan ini terlihat bahawa setiap perubahan permintaan akhir dari sektor 1 (F1) sebesar 1 unit akan mengakibatkan perubahan pada X1 sebesar b1l dan terhadap X 2 sebesar b21 dan seterusnya.
Manfaat Analisis Input–Output.
Menggambarkan kaitan antar sektor dalam suatu perekonomian
Dapat digunakan untuk mengetahui daya menarik (backward linkage) dan daya mendorong (forward linkage) dari setiap sektor dan akhirnya dapat menentukan sektor yang strategis dalam perencanaan pembangunan.
Dapat meramalkan tingkat kemakmuran dan pertumbuhan ekonomi apabila permintaan akhir diketahui terjadi peningkatan.
Sebagai alat analisis perencanaan pembangunan ekonomi secara komprehensif.
Dapat digunakan untuk menghitung kebutuhan tenaga kerja dan modal dalam perencanaan pembangunan ekonomi.
Operasi Input Output dengan R
Berikut adalah data dari matrix transaksi :
##class(X)
## print(X)library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
group_rows
A <- input_requirement(X, d)
A_aug <- augmented_input_requirement(X,w,c,d)
rownames(A_aug) <- c(rownames(X), "wage_over_demand")
colnames(A_aug) <- c(rownames(X), "consumption_over_demand")
kable(A_aug)| agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | consumption_over_demand | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| agriculture_fishing | 0.1466016 | 0.0001314 | 0.1251643 | 0.0029231 | 0.0003491 | 0.0074746 | 0.0001524 | 0.0002914 | 0.0000460 | 0.0009735 | 0.0016847 | 0.0018819 | 0.1100865 |
| mining | 0.0076608 | 0.0707244 | 0.0297954 | 0.0018026 | 0.0046547 | 0.0016390 | 0.0010217 | 0.0016233 | 0.0003502 | 0.0019842 | 0.0008167 | 0.0005717 | 0.0005512 |
| manufacturing_industry | 0.1852290 | 0.0519204 | 0.1373925 | 0.0499940 | 0.1935258 | 0.0772627 | 0.0613088 | 0.0102574 | 0.0018275 | 0.0259800 | 0.0474833 | 0.0269478 | 0.2611391 |
| electricity_gas_water | 0.0070393 | 0.0555185 | 0.0279041 | 0.3083701 | 0.0043044 | 0.0137819 | 0.0084102 | 0.0052962 | 0.0058003 | 0.0064552 | 0.0139350 | 0.0346062 | 0.2100932 |
| construction | 0.0020051 | 0.0005945 | 0.0010173 | 0.0087759 | 0.1231468 | 0.0081406 | 0.0051286 | 0.0016968 | 0.1292515 | 0.0035308 | 0.0112100 | 0.0277391 | 0.0005216 |
| retail_hotels_restaurants | 0.0489967 | 0.0274094 | 0.0374476 | 0.0227592 | 0.0533773 | 0.0696038 | 0.0569204 | 0.0152958 | 0.0036260 | 0.0310850 | 0.0398168 | 0.0181291 | 0.5224880 |
| transport_communications_information | 0.0364715 | 0.0343741 | 0.0568692 | 0.0267940 | 0.0190669 | 0.0991918 | 0.1435690 | 0.0411733 | 0.0035161 | 0.0438323 | 0.0188589 | 0.0372542 | 0.3113885 |
| financial_services | 0.0283623 | 0.0056394 | 0.0152774 | 0.0181562 | 0.0281303 | 0.0358526 | 0.0198488 | 0.1086126 | 0.0393062 | 0.0187327 | 0.0091249 | 0.0025029 | 0.4380428 |
| real_state | 0.0032470 | 0.0029428 | 0.0050222 | 0.0023436 | 0.0030563 | 0.0475092 | 0.0154863 | 0.0099372 | 0.0142509 | 0.0235037 | 0.0227240 | 0.0086408 | 0.6989701 |
| business_services | 0.0287469 | 0.0914280 | 0.0652255 | 0.0410837 | 0.0560145 | 0.0940345 | 0.0727851 | 0.0901334 | 0.0185452 | 0.1232169 | 0.0415016 | 0.0471214 | 0.0514836 |
