DOE HOMEWORK WEEK 13


Question-8.2

Construct the design and perform the analysis, using the data from replicate I

library(FrF2)
## Warning: package 'FrF2' was built under R version 4.2.2
## Loading required package: DoE.base
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths

One half fraction design for 2^4 design which gives 2^(K-p) where K=4 and P=1 and I is the replicateI which gives relation between A,B,C,D

dsn <- FrF2(nfactors = 4,resolution = 4,randomize = FALSE)
aliasprint(dsn)
## $legend
## [1] A=A B=B C=C D=D
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CD AC=BD AD=BC

Taking the data from problem 6.15

repI<-c(7.037,16.867,13.876,17.273,11.846,4.368,9.360,15.653)
repI
## [1]  7.037 16.867 13.876 17.273 11.846  4.368  9.360 15.653
dsn
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2
dsnrepI<-add.response(dsn,repI)
dsnrepI
##    A  B  C  D   repI
## 1 -1 -1 -1 -1  7.037
## 2  1 -1 -1  1 16.867
## 3 -1  1 -1  1 13.876
## 4  1  1 -1 -1 17.273
## 5 -1 -1  1  1 11.846
## 6  1 -1  1 -1  4.368
## 7 -1  1  1 -1  9.360
## 8  1  1  1  1 15.653
## class=design, type= FrF2
summary(dsnrepI)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] repI
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D   repI
## 1 -1 -1 -1 -1  7.037
## 2  1 -1 -1  1 16.867
## 3 -1  1 -1  1 13.876
## 4  1  1 -1 -1 17.273
## 5 -1 -1  1  1 11.846
## 6  1 -1  1 -1  4.368
## 7 -1  1  1 -1  9.360
## 8  1  1  1  1 15.653
## class=design, type= FrF2

Doing a plot to check the factor significance

halfnormal(dsnrepI)
## 
## The following effects are completely aliased:
## [1] B:C B:D C:D
## no significant effects

MEPlot(dsnrepI)

From the halfnormal probability plot we can see The effects are aliased and no significant effects in the factors affecting cracklength The main affects of B and D are slightly different mean deviation than A & C


Question-8.24

Constructing a 2^(5-1) design to Show how the design may be run in two blocks of eight observations each. Testing whether there are any main affects of Two-factor interactions confounded with blocks Where K=5 and p=1

dgn<-FrF2(nfactors = 5,nruns = 16,blocks = 2,randomize = TRUE)
dgn
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1        15.1.8      1  1  1  1 -1  1
## 2      2         1.1.1      1 -1 -1 -1 -1 -1
## 3      3        13.1.7      1  1  1 -1 -1 -1
## 4      4         8.1.4      1 -1  1  1  1 -1
## 5      5         6.1.3      1 -1  1 -1  1  1
## 6      6        10.1.5      1  1 -1 -1  1  1
## 7      7        12.1.6      1  1 -1  1  1 -1
## 8      8         3.1.2      1 -1 -1  1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9        16.2.8      2  1  1  1  1  1
## 10     10         9.2.5      2  1 -1 -1 -1  1
## 11     11        11.2.6      2  1 -1  1 -1 -1
## 12     12        14.2.7      2  1  1 -1  1 -1
## 13     13         4.2.2      2 -1 -1  1  1  1
## 14     14         5.2.3      2 -1  1 -1 -1  1
## 15     15         7.2.4      2 -1  1  1 -1 -1
## 16     16         2.2.1      2 -1 -1 -1  1 -1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
aliasprint(dgn)
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE AC=BE AE=BC
summary(dgn)
## Call:
## FrF2(nfactors = 5, nruns = 16, blocks = 2, randomize = TRUE)
## 
## Experimental design of type  FrF2.blocked 
## 16  runs
## blocked design with  2  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $`generators for design itself`
## [1] E=ABC
## 
## $`block generators`
## [1] ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE AC=BE AE=BC
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1        15.1.8      1  1  1  1 -1  1
## 2      2         1.1.1      1 -1 -1 -1 -1 -1
## 3      3        13.1.7      1  1  1 -1 -1 -1
## 4      4         8.1.4      1 -1  1  1  1 -1
## 5      5         6.1.3      1 -1  1 -1  1  1
## 6      6        10.1.5      1  1 -1 -1  1  1
## 7      7        12.1.6      1  1 -1  1  1 -1
## 8      8         3.1.2      1 -1 -1  1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9        16.2.8      2  1  1  1  1  1
## 10     10         9.2.5      2  1 -1 -1 -1  1
## 11     11        11.2.6      2  1 -1  1 -1 -1
## 12     12        14.2.7      2  1  1 -1  1 -1
## 13     13         4.2.2      2 -1 -1  1  1  1
## 14     14         5.2.3      2 -1  1 -1 -1  1
## 15     15         7.2.4      2 -1  1  1 -1 -1
## 16     16         2.2.1      2 -1 -1 -1  1 -1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

