Required Libraries:

library(FrF2)
## Warning: package 'FrF2' was built under R version 4.1.3
## Loading required package: DoE.base
## Warning: package 'DoE.base' was built under R version 4.1.3
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.9
## v tidyr   1.2.1     v stringr 1.4.1
## v readr   2.1.2     v forcats 0.5.2
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'tibble' was built under R version 4.1.3
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'purrr' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

8.2

For the problem 6.15, which originally is a 24 design, running it at 1/2 fractional design makes it a 2^(4-1) deign with only 8 runs. So we generate our design table as such:

design8.2 <- FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
summary(design8.2)
## Call:
## FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2

Now, we choose I = +abcd and attach them in our data table by matching them into the proper design set:

response8.2 <- c(7.037,16.867,13.876,17.273,11.846,4.368,9.360,15.653)
design8.2mod <- add.response(design8.2, response8.2)
summary(design8.2mod)
## Call:
## FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] response8.2
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D response8.2
## 1 -1 -1 -1 -1       7.037
## 2  1 -1 -1  1      16.867
## 3 -1  1 -1  1      13.876
## 4  1  1 -1 -1      17.273
## 5 -1 -1  1  1      11.846
## 6  1 -1  1 -1       4.368
## 7 -1  1  1 -1       9.360
## 8  1  1  1  1      15.653
## class=design, type= FrF2

Now we analyze our data using halfnormal and main-effects plots:

DanielPlot(design8.2mod, half = TRUE)

MEPlot(design8.2mod)

From the main effects plot, we see that all the factors have some level of effect on the response variable. This is evident from the fact that the response line change is not parallel to the horizontal when we change from low to high levels. Factors A,B,D show positive change in the response while shifting from low to high whereas C shows a negative trend in the response data.

From the half-normal plot, we see that none of the factors stand out to be significant.

8.24

A 2^(5-1) design is a resolution 5 design with 16 runs (From table 8.14 in the text book). As per the question, we generate tables to run the experiment in 2 separate blocks:

design8.24 <- FrF2(nfactor = 5, blocks = 2, nruns = 16)
design8.24noblock <- FrF2(nfactor = 5, nruns = 16)
summary(design8.24)
## Call:
## FrF2(nfactor = 5, blocks = 2, nruns = 16)
## 
## Experimental design of type  FrF2.blocked 
## 16  runs
## blocked design with  2  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $`generators for design itself`
## [1] E=ABC
## 
## $`block generators`
## [1] ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE AC=BE AE=BC
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1        10.1.5      1  1 -1 -1  1  1
## 2      2         6.1.3      1 -1  1 -1  1  1
## 3      3         8.1.4      1 -1  1  1  1 -1
## 4      4         1.1.1      1 -1 -1 -1 -1 -1
## 5      5        13.1.7      1  1  1 -1 -1 -1
## 6      6        15.1.8      1  1  1  1 -1  1
## 7      7        12.1.6      1  1 -1  1  1 -1
## 8      8         3.1.2      1 -1 -1  1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9         5.2.3      2 -1  1 -1 -1  1
## 10     10         4.2.2      2 -1 -1  1  1  1
## 11     11         7.2.4      2 -1  1  1 -1 -1
## 12     12        16.2.8      2  1  1  1  1  1
## 13     13         2.2.1      2 -1 -1 -1  1 -1
## 14     14         9.2.5      2  1 -1 -1 -1  1
## 15     15        14.2.7      2  1  1 -1  1 -1
## 16     16        11.2.6      2  1 -1  1 -1 -1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
summary(design8.24noblock)
## Call:
## FrF2(nfactor = 5, nruns = 16)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] E=ABCD
## 
## 
## Alias structure:
## [[1]]
## [1] no aliasing among main effects and 2fis
## 
## 
## The design itself:
##     A  B  C  D  E
## 1   1 -1 -1  1  1
## 2  -1 -1 -1  1 -1
## 3  -1  1 -1  1  1
## 4  -1  1  1 -1  1
## 5  -1  1  1  1 -1
## 6  -1 -1 -1 -1  1
## 7   1  1  1 -1 -1
## 8   1 -1 -1 -1 -1
## 9  -1  1 -1 -1 -1
## 10  1  1 -1  1 -1
## 11  1 -1  1  1 -1
## 12  1  1 -1 -1  1
## 13  1 -1  1 -1  1
## 14 -1 -1  1  1  1
## 15  1  1  1  1  1
## 16 -1 -1  1 -1 -1
## class=design, type= FrF2

Without adding the block, we see from the r-output that the resolution is 5 for a 2^(5-1) design.

From the FrF2-package generated design, we see that the 3-way interaction ABD is confounded with the block. Also, none of the main factor or 2-way interactions confounded with the blocks.