| personal_services | 0.0006774 | 0.0012640 | 0.0026205 | 0.0010795 | 0.0009860 | 0.0035924 | 0.0053096 | 0.0031322 | 0.0005963 | 0.0029317 | 0.0341959 | 0.0028208 | 0.4507708 |
| public_administration | 0.0013505 | 0.0011768 | 0.0017711 | 0.0015476 | 0.0001231 | 0.0036912 | 0.0031005 | 0.0007391 | 0.0002109 | 0.0009059 | 0.0015397 | 0.0031391 | 0.0341792 |
| wage_over_demand | 0.1461686 | 0.0903376 | 0.1038002 | 0.0644244 | 0.2410012 | 0.2507406 | 0.1544188 | 0.2547072 | 0.0299602 | 0.2987210 | 0.5539199 | 0.5405669 | 0.0000000 |
Output Allocation matrix
B <- output_allocation(X, d)
rownames(B) <- rownames(X)
colnames(B) <- rownames(X)
kable(B)| agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| agriculture_fishing | 0.1466016 | 0.0003063 | 0.5238206 | 0.0024771 | 0.0006516 | 0.0202725 | 0.0003616 | 0.0002894 | 0.0000515 | 0.0018671 | 0.0031799 | 0.0015027 |
| mining | 0.0032879 | 0.0707244 | 0.0535177 | 0.0006556 | 0.0037295 | 0.0019078 | 0.0010404 | 0.0006919 | 0.0001680 | 0.0016333 | 0.0006616 | 0.0001959 |
| manufacturing_industry | 0.0442596 | 0.0289061 | 0.1373925 | 0.0101230 | 0.0863260 | 0.0500715 | 0.0347583 | 0.0024339 | 0.0004881 | 0.0119065 | 0.0214162 | 0.0051415 |
| electricity_gas_water | 0.0083068 | 0.1526505 | 0.1378086 | 0.3083701 | 0.0094826 | 0.0441101 | 0.0235480 | 0.0062063 | 0.0076502 | 0.0146105 | 0.0310397 | 0.0326083 |
| construction | 0.0010741 | 0.0007420 | 0.0022807 | 0.0039836 | 0.1231468 | 0.0118270 | 0.0065183 | 0.0009026 | 0.0773830 | 0.0036275 | 0.0113345 | 0.0118647 |
| retail_hotels_restaurants | 0.0180653 | 0.0235467 | 0.0577834 | 0.0071109 | 0.0367400 | 0.0696038 | 0.0497947 | 0.0056003 | 0.0014942 | 0.0219824 | 0.0277107 | 0.0053373 |
| transport_communications_information | 0.0153715 | 0.0337558 | 0.1003092 | 0.0095696 | 0.0150019 | 0.1133862 | 0.1435690 | 0.0172320 | 0.0016563 | 0.0354327 | 0.0150031 | 0.0125373 |
| financial_services | 0.0285617 | 0.0132320 | 0.0643862 | 0.0154939 | 0.0528837 | 0.0979232 | 0.0474258 | 0.1086126 | 0.0442403 | 0.0361819 | 0.0173450 | 0.0020126 |
| real_state | 0.0029051 | 0.0061348 | 0.0188055 | 0.0017769 | 0.0051048 | 0.1152885 | 0.0328754 | 0.0088290 | 0.0142509 | 0.0403339 | 0.0383773 | 0.0061731 |
| business_services | 0.0149880 | 0.1110671 | 0.1423218 | 0.0181516 | 0.0545202 | 0.1329725 | 0.0900394 | 0.0466655 | 0.0108068 | 0.1232169 | 0.0408433 | 0.0196172 |
| personal_services | 0.0003589 | 0.0015602 | 0.0058101 | 0.0004847 | 0.0009751 | 0.0051619 | 0.0066741 | 0.0016478 | 0.0003531 | 0.0029790 | 0.0341959 | 0.0011933 |
| public_administration | 0.0016913 | 0.0034339 | 0.0092829 | 0.0016424 | 0.0002878 | 0.0125377 | 0.0092129 | 0.0009192 | 0.0002952 | 0.0021759 | 0.0036397 | 0.0031391 |
Leontief Inverse Matrix
#abc
L <- leontief_inverse(A);
rownames(L) <- rownames(X)
colnames(L) <- rownames(X)
kable(L)| agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| agriculture_fishing | 1.2143030 | 0.0140204 | 0.1806612 | 0.0211267 | 0.0434473 | 0.0288302 | 0.0167022 | 0.0050465 | 0.0067697 | 0.0092679 | 0.0139584 | 0.0108240 |