From the design we can see there are no main effects or two factor interactions confounded with the blocks The affect confounded with the block is ABD


Question-8.25

Constructing a 2^(7-2) design to show if design may be run in four blocks of eight observations each Where k=7 and p=2

dmn<-FrF2(nfactors = 7,nruns = 32,blocks = 4,randomize = TRUE)
dmn
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 2      2        20.1.5      1  1 -1 -1  1  1  1 -1
## 3      3        16.1.4      1 -1  1  1  1  1 -1 -1
## 4      4        27.1.7      1  1  1 -1  1 -1 -1  1
## 5      5        22.1.6      1  1 -1  1 -1  1 -1  1
## 6      6        10.1.3      1 -1  1 -1 -1  1  1  1
## 7      7        29.1.8      1  1  1  1 -1 -1  1 -1
## 8      8         7.1.2      1 -1 -1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9        30.2.8      2  1  1  1 -1  1  1 -1
## 10     10        28.2.7      2  1  1 -1  1  1 -1  1
## 11     11         8.2.2      2 -1 -1  1  1  1  1  1
## 12     12         9.2.3      2 -1  1 -1 -1 -1  1  1
## 13     13         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 14     14        21.2.6      2  1 -1  1 -1 -1 -1  1
## 15     15        15.2.4      2 -1  1  1  1 -1 -1 -1
## 16     16        19.2.5      2  1 -1 -1  1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17        14.3.4      3 -1  1  1 -1  1 -1  1
## 18     18        31.3.8      3  1  1  1  1 -1  1  1
## 19     19         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 20     20        24.3.6      3  1 -1  1  1  1 -1 -1
## 21     21        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 22     22        18.3.5      3  1 -1 -1 -1  1  1  1
## 23     23        12.3.3      3 -1  1 -1  1  1  1 -1
## 24     24         3.3.1      3 -1 -1 -1  1 -1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25        17.4.5      4  1 -1 -1 -1 -1  1  1
## 26     26        26.4.7      4  1  1 -1 -1  1 -1 -1
## 27     27         6.4.2      4 -1 -1  1 -1  1  1 -1
## 28     28        11.4.3      4 -1  1 -1  1 -1  1 -1
## 29     29        23.4.6      4  1 -1  1  1 -1 -1 -1
## 30     30         4.4.1      4 -1 -1 -1  1  1 -1  1
## 31     31        32.4.8      4  1  1  1  1  1  1  1
## 32     32        13.4.4      4 -1  1  1 -1 -1 -1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
aliasprint(dmn)
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF
summary(dmn)
## Call:
## FrF2(nfactors = 7, nruns = 32, blocks = 4, randomize = TRUE)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 2      2        20.1.5      1  1 -1 -1  1  1  1 -1
## 3      3        16.1.4      1 -1  1  1  1  1 -1 -1
## 4      4        27.1.7      1  1  1 -1  1 -1 -1  1
## 5      5        22.1.6      1  1 -1  1 -1  1 -1  1
## 6      6        10.1.3      1 -1  1 -1 -1  1  1  1
## 7      7        29.1.8      1  1  1  1 -1 -1  1 -1
## 8      8         7.1.2      1 -1 -1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9        30.2.8      2  1  1  1 -1  1  1 -1
## 10     10        28.2.7      2  1  1 -1  1  1 -1  1
## 11     11         8.2.2      2 -1 -1  1  1  1  1  1
## 12     12         9.2.3      2 -1  1 -1 -1 -1  1  1
## 13     13         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 14     14        21.2.6      2  1 -1  1 -1 -1 -1  1
## 15     15        15.2.4      2 -1  1  1  1 -1 -1 -1
## 16     16        19.2.5      2  1 -1 -1  1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17        14.3.4      3 -1  1  1 -1  1 -1  1
## 18     18        31.3.8      3  1  1  1  1 -1  1  1
## 19     19         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 20     20        24.3.6      3  1 -1  1  1  1 -1 -1
## 21     21        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 22     22        18.3.5      3  1 -1 -1 -1  1  1  1
## 23     23        12.3.3      3 -1  1 -1  1  1  1 -1
## 24     24         3.3.1      3 -1 -1 -1  1 -1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25        17.4.5      4  1 -1 -1 -1 -1  1  1
## 26     26        26.4.7      4  1  1 -1 -1  1 -1 -1
## 27     27         6.4.2      4 -1 -1  1 -1  1  1 -1
## 28     28        11.4.3      4 -1  1 -1  1 -1  1 -1
## 29     29        23.4.6      4  1 -1  1  1 -1 -1 -1
## 30     30         4.4.1      4 -1 -1 -1  1  1 -1  1
## 31     31        32.4.8      4  1  1  1  1  1  1  1
## 32     32        13.4.4      4 -1  1  1 -1 -1 -1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

There are no main and two-factor interaction affects confounded with the block The affects confounded with block are ACD & ABE


Question-8.28

A 16-run experiment was performed in a semiconductor manufacturing plant to study the effects of six factors on the curvature or camber of the substrate devices produced.