8.25

A 2^(7-2) design is a resolution 4 design with 32 runs (From table 8.14 in the text book). As per the question, we generate tables to run the experiment in 2 separate blocks:

design8.25 <- FrF2(nfactor = 7, blocks =4, nruns = 32)
design8.25noblock <- FrF2(nfactor = 7, nruns = 32)
summary(design8.25)
## Call:
## FrF2(nfactor = 7, blocks = 4, nruns = 32)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1        20.1.5      1  1 -1 -1  1  1  1 -1
## 2      2         7.1.2      1 -1 -1  1  1 -1  1  1
## 3      3        22.1.6      1  1 -1  1 -1  1 -1  1
## 4      4        10.1.3      1 -1  1 -1 -1  1  1  1
## 5      5        16.1.4      1 -1  1  1  1  1 -1 -1
## 6      6        29.1.8      1  1  1  1 -1 -1  1 -1
## 7      7        27.1.7      1  1  1 -1  1 -1 -1  1
## 8      8         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9        28.2.7      2  1  1 -1  1  1 -1  1
## 10     10        15.2.4      2 -1  1  1  1 -1 -1 -1
## 11     11        30.2.8      2  1  1  1 -1  1  1 -1
## 12     12         9.2.3      2 -1  1 -1 -1 -1  1  1
## 13     13        21.2.6      2  1 -1  1 -1 -1 -1  1
## 14     14         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 15     15         8.2.2      2 -1 -1  1  1  1  1  1
## 16     16        19.2.5      2  1 -1 -1  1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17        14.3.4      3 -1  1  1 -1  1 -1  1
## 18     18        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 19     19         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 20     20         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 21     21        24.3.6      3  1 -1  1  1  1 -1 -1
## 22     22        18.3.5      3  1 -1 -1 -1  1  1  1
## 23     23        12.3.3      3 -1  1 -1  1  1  1 -1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25        32.4.8      4  1  1  1  1  1  1  1
## 26     26        13.4.4      4 -1  1  1 -1 -1 -1  1
## 27     27         4.4.1      4 -1 -1 -1  1  1 -1  1
## 28     28        17.4.5      4  1 -1 -1 -1 -1  1  1
## 29     29        11.4.3      4 -1  1 -1  1 -1  1 -1
## 30     30         6.4.2      4 -1 -1  1 -1  1  1 -1
## 31     31        26.4.7      4  1  1 -1 -1  1 -1 -1
## 32     32        23.4.6      4  1 -1  1  1 -1 -1 -1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
summary(design8.25noblock)
## Call:
## FrF2(nfactor = 7, nruns = 32)
## 
## Experimental design of type  FrF2 
## 32  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $generators
## [1] F=ABC  G=ABDE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF AC=BF AF=BC
## 
## 
## The design itself:
##     A  B  C  D  E  F  G
## 1  -1 -1 -1  1 -1 -1 -1
## 2   1  1 -1 -1 -1 -1  1
## 3  -1  1 -1  1  1  1 -1
## 4   1 -1  1  1  1 -1 -1
## 5  -1  1  1  1  1 -1 -1
## 6   1 -1  1 -1 -1 -1 -1
## 7   1  1  1  1  1  1  1
## 8   1 -1 -1 -1  1  1  1
## 9  -1 -1 -1 -1  1 -1 -1
## 10 -1 -1 -1  1  1 -1  1
## 11  1 -1  1 -1  1 -1  1
## 12 -1 -1 -1 -1 -1 -1  1
## 13 -1  1 -1 -1  1  1  1
## 14  1 -1 -1  1 -1  1  1
## 15 -1 -1  1 -1  1  1 -1
## 16 -1  1 -1 -1 -1  1 -1
## 17 -1 -1  1  1  1  1  1
## 18 -1 -1  1 -1 -1  1  1
## 19  1 -1 -1 -1 -1  1 -1
## 20 -1 -1  1  1 -1  1 -1
## 21  1  1  1 -1  1  1 -1
## 22  1  1 -1  1 -1 -1 -1
## 23  1  1 -1 -1  1 -1 -1
## 24 -1  1  1 -1  1 -1  1
## 25  1 -1 -1  1  1  1 -1
## 26  1  1  1 -1 -1  1  1
## 27  1 -1  1  1 -1 -1  1
## 28  1  1 -1  1  1 -1  1
## 29 -1  1  1 -1 -1 -1 -1
## 30  1  1  1  1 -1  1 -1
## 31 -1  1 -1  1 -1  1  1
## 32 -1  1  1  1 -1 -1  1
## class=design, type= FrF2

Without adding the block, we see from the r-output that the resolution is 4 for a 2^(7-2) design.

From the FrF2-package generated design, we see that the 3-way interaction ACD and ABD are confounded with the block. Also, none of the main factor confounded with the blocks. The 2-way alias structures in the blocked design are: AB=CF=DG AC=BF AD=BG AF=BC AG=BD CD=FG CG=DF (from the r-output panel).