| mining | 0.0197179 | 1.0797443 | 0.0415013 | 0.0069224 | 0.0158943 | 0.0070878 | 0.0054452 | 0.0033981 | 0.0028549 | 0.0044991 | 0.0039682 | 0.0030505 |
| manufacturing_industry | 0.2829856 | 0.0881364 | 1.2246117 | 0.1060327 | 0.2858845 | 0.1283938 | 0.1055303 | 0.0285162 | 0.0434205 | 0.0506454 | 0.0765320 | 0.0546627 |
| electricity_gas_water | 0.0297616 | 0.0938331 | 0.0592886 | 1.4543029 | 0.0247469 | 0.0326627 | 0.0232214 | 0.0130789 | 0.0129989 | 0.0159042 | 0.0273177 | 0.0553242 |
| construction | 0.0073757 | 0.0049257 | 0.0068794 | 0.0176991 | 1.1451015 | 0.0215388 | 0.0129865 | 0.0062008 | 0.1508572 | 0.0106548 | 0.0191656 | 0.0354394 |
| retail_hotels_restaurants | 0.0865783 | 0.0478172 | 0.0737562 | 0.0502654 | 0.0897210 | 1.0995600 | 0.0849979 | 0.0294808 | 0.0186790 | 0.0477027 | 0.0553943 | 0.0322472 |
| transport_communications_information | 0.0896650 | 0.0664423 | 0.1097954 | 0.0668424 | 0.0669138 | 0.1500795 | 1.1950540 | 0.0673354 | 0.0182798 | 0.0714556 | 0.0411045 | 0.0585697 |
| financial_services | 0.0524190 | 0.0176542 | 0.0372497 | 0.0386941 | 0.0512957 | 0.0580279 | 0.0371852 | 1.1291923 | 0.0530051 | 0.0312327 | 0.0194854 | 0.0111578 |
| real_state | 0.0138840 | 0.0108392 | 0.0159281 | 0.0103413 | 0.0140897 | 0.0606681 | 0.0271297 | 0.0172829 | 1.0180298 | 0.0319248 | 0.0296701 | 0.0137920 |
| business_services | 0.0874961 | 0.1372548 | 0.1261753 | 0.0940143 | 0.1196471 | 0.1523358 | 0.1242083 | 0.1291421 | 0.0445951 | 1.1617290 | 0.0702301 | 0.0734843 |
| personal_services | 0.0029538 | 0.0028019 | 0.0049784 | 0.0029357 | 0.0032677 | 0.0060543 | 0.0077578 | 0.0046550 | 0.0014022 | 0.0044009 | 1.0364127 | 0.0038992 |
| public_administration | 0.0029436 | 0.0021247 | 0.0033303 | 0.0030000 | 0.0014605 | 0.0050708 | 0.0044440 | 0.0013666 | 0.0005519 | 0.0016251 | 0.0022226 | 1.0037402 |
Equilibrium Output
#asdasd
eq <- equilibrium_output(L, d)
rownames(eq) <- rownames(X)
colnames(eq) <- "output"
kable(eq)| output | |
|---|---|
| agriculture_fishing | 25832.444 |
| mining | 31674.077 |
| manufacturing_industry | 81363.356 |
| electricity_gas_water | 23428.337 |
| construction | 28817.077 |
| retail_hotels_restaurants | 47167.687 |
| transport_communications_information | 50605.727 |
| financial_services | 21588.063 |
| real_state | 18685.857 |
| business_services | 51363.228 |
| personal_services | 23148.328 |
| public_administration | 9745.911 |
Multipllers
Output Multiplier
out <- output_multiplier(L)Income Multiplier
inc <- income_multiplier(L, w/d)Employment Multiplier
emp <- employment_multiplier(L, e/d)Summary of Multiplier
sm <- round(cbind(out,inc,emp),4)
rownames(sm) <- rownames(X)
colnames(sm) <- c("output_multiplier", "income_multiplier", "employment_multiplier")
kable(sm)| output_multiplier | income_multiplier | employment_multiplier | |
|---|---|---|---|
| agriculture_fishing | 1.8901 | 0.2910 | 94.2927 |
| mining | 1.5656 | 0.1867 | 21.4480 |
| manufacturing_industry | 1.8842 | 0.2504 | 46.1530 |
| electricity_gas_water | 1.8722 | 0.1771 | 22.2516 |
| construction | 1.8615 | 0.3997 | 55.3154 |
| retail_hotels_restaurants | 1.7503 | 0.3926 | 78.3014 |
| transport_communications_information | 1.6447 | 0.2785 | 41.2900 |
| financial_services | 1.4347 | 0.3542 | 24.8684 |
| real_state | 1.3714 | 0.1089 | 14.5487 |
| business_services | 1.4410 | 0.3929 | 29.0532 |
| personal_services | 1.3955 | 0.6391 | 90.7806 |
| public_administration | 1.3562 | 0.6067 | 53.8591 |
Linkages
bl <- backward_linkage(A)
fl <- forward_linkage(A)
bfl <- cbind(bl,fl)
rownames(bfl) <- rownames(X)
colnames(bfl) <- c("backward_linkage", "forward_linkage")
kable(bfl)| backward_linkage | forward_linkage | |
|---|---|---|
| agriculture_fishing | 0.4963879 | 0.2876740 |
| mining | 0.3431237 | 0.1226446 |
| manufacturing_industry | 0.5055072 | 0.8691292 |
| electricity_gas_water | 0.4856295 | 0.4914214 |
| construction | 0.4867352 | 0.3222370 |
| retail_hotels_restaurants | 0.4617742 | 0.4244670 |
| transport_communications_information | 0.3930415 | 0.5609712 |
| financial_services | 0.2881891 | 0.3295464 |
| real_state | 0.2173270 | 0.1586641 |
| business_services | 0.2831318 | 0.7698367 |
| personal_services | 0.2428914 | 0.0592063 |
| public_administration | 0.2113550 | 0.0192954 |
Daya penyebaran
bl <- power_dispersion(L)
bl_cv <- power_dispersion_cv(L)
bl_t <- cbind(bl,bl_cv)
rownames(bl_t) <- rownames(X)
colnames(bl_t) <- c("power_dispersion", "power_dispersion_cv")
kable(bl_t)| power_dispersion | power_dispersion_cv | |
|---|---|---|
| agriculture_fishing | 1.1650829 | 2.138211 |
| mining | 0.9650615 | 2.396828 |
| manufacturing_industry | 1.1614288 | 2.104734 |
| electricity_gas_water | 1.1540450 | 2.592275 |
| construction | 1.1474450 | 2.068456 |
| retail_hotels_restaurants | 1.0789236 | 2.045566 |
| transport_communications_information | 1.0138006 | 2.378536 |
| financial_services | 0.8843731 | 2.682109 |
| real_state | 0.8453838 | 2.595140 |
| business_services | 0.8882854 | 2.639136 |
| personal_services | 0.8601886 | 2.649113 |
| public_administration | 0.8359816 | 2.662192 |
Sesitifitas Penyebaran
sl <- sensitivity_dispersion(L)
sl_cv <- sensitivity_dispersion_cv(L)
sl_t <- cbind(sl,sl_cv)
rownames(sl_t) <- rownames(X)
colnames(sl_t) <- c("power_dispersion", "power_dispersion_cv")
kable(sl_t)| power_dispersion | power_dispersion_cv | |
|---|---|---|
| agriculture_fishing | 0.9646691 | 2.599260 |
| mining | 0.7360558 | 3.124341 |
| manufacturing_industry | 1.5258532 | 1.538170 |
| electricity_gas_water | 1.1357152 | 2.629518 |
| construction | 0.8869183 | 2.679795 |
| retail_hotels_restaurants | 1.0578977 | 2.094117 |
| transport_communications_information | 1.2337851 | 1.941557 |
| financial_services | 0.9471885 | 2.514745 |
| real_state | 0.7788941 | 2.842409 |
| business_services | 1.4302839 | 1.608411 |
| personal_services | 0.6666688 | 3.385689 |
| public_administration | 0.6360703 | 3.459516 |
Multiplier product matrix
mp <- multiplier_product_matrix(L)
rownames(mp) <- rownames(X)