Part-a

In this experiment a 2^(6-2) design is used by the experimenters Where k=6,p=2

drt<-FrF2(nfactors = 6,nruns = 16,randomize = FALSE)
drt
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1  1
## 4   1  1 -1 -1 -1 -1
## 5  -1 -1  1 -1  1 -1
## 6   1 -1  1 -1 -1  1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1 -1
## 12  1  1 -1  1 -1  1
## 13 -1 -1  1  1  1  1
## 14  1 -1  1  1 -1 -1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2
summary(drt)
## Call:
## FrF2(nfactors = 6, nruns = 16, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $generators
## [1] E=ABC F=ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE   
## 
## 
## The design itself:
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1  1
## 4   1  1 -1 -1 -1 -1
## 5  -1 -1  1 -1  1 -1
## 6   1 -1  1 -1 -1  1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1 -1
## 12  1  1 -1  1 -1  1
## 13 -1 -1  1  1  1  1
## 14  1 -1  1  1 -1 -1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2

Part-b

aliasprint(drt)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE

Part-c

To check whether the process variables affects the average camber

Taking the data of the camber for replicate

obs<-c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.0110,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.0090,0.0250,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.0040,0.0147,0.0092,0.0226,0.0077,0.0060,0.0028,0.0158,0.0101,0.0126,0.0145,0.0110,0.0185,0.0020,0.0050,0.0030,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
R1 <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
R2 <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
R3 <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
R4 <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
R5 <- c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1)
R6 <- c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)

Taking the data as factors

R1 <- as.factor(R1)
R2 <- as.factor(R2)
R3 <- as.factor(R3)
R4 <- as.factor(R4)
R5 <- as.factor(R5)
R6 <- as.factor(R6)

Making the data into data frame

RTD <- data.frame(R1,R2,R3,R4,R5,R6,obs)

Doing the anova analysis to test whether the variables are affecting the average camber

av.mdl <- aov(obs~R1*R2*R3*R4*R5*R6,data = RTD)
summary(av.mdl)
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## R1           1 0.0002422 0.0002422  27.793 3.17e-06 ***
## R2           1 0.0000053 0.0000053   0.614  0.43725    
## R3           1 0.0005023 0.0005023  57.644 9.14e-10 ***
## R4           1 0.0000323 0.0000323   3.712  0.05995 .  
## R5           1 0.0001901 0.0001901  21.815 2.45e-05 ***
## R6           1 0.0009602 0.0009602 110.192 5.05e-14 ***
## R1:R2        1 0.0000587 0.0000587   6.738  0.01249 *  
## R1:R3        1 0.0000803 0.0000803   9.218  0.00387 ** 
## R2:R3        1 0.0000527 0.0000527   6.053  0.01754 *  
## R1:R4        1 0.0000239 0.0000239   2.741  0.10431    
## R2:R4        1 0.0000849 0.0000849   9.739  0.00305 ** 
## R3:R4        1 0.0000622 0.0000622   7.139  0.01027 *  
## R4:R5        1 0.0000088 0.0000088   1.007  0.32062    
## R1:R2:R4     1 0.0000000 0.0000000   0.005  0.94291    
## R2:R3:R4     1 0.0000481 0.0000481   5.523  0.02293 *  
## Residuals   48 0.0004183 0.0000087                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The variables affecting the Average camber are R1(Lamination temperature),R3(Lamination Pressure),R5(Firing cycle time),R6(Firing Dew Point)

Part-d

Process variables affecting the variability in camber measurements Taking the data

std <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
RTDSD <- data.frame(R1,R2,R3,R4,R5,R6,std)
RTDSD
##    R1 R2 R3 R4 R5 R6    std
## 1  -1 -1 -1 -1 -1 -1 24.418
## 2   1 -1 -1 -1  1  1 20.976
## 3  -1  1 -1 -1  1 -1  4.083
## 4   1  1 -1 -1 -1  1 25.025
## 5  -1 -1  1 -1  1  1 22.410
## 6   1 -1  1 -1 -1 -1 63.639
## 7  -1  1  1 -1 -1  1 16.029
## 8   1  1  1 -1  1 -1 39.420
## 9  -1 -1 -1  1 -1  1 26.725
## 10  1 -1 -1  1  1 -1 50.341
## 11 -1  1 -1  1  1  1  7.681
## 12  1  1 -1  1 -1 -1 20.083
## 13 -1 -1  1  1  1 -1 31.120
## 14  1 -1  1  1 -1  1 29.510
## 15 -1  1  1  1 -1 -1  6.750
## 16  1  1  1  1  1  1 17.450