8.28

First, we generate our fractional factorial table, read in and sort the data from the problem using the following sets of command:

design8.28 <- FrF2(nfactor = 6, nrun = 16)
summary(design8.28)
## Call:
## FrF2(nfactor = 6, nrun = 16)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $generators
## [1] E=ABC F=ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE   
## 
## 
## The design itself:
##     A  B  C  D  E  F
## 1   1 -1 -1  1  1 -1
## 2  -1 -1  1  1  1  1
## 3  -1 -1 -1  1 -1  1
## 4   1  1 -1  1 -1  1
## 5   1 -1  1  1 -1 -1
## 6  -1  1  1 -1 -1  1
## 7   1 -1  1 -1 -1  1
## 8  -1  1  1  1 -1 -1
## 9  -1 -1  1 -1  1 -1
## 10 -1 -1 -1 -1 -1 -1
## 11 -1  1 -1 -1  1  1
## 12  1  1 -1 -1 -1 -1
## 13 -1  1 -1  1  1 -1
## 14  1  1  1  1  1  1
## 15  1 -1 -1 -1  1  1
## 16  1  1  1 -1  1 -1
## class=design, type= FrF2
table8.28 <- read.csv(file.choose())
table8.28 <- as.data.frame(table8.28)
str(table8.28)
## 'data.frame':    16 obs. of  14 variables:
##  $ Run   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Ltem  : int  55 75 55 75 55 75 55 75 55 75 ...
##  $ Ltim  : int  10 10 25 25 10 10 25 25 10 10 ...
##  $ Lpre  : int  5 5 5 5 10 10 10 10 5 5 ...
##  $ FirT  : int  1580 1580 1580 1580 1580 1580 1580 1580 1620 1620 ...
##  $ Firct : num  17.5 29 29 17.5 29 17.5 17.5 29 17.5 29 ...
##  $ Fidp  : int  20 26 20 26 26 20 26 20 26 20 ...
##  $ Cam1  : num  0.0167 0.0062 0.0041 0.0073 0.0047 0.0219 0.0121 0.0255 0.0032 0.0078 ...
##  $ Cam2  : num  0.0128 0.0066 0.0043 0.0081 0.0047 0.0258 0.009 0.025 0.0023 0.0158 ...
##  $ Cam3  : num  0.0149 0.0044 0.0042 0.0039 0.004 0.0147 0.0092 0.0226 0.0077 0.006 ...
##  $ Cam4  : num  0.0185 0.002 0.005 0.003 0.0089 0.0296 0.0086 0.0169 0.0069 0.0045 ...
##  $ Total : int  629 192 176 223 223 920 389 900 201 341 ...
##  $ Mean  : num  157.2 48 44 55.8 55.8 ...
##  $ St.Dev: num  24.42 20.98 4.08 25.02 22.41 ...
table8.28 <- table8.28 %>% mutate(var = St.Dev^2)
table8.28$Ltem <- as.factor(table8.28$Ltem)
table8.28$Ltim <- as.factor(table8.28$Ltim)
table8.28$Lpre <- as.factor(table8.28$Lpre)
table8.28$FirT <- as.factor(table8.28$FirT)
table8.28$Firct <- as.factor(table8.28$Firct)
table8.28$Fidp <- as.factor(table8.28$Fidp)
table8.28
##    Run Ltem Ltim Lpre FirT Firct Fidp   Cam1   Cam2   Cam3   Cam4 Total   Mean
## 1    1   55   10    5 1580  17.5   20 0.0167 0.0128 0.0149 0.0185   629 157.25
## 2    2   75   10    5 1580    29   26 0.0062 0.0066 0.0044 0.0020   192  48.00
## 3    3   55   25    5 1580    29   20 0.0041 0.0043 0.0042 0.0050   176  44.00
## 4    4   75   25    5 1580  17.5   26 0.0073 0.0081 0.0039 0.0030   223  55.75
## 5    5   55   10   10 1580    29   26 0.0047 0.0047 0.0040 0.0089   223  55.75
## 6    6   75   10   10 1580  17.5   20 0.0219 0.0258 0.0147 0.0296   920 230.00
## 7    7   55   25   10 1580  17.5   26 0.0121 0.0090 0.0092 0.0086   389  97.25
## 8    8   75   25   10 1580    29   20 0.0255 0.0250 0.0226 0.0169   900 225.00
## 9    9   55   10    5 1620  17.5   26 0.0032 0.0023 0.0077 0.0069   201  50.25
## 10  10   75   10    5 1620    29   20 0.0078 0.0158 0.0060 0.0045   341  85.25
## 11  11   55   25    5 1620    29   26 0.0043 0.0027 0.0028 0.0028   126  31.50
## 12  12   75   25    5 1620  17.5   20 0.0186 0.0137 0.0158 0.0159   640 160.00
## 13  13   55   10   10 1620    29   20 0.0110 0.0086 0.0101 0.0158   455 113.75
## 14  14   75   10   10 1620  17.5   26 0.0065 0.0109 0.0126 0.0071   371  92.75
## 15  15   55   25   10 1620  17.5   20 0.0155 0.0158 0.0145 0.0145   603 150.75
## 16  16   75   25   10 1620    29   26 0.0093 0.0124 0.0110 0.0133   460 115.00
##    St.Dev        var
## 1  24.418  596.23872
## 2  20.976  439.99258
## 3   4.083   16.67089
## 4  25.025  626.25062
## 5  22.410  502.20810
## 6  63.639 4049.92232
## 7  16.029  256.92884
## 8  39.420 1553.93640
## 9  26.725  714.22563
## 10 50.341 2534.21628
## 11  7.681   58.99776
## 12 20.083  403.32689
## 13 31.120  968.45440
## 14 29.510  870.84010
## 15  6.750   45.56250
## 16 17.450  304.50250

a. The design is a 2^(6-2) 1/4th fractional factorial design.

b. The alias relations in the design are as follows:

Design generators: E = +ABC, F = F = BCD

I = ABCE, I = BCDF, generalized interaction: I = ADEF

c. The effect of the factors on the mean value of the camber:

model8.28 <- lm(Mean~Ltem+Ltim+Lpre+FirT+Firct+Fidp, data = table8.28)
model8.28x <- lm(Mean~Ltem*Ltim*Lpre*FirT*Firct*Fidp, data = table8.28)


summary(model8.28)
## 
## Call:
## lm.default(formula = Mean ~ Ltem + Ltim + Lpre + FirT + Firct + 
##     Fidp, data = table8.28)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.047 -18.609  -2.766  21.078  39.016 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  119.734     22.584   5.302 0.000493 ***
## Ltem75        38.906     17.072   2.279 0.048649 *  
## Ltim25         5.781     17.072   0.339 0.742652    
## Lpre10        56.031     17.072   3.282 0.009499 ** 
## FirT1620     -14.219     17.072  -0.833 0.426474    
## Firct29      -34.469     17.072  -2.019 0.074243 .  
## Fidp26       -77.469     17.072  -4.538 0.001411 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34.14 on 9 degrees of freedom
## Multiple R-squared:  0.8216, Adjusted R-squared:  0.7026 
## F-statistic: 6.907 on 6 and 9 DF,  p-value: 0.005587
DanielPlot(model8.28x, half = TRUE)

MEPlot(model8.28x)

For this part, we only used the mean value provided in the table rather than using the individual values of the cambers themselves. From the linear model we see that the camber temperature, pressure and firing dew point are the most critical factors. These are also visually conspicuous from the main effects plot where temperature and pressure show positive correlations with the response variable whereas the firing dew point shows a significant negative correlation.

d. The effect of the factors on the variability of the camber:

model8.28var <- lm(St.Dev~Ltem+Ltim+Lpre+FirT+Firct+Fidp, data = table8.28)
model8.28varx <- lm(St.Dev~Ltem*Ltim*Lpre*FirT*Firct*Fidp, data = table8.28)


summary(model8.28var)
## 
## Call:
## lm.default(formula = St.Dev ~ Ltem + Ltim + Lpre + FirT + Firct + 
##     Fidp, data = table8.28)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.5305  -6.4099  -0.6943   7.0071  11.6647 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   30.196      6.974   4.330   0.0019 **
## Ltem75        15.903      5.272   3.017   0.0146 * 
## Ltim25       -16.577      5.272  -3.145   0.0118 * 
## Lpre10         5.874      5.272   1.114   0.2940   
## FirT1620      -3.293      5.272  -0.625   0.5478   
## Firct29       -2.337      5.272  -0.443   0.6680   
## Fidp26        -9.256      5.272  -1.756   0.1130   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.54 on 9 degrees of freedom
## Multiple R-squared:  0.7265, Adjusted R-squared:  0.5441 
## F-statistic: 3.984 on 6 and 9 DF,  p-value: 0.03162
DanielPlot(model8.28varx, half = TRUE)

MEPlot(model8.28varx)

For this part, we see that the laminating temperature and time are the significant factors from the linear model and also from the half normal plot. Also from the main effects plot, we see that those two parameters (time and temperature) show the highest level of inclination in the response change with the change in the levels of the factors.

e. In reducing the camber, we reduce the camber mean. First we build our linear model:

model8.28e <- lm(Mean~Ltem*Ltim*Lpre*FirT*Firct*Fidp, data = table8.28)
summary(model8.28e)
## 
## Call:
## lm.default(formula = Mean ~ Ltem * Ltim * Lpre * FirT * Firct * 
##     Fidp, data = table8.28)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (48 not defined because of singularities)
##                                              Estimate Std. Error t value
## (Intercept)                                   157.250        NaN     NaN
## Ltem75                                         10.094        NaN     NaN
## Ltim25                                        -71.375        NaN     NaN
## Lpre10                                         17.844        NaN     NaN
## FirT1620                                      -29.531        NaN     NaN
## Firct29                                       -41.875        NaN     NaN
## Fidp26                                        -77.469        NaN     NaN
## Ltem75:Ltim25                                  37.250        NaN     NaN
## Ltem75:Lpre10                                  44.813        NaN     NaN
## Ltim25:Lpre10                                  71.000        NaN     NaN
## Ltem75:FirT1620                               -25.500        NaN     NaN
## Ltim25:FirT1620                                79.687        NaN     NaN
## Lpre10:FirT1620                                -4.750        NaN     NaN
## Ltem75:Firct29                                     NA         NA      NA
## Ltim25:Firct29                                     NA         NA      NA
## Lpre10:Firct29                                     NA         NA      NA
## FirT1620:Firct29                               14.812        NaN     NaN
## Ltem75:Fidp26                                      NA         NA      NA
## Ltim25:Fidp26                                      NA         NA      NA
## Lpre10:Fidp26                                      NA         NA      NA
## FirT1620:Fidp26                                    NA         NA      NA
## Firct29:Fidp26                                     NA         NA      NA
## Ltem75:Ltim25:Lpre10                               NA         NA      NA
## Ltem75:Ltim25:FirT1620                          2.125        NaN     NaN
## Ltem75:Lpre10:FirT1620                             NA         NA      NA
## Ltim25:Lpre10:FirT1620                        -69.375        NaN     NaN
## Ltem75:Ltim25:Firct29                              NA         NA      NA
## Ltem75:Lpre10:Firct29                              NA         NA      NA
## Ltim25:Lpre10:Firct29                              NA         NA      NA
## Ltem75:FirT1620:Firct29                            NA         NA      NA
## Ltim25:FirT1620:Firct29                            NA         NA      NA
## Lpre10:FirT1620:Firct29                            NA         NA      NA
## Ltem75:Ltim25:Fidp26                               NA         NA      NA
## Ltem75:Lpre10:Fidp26                               NA         NA      NA
## Ltim25:Lpre10:Fidp26                               NA         NA      NA
## Ltem75:FirT1620:Fidp26                             NA         NA      NA
## Ltim25:FirT1620:Fidp26                             NA         NA      NA
## Lpre10:FirT1620:Fidp26                             NA         NA      NA
## Ltem75:Firct29:Fidp26                              NA         NA      NA
## Ltim25:Firct29:Fidp26                              NA         NA      NA
## Lpre10:Firct29:Fidp26                              NA         NA      NA
## FirT1620:Firct29:Fidp26                            NA         NA      NA
## Ltem75:Ltim25:Lpre10:FirT1620                      NA         NA      NA
## Ltem75:Ltim25:Lpre10:Firct29                       NA         NA      NA
## Ltem75:Ltim25:FirT1620:Firct29                     NA         NA      NA
## Ltem75:Lpre10:FirT1620:Firct29                     NA         NA      NA
## Ltim25:Lpre10:FirT1620:Firct29                     NA         NA      NA
## Ltem75:Ltim25:Lpre10:Fidp26                        NA         NA      NA
## Ltem75:Ltim25:FirT1620:Fidp26                      NA         NA      NA
## Ltem75:Lpre10:FirT1620:Fidp26                      NA         NA      NA
## Ltim25:Lpre10:FirT1620:Fidp26                      NA         NA      NA
## Ltem75:Ltim25:Firct29:Fidp26                       NA         NA      NA
## Ltem75:Lpre10:Firct29:Fidp26                       NA         NA      NA
## Ltim25:Lpre10:Firct29:Fidp26                       NA         NA      NA
## Ltem75:FirT1620:Firct29:Fidp26                     NA         NA      NA
## Ltim25:FirT1620:Firct29:Fidp26                     NA         NA      NA
## Lpre10:FirT1620:Firct29:Fidp26                     NA         NA      NA
## Ltem75:Ltim25:Lpre10:FirT1620:Firct29              NA         NA      NA
## Ltem75:Ltim25:Lpre10:FirT1620:Fidp26               NA         NA      NA
## Ltem75:Ltim25:Lpre10:Firct29:Fidp26                NA         NA      NA
## Ltem75:Ltim25:FirT1620:Firct29:Fidp26              NA         NA      NA
## Ltem75:Lpre10:FirT1620:Firct29:Fidp26              NA         NA      NA
## Ltim25:Lpre10:FirT1620:Firct29:Fidp26              NA         NA      NA
## Ltem75:Ltim25:Lpre10:FirT1620:Firct29:Fidp26       NA         NA      NA
##                                              Pr(>|t|)
## (Intercept)                                       NaN
## Ltem75                                            NaN
## Ltim25                                            NaN
## Lpre10                                            NaN
## FirT1620                                          NaN
## Firct29                                           NaN
## Fidp26                                            NaN
## Ltem75:Ltim25                                     NaN
## Ltem75:Lpre10                                     NaN
## Ltim25:Lpre10                                     NaN
## Ltem75:FirT1620                                   NaN
## Ltim25:FirT1620                                   NaN
## Lpre10:FirT1620                                   NaN
## Ltem75:Firct29                                     NA
## Ltim25:Firct29                                     NA
## Lpre10:Firct29                                     NA
## FirT1620:Firct29                                  NaN
## Ltem75:Fidp26                                      NA
## Ltim25:Fidp26                                      NA
## Lpre10:Fidp26                                      NA
## FirT1620:Fidp26                                    NA
## Firct29:Fidp26                                     NA
## Ltem75:Ltim25:Lpre10                               NA
## Ltem75:Ltim25:FirT1620                            NaN
## Ltem75:Lpre10:FirT1620                             NA
## Ltim25:Lpre10:FirT1620                            NaN
## Ltem75:Ltim25:Firct29                              NA
## Ltem75:Lpre10:Firct29                              NA
## Ltim25:Lpre10:Firct29                              NA
## Ltem75:FirT1620:Firct29                            NA
## Ltim25:FirT1620:Firct29                            NA
## Lpre10:FirT1620:Firct29                            NA
## Ltem75:Ltim25:Fidp26                               NA
## Ltem75:Lpre10:Fidp26                               NA
## Ltim25:Lpre10:Fidp26                               NA
## Ltem75:FirT1620:Fidp26                             NA
## Ltim25:FirT1620:Fidp26                             NA
## Lpre10:FirT1620:Fidp26                             NA
## Ltem75:Firct29:Fidp26                              NA
## Ltim25:Firct29:Fidp26                              NA
## Lpre10:Firct29:Fidp26                              NA
## FirT1620:Firct29:Fidp26                            NA
## Ltem75:Ltim25:Lpre10:FirT1620                      NA
## Ltem75:Ltim25:Lpre10:Firct29                       NA
## Ltem75:Ltim25:FirT1620:Firct29                     NA
## Ltem75:Lpre10:FirT1620:Firct29                     NA
## Ltim25:Lpre10:FirT1620:Firct29                     NA
## Ltem75:Ltim25:Lpre10:Fidp26                        NA
## Ltem75:Ltim25:FirT1620:Fidp26                      NA
## Ltem75:Lpre10:FirT1620:Fidp26                      NA
## Ltim25:Lpre10:FirT1620:Fidp26                      NA
## Ltem75:Ltim25:Firct29:Fidp26                       NA
## Ltem75:Lpre10:Firct29:Fidp26                       NA
## Ltim25:Lpre10:Firct29:Fidp26                       NA
## Ltem75:FirT1620:Firct29:Fidp26                     NA
## Ltim25:FirT1620:Firct29:Fidp26                     NA
## Lpre10:FirT1620:Firct29:Fidp26                     NA
## Ltem75:Ltim25:Lpre10:FirT1620:Firct29              NA
## Ltem75:Ltim25:Lpre10:FirT1620:Fidp26               NA
## Ltem75:Ltim25:Lpre10:Firct29:Fidp26                NA
## Ltem75:Ltim25:FirT1620:Firct29:Fidp26              NA
## Ltem75:Lpre10:FirT1620:Firct29:Fidp26              NA
## Ltim25:Lpre10:FirT1620:Firct29:Fidp26              NA
## Ltem75:Ltim25:Lpre10:FirT1620:Firct29:Fidp26       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

So from the estimates we see that the temperature and pressure have negative yield one the camber. Rest of all the factors have a positive yield on the camber.

Based on the mean of the camber value, we have the following linear model equation:

y = 157.250 + 10.094*LamTemp -71.375*LamTIme -17.844*LamPress - 29.534*FireTime - 41.875*FireCycTime - 77.864*FireDew

Hence, to reduce the camber, based on the estimates from our linear model we do the following:

Set to low: Lamination temperature and pressure.

Set to High: Lamination time, Firing temperature, Firing cycle time, and firing dew point. This should reduce the mean of the response variable which is our camber value.

8.40

a. The experiment investigated 4 factors namely: a,b,c,d.

b. There are 4 factors and 8 runs, hence this is a 2^(4-1) design. From table 8.14 we see that this is a resolution 4 design where no main effect is aliased with the two-factor interactions but 2 factor ineractions are aliased with each other.

c. To calculate the estimate of the main effects, we generate our factorial design table and put the response data in:

design8.40 <- FrF2(nfactor = 4, nrun = 8, randomize = FALSE)
summary(design8.40)
## Call:
## FrF2(nfactor = 4, nrun = 8, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2
response8.40 <- c(8,10,12,7,13,6,5,11)
design8.40 <- add.response(design8.40, response8.40)

Now, we determine the estimates of the main effects:

coef(lm(design8.40))[-1]*2
##    A1    B1    C1    D1 A1:B1 A1:C1 A1:D1 
##  -1.0  -0.5  -0.5   5.0   1.5   0.5  -1.0

So the effect estimates are

A = -1

B = - 0.5

C = - 0.5

D = 5

d. The complete defining relationship for this design is:

generators(design8.40)
## $generators
## [1] "D=ABC"

So from the generator information provided to us by FrF2 package, defining relationship, I = ABCD

8.48

a. Based on manual observation, the generator for D = -(abc)

b. generator for E = BC

c. Now, we generate the table exactly as provided in the original question using the FrF2 package:

design8.48 <- FrF2(nfactors = 5, nruns = 8, generators = c("-ABC","BC"), randomize = FALSE)
summary(design8.48)
## Call:
## FrF2(nfactors = 5, nruns = 8, generators = c("-ABC", "BC"), randomize = FALSE)
## 
## Experimental design of type  FrF2.generators 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] D=-ABC E=BC  
## 
## 
## Alias structure:
## $main
## [1] A=-DE    B=CE     C=BE     D=-AE    E=-AD=BC
## 
## $fi2
## [1] AB=-CD AC=-BD
## 
## 
## The design itself:
##    A  B  C  D  E
## 1 -1 -1 -1  1  1
## 2  1 -1 -1 -1  1
## 3 -1  1 -1 -1 -1
## 4  1  1 -1  1 -1
## 5 -1 -1  1 -1 -1
## 6  1 -1  1  1 -1
## 7 -1  1  1  1  1
## 8  1  1  1 -1  1
## class=design, type= FrF2.generators

Now, if we have a full fold-over:

design8.48fold <- fold.design(design8.48)
summary(design8.48fold)
## Multi-step-call:
## [[1]]
## FrF2(nfactors = 5, nruns = 8, generators = c("-ABC", "BC"), randomize = FALSE)
## 
## $fold
## [1] full
## 
## 
## Experimental design of type  FrF2.generators.folded 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C     fold  D  E
## 1 -1 -1 -1 original -1 -1
## 2  1  1  1   mirror  1  1
## 
## Design generating information:
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E   
## 
## 
## Alias structure:
## $fi2
## [1] AB=-CE    AC=-BE    AD=EF     AE=-BC=DF AF=DE     BD=-CF    BF=-CD   
## 
## 
## The design itself:
##     A  B  C     fold  D  E
## 1  -1 -1 -1 original  1  1
## 2   1 -1 -1 original -1  1
## 3  -1  1 -1 original -1 -1
## 4   1  1 -1 original  1 -1
## 5  -1 -1  1 original -1 -1
## 6   1 -1  1 original  1 -1
## 7  -1  1  1 original  1  1
## 8   1  1  1 original -1  1
## 9   1  1  1   mirror -1 -1
## 10 -1  1  1   mirror  1 -1
## 11  1 -1  1   mirror  1  1
## 12 -1 -1  1   mirror -1  1
## 13  1  1 -1   mirror  1  1
## 14 -1  1 -1   mirror -1  1
## 15  1 -1 -1   mirror -1 -1
## 16 -1 -1 -1   mirror  1 -1
## class=design, type= FrF2.generators.folded

From the folded design, we see that none of the main factors are confounded with the 2 factor interactions but the 2 factor interactions are confounded with each other. So this is a resolution 4 design after the full fold over.

8.60

We first construct our table as per the information provided:

design8.60 <- FrF2(nfactors = 7, resolution = 3, randomize = FALSE)
summary(design8.60)
## Call:
## FrF2(nfactors = 7, resolution = 3, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $generators
## [1] D=AB  E=AC  F=BC  G=ABC
## 
## 
## Alias structure:
## $main
## [1] A=BD=CE=FG B=AD=CF=EG C=AE=BF=DG D=AB=CG=EF E=AC=BG=DF F=AG=BC=DE G=AF=BE=CD
## 
## 
## The design itself:
##    A  B  C  D  E  F  G
## 1 -1 -1 -1  1  1  1 -1
## 2  1 -1 -1 -1 -1  1  1
## 3 -1  1 -1 -1  1 -1  1
## 4  1  1 -1  1 -1 -1 -1
## 5 -1 -1  1  1 -1 -1  1
## 6  1 -1  1 -1  1 -1 -1
## 7 -1  1  1 -1 -1  1 -1
## 8  1  1  1  1  1  1  1
## class=design, type= FrF2

Now, we perform a full fold-over:

design8.60fullful <- fold.design(design8.60)
summary(design8.60fullful)
## Multi-step-call:
## [[1]]
## FrF2(nfactors = 7, resolution = 3, randomize = FALSE)
## 
## $fold
## [1] full
## 
## 
## Experimental design of type  FrF2.folded 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C     fold  D  E  F  G
## 1 -1 -1 -1 original -1 -1 -1 -1
## 2  1  1  1   mirror  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## 
## Alias structure:
## $fi2
## [1] AB=CH=-DE=FG   AC=BH=-DF=EG   AD=-BE=-CF=-GH AE=-BD=CG=FH   AF=BG=-CD=EH  
## [6] AG=BF=CE=-DH   AH=BC=-DG=EF  
## 
## 
## The design itself:
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1  1  1   mirror -1 -1 -1  1
## 10 -1  1  1   mirror  1  1 -1 -1
## 11  1 -1  1   mirror  1 -1  1 -1
## 12 -1 -1  1   mirror -1  1  1  1
## 13  1  1 -1   mirror -1  1  1 -1
## 14 -1  1 -1   mirror  1 -1  1  1
## 15  1 -1 -1   mirror  1  1 -1  1
## 16 -1 -1 -1   mirror -1 -1 -1 -1
## class=design, type= FrF2.folded

For partial fold over just the factor A:

design8.60A <- fold.design(design8.60, column = +1)
summary(design8.60A)
## Multi-step-call:
## [[1]]
## FrF2(nfactors = 7, resolution = 3, randomize = FALSE)
## 
## $fold
## [1] 1
## 
## 
## Experimental design of type  FrF2.folded 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C     fold  D  E  F  G
## 1 -1 -1 -1 original -1 -1 -1 -1
## 2  1  1  1   mirror  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## 
## Alias structure:
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG        
## 
## 
## The design itself:
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded

From the output of the FrF2 package, we get the alias structure of the main effects are given by:

B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE

Full Code Chunk:

install.packages("FrF2")
library(FrF2)
library(tidyverse)

#Problem 8.2
design8.2 <- FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
#We choose the response based on I = +ABCD from the original 6.15 table; also match the sequence of +/- with our generated table
response8.2 <- c(7.037,16.867,13.876,17.273,11.846,4.368,9.360,15.653)
design8.2mod <- add.response(design8.2, response8.2)
DanielPlot(design8.2mod)
MEPlot(design8.2mod)

#Problem 8.24
?FrF2
design8.24 <- FrF2(nfactor = 5, blocks = 2, nruns = 16)
design8.24
aliasprint(design8.24)
summary(design8.24)
#how to interpret this table and say which main/2-way interaction are confounded with the blocks?

#Problem 8.25
?FrF2
design8.25 <- FrF2(nfactor = 7, nruns = 32)
design8.25
aliasprint(design8.25)
summary(design8.25)
#how to interpret this table and say which main/2-way interaction are confounded with the blocks?

#problem 8.28
design8.28 <- FrF2(nfactor = 6, nrun = 16)
summary(design8.28)

table8.28 <- read.csv(file.choose())
table8.28 <- as.data.frame(table8.28)
str(table8.28)
table8.28 <- table8.28 %>% mutate(var = St.Dev^2)
table8.28$Ltem <- as.factor(table8.28$Ltem)
table8.28$Ltim <- as.factor(table8.28$Ltim)
table8.28$Lpre <- as.factor(table8.28$Lpre)
table8.28$FirT <- as.factor(table8.28$FirT)
table8.28$Firct <- as.factor(table8.28$Firct)
table8.28$Fidp <- as.factor(table8.28$Fidp)

model8.28 <- lm(Mean~Ltem+Ltim+Lpre+FirT+Firct+Fidp, data = table8.28)


summary(model8.28)
DanielPlot(model8.28)
MEPlot(model8.28)

model8.28var <- lm(St.Dev~Ltem+Ltim+Lpre+FirT+Firct+Fidp, data = table8.28)


summary(model8.28var)
DanielPlot(model8.28var)
MEPlot(model8.28var)
#Are we supposed to use the "Mean" column or use all the camber replicate column?

#Var-Interacting all of them
model8.28var <- lm(var~Ltem*Ltim*Lpre*FirT*Firct*Fidp, data = table8.28)
summary(model8.28var)
DanielPlot(model8.28var)

#Var-only additive main effects
model8.28var <- lm(St.Dev~Ltem+Ltim+Lpre+FirT+Firct+Fidp, data = table8.28)
summary(model8.28var)
DanielPlot(model8.28var)

#If we use interacting all of them--we don't get any significance; if we use additive--we don't get any daniel plots
#Don't know how to do part E

#problem 8.40
#four factors investigated
#resolution is 4
design8.40 <- FrF2(nfactor = 4, nrun = 8, randomize = FALSE)
summary(design8.40)
response8.40 <- c(8,10,12,7,13,6,5,11)
design8.40 <- add.response(design8.40, response8.40)
coef(lm(design8.40))

#Problem with figuring out the effect
#Problem with question D ("Complete Defining Relationship?")


#problem 8.48
design8.48 <- FrF2(nfactors = 5, nruns = 8, generators = c("-ABC","BC"), randomize = FALSE)
summary(design8.48)
design8.48fold <- fold.design(design8.48)
summary(design8.48fold)
#Res4 design after fold cause no main effect is confounded with a 2 factor-inter but 2 factors inters are confounded with each other

design8.60 <- FrF2(nfactors = 7, resolution = 3, randomize = FALSE)
summary(design8.60)
design8.60fullful <- fold.design(design8.60)
summary(design8.60fullful)
design8.60A <- fold.design(design8.60, column = 1)
summary(design8.60A)