colnames(mp) <- rownames(X)
kable(mp)| agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| agriculture_fishing | 0.1519421 | 0.1159339 | 0.2403325 | 0.1788831 | 0.1396958 | 0.1666263 | 0.1943297 | 0.1491888 | 0.1226813 | 0.2252797 | 0.1050050 | 0.1001855 |
| mining | 0.1258567 | 0.0960304 | 0.1990722 | 0.1481724 | 0.1157128 | 0.1380199 | 0.1609672 | 0.1235761 | 0.1016193 | 0.1866037 | 0.0869777 | 0.0829857 |
| manufacturing_industry | 0.1514656 | 0.1155703 | 0.2395787 | 0.1783220 | 0.1392577 | 0.1661037 | 0.1937203 | 0.1487209 | 0.1222965 | 0.2245731 | 0.1046757 | 0.0998713 |
| electricity_gas_water | 0.1505026 | 0.1148356 | 0.2380556 | 0.1771883 | 0.1383723 | 0.1650477 | 0.1924887 | 0.1477754 | 0.1215190 | 0.2231454 | 0.1040102 | 0.0992364 |
| construction | 0.1496419 | 0.1141788 | 0.2366942 | 0.1761750 | 0.1375810 | 0.1641037 | 0.1913878 | 0.1469303 | 0.1208240 | 0.2218692 | 0.1034153 | 0.0986688 |
| retail_hotels_restaurants | 0.1407058 | 0.1073605 | 0.2225596 | 0.1656544 | 0.1293651 | 0.1543041 | 0.1799588 | 0.1381561 | 0.1136088 | 0.2086200 | 0.0972397 | 0.0927767 |
| transport_communications_information | 0.1322129 | 0.1008803 | 0.2091261 | 0.1556557 | 0.1215568 | 0.1449904 | 0.1690967 | 0.1298171 | 0.1067515 | 0.1960278 | 0.0913704 | 0.0871767 |
| financial_services | 0.1153339 | 0.0880013 | 0.1824279 | 0.1357838 | 0.1060381 | 0.1264801 | 0.1475088 | 0.1132439 | 0.0931230 | 0.1710018 | 0.0797056 | 0.0760473 |
| real_state | 0.1102491 | 0.0841216 | 0.1743852 | 0.1297975 | 0.1013632 | 0.1209040 | 0.1410056 | 0.1082513 | 0.0890175 | 0.1634629 | 0.0761916 | 0.0726946 |
| business_services | 0.1158441 | 0.0883906 | 0.1832349 | 0.1363845 | 0.1065072 | 0.1270396 | 0.1481614 | 0.1137449 | 0.0935349 | 0.1717583 | 0.0800582 | 0.0763837 |
| personal_services | 0.1121799 | 0.0855948 | 0.1774391 | 0.1320706 | 0.1031384 | 0.1230213 | 0.1434750 | 0.1101471 | 0.0905764 | 0.1663255 | 0.0775259 | 0.0739676 |
| public_administration | 0.1090230 | 0.0831860 | 0.1724457 | 0.1283539 | 0.1002359 | 0.1195593 | 0.1394374 | 0.1070474 | 0.0880274 | 0.1616449 | 0.0753442 | 0.0718861 |
Induced effects (labor/consumption)
bli <- backward_linkage(A_aug)
fli <- forward_linkage(A_aug)
bfli <- cbind(bli,fli)
rownames(bfli) <- c(rownames(X), "wage")
# wie = with induced effect
colnames(bfli) <- c("backward_linkage_wie", "forward_linkage_wie")
kable(bfli)| backward_linkage_wie | forward_linkage_wie | |
|---|---|---|
| agriculture_fishing | 0.6425565 | 0.3977605 |
| mining | 0.4334613 | 0.1231958 |
| manufacturing_industry | 0.6093074 | 1.1302683 |
| electricity_gas_water | 0.5500540 | 0.7015147 |
| construction | 0.7277364 | 0.3227586 |
| retail_hotels_restaurants | 0.7125147 | 0.9469550 |
| transport_communications_information | 0.5474603 | 0.8723597 |
| financial_services | 0.5428963 | 0.7675892 |
| real_state | 0.2472873 | 0.8576342 |
| business_services | 0.5818527 | 0.8213203 |
| personal_services | 0.7968112 | 0.5099771 |
| public_administration | 0.7519219 | 0.0534746 |
| wage | 3.0897145 | 2.7287664 |