Doing an anova analysis

aovb<-aov(std~R1+R2+R3+R4+R5+R6)
summary(aovb)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## R1           1 1011.7  1011.7   9.101 0.0146 *
## R2           1 1099.2  1099.2   9.889 0.0118 *
## R3           1  138.0   138.0   1.242 0.2940  
## R4           1   43.4    43.4   0.390 0.5478  
## R5           1   21.9    21.9   0.197 0.6680  
## R6           1  342.7   342.7   3.083 0.1130  
## Residuals    9 1000.4   111.2                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MEPlot(aovb)

From the anova analysis and main effect plot we can see that R1(Lamination temperature) & R2(Lamination time) affect the variability in camber measurements

Part-e

Recommendations to reduce camber as much as possible

coefficients(av.mdl)
##  (Intercept)          R11          R21          R31          R41          R51 
##  0.015725000  0.001009375 -0.007137500  0.001784375 -0.002953125 -0.004187500 
##          R61      R11:R21      R11:R31      R21:R31      R11:R41      R21:R41 
## -0.007746875  0.003725000  0.004481250  0.007100000 -0.002550000  0.007968750 
##      R31:R41      R41:R51  R11:R21:R41  R21:R31:R41 
## -0.000475000  0.001481250  0.000212500 -0.006937500

The equation of this experiment \[Y_{ijkl}=0.015725000(Intercept)+0.001009375(Lamination temp)+0.001784375(Lamination Pressure)+(-0.004187500)(Firing Cycle)+(-0.007746875)(Firing Dew point)\]

From the experiment data we can say that the process variables affecting the camber should be be balanced in such a way that it does not affect the average camber.


QUESTION 8.40

Consider the following experiment:

Part A

How many factors did this experiment investigate? This experiment investigated “Four” Factors.

Part B

What is the resolution of this design? Resolution of the design employed in this experiment is “Four”.

Part C

Effects are as under:

One <- c(8)
AD <- c(10)
BD <- c(12)
AB <- c(7)
CD <- c(13)
AC <- c(6)
BC <- c(5)
ABCD <- c(11)
EffA <- (2*(AD+AB+AC+ABCD-One-BD-CD-BC))/(16)
EffA
## [1] -0.5
EffB <- (2*(BD+AB+BC+ABCD-One-AD-CD-AC))/(16)
EffB
## [1] -0.25
EffC <- (2*(CD+AC+BC+ABCD-One-AD-BD-AB))/(16)
EffC
## [1] -0.25
EffD <- (2*(AD+BD+CD+ABCD-One-AB-AC-BC))/(16)
EffD
## [1] 2.5

Part D Defining relation for this design is I = ABCD.


Question 8.48

Consider the following design:

Part A

What is the generator for column D? If we tally the readings in column D we can see that the design generator for column D is -ABC.

Part B

What is the generator for column E? If we tally the readings in column E we can see that the design generator for column E is BC.

Part C

If this design were folded over, what is the resolution of the combined design? Resolution of folded over design is “Four”.


Question 8.60

Consider a partial fold over for the design.Suppose that the partial fold over of this design is constructed using column A ( + signs only). Determine the alias relationships in the combined design.

dsg <- FrF2(nfactors=7,resolution=3,randomize=FALSE)
dsg 
##    A  B  C  D  E  F  G
## 1 -1 -1 -1  1  1  1 -1
## 2  1 -1 -1 -1 -1  1  1
## 3 -1  1 -1 -1  1 -1  1
## 4  1  1 -1  1 -1 -1 -1
## 5 -1 -1  1  1 -1 -1  1
## 6  1 -1  1 -1  1 -1 -1
## 7 -1  1  1 -1 -1  1 -1
## 8  1  1  1  1  1  1  1
## class=design, type= FrF2
dsg2 <- fold.design(dsg,column=1)
dsg2
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded
dsg3 <- dsg2[-c(1,3,5,7,10,12,14,16),]
dsg3
##    A  B  C     fold  D  E  F  G
## 2  1 -1 -1 original -1 -1  1  1
## 4  1  1 -1 original  1 -1 -1 -1
## 6  1 -1  1 original -1  1 -1 -1
## 8  1  1  1 original  1  1  1  1
## 9  1 -1 -1   mirror  1  1  1 -1
## 11 1  1 -1   mirror -1  1 -1  1
## 13 1 -1  1   mirror  1 -1 -1  1
## 15 1  1  1   mirror -1 -1  1 -1
aliasprint(dsg2)
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG