From Julie Butler and Peggy Kerns PERMA & EPOCH

Items

  1. How much of the time do you feel you are making progress towards accomplishing your goals? (Acomplishment)

  2. How often do you become absorbed in what you are doing? (Engagement)

  3. In general, how often do you feel joyful? (Positive Emotion)

  4. To what extent do you receive help and support from others when you need it? (Relationship)

  5. In general, how often do you feel anxious? (Negative Emotion)

  6. How often do you achieve the important goals you have set for yourself? (Acomplishment)

  7. In general, how often do you feel positive? (Positive Emotion)

  8. In general, to what extent do you feel excited and interested in things? (Enagagement)

  9. How lonely do you feel in your daily life? (Lonely -single item)

  10. In general, how often do you feel angry? (Negative Emotion)

  11. To what extent have you been feeling loved? (Relationship)

  12. How often are you able to handle your responsibilities? (Acomplishment)

  13. How satisfied are you with your personal relationships? (Relationship)

  14. In general, how often do you feel sad? (Nagative Emotion)

  15. How often do you lose track of time while doing something you enjoy? (Engagement)

  16. In general, to what extent do you feel contented? (Positive Emotion)

  17. Taking all things together, how happy would you say you are? (Happiness -single item)

library(lavaan)
## This is lavaan 0.5-18
## lavaan is BETA software! Please report any bugs.
library(semPlot)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)

loadthedata

data <- read.csv("~/Psychometric_study_data/allsurveysYT1.csv")
View(data)

create the models

seven.model= 'Acomplishment =~ PERMA_1  + PERMA_6 + PERMA_12
              Engagement =~ PERMA_2 +  PERMA_8 + PERMA_15 
              Positive Emotion =~ PERMA_3 + PERMA_7 + PERMA_16
              Relationship =~ PERMA_4 + PERMA_11 + PERMA_13 
              Negative Emotion =~ PERMA_5 + PERMA_10 + PERMA_14
              Lonely =~ PERMA_9  
              Happy =~ PERMA_17'

one.model= 'One =~ PERMA_1  + PERMA_2 + PERMA_3 + PERMA_4 +  PERMA_5 + PERMA_6 + PERMA_7 + PERMA_8 + PERMA_9 + 
PERMA_10 + PERMA_11 + PERMA_12 + PERMA_13 + PERMA_14 + PERMA_15 + PERMA_16  + PERMA_17'

run the models

seven.fit=cfa(seven.model, data=data, missing="fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   14 15 16 20 25 26 27 28 29 32 33 34 35 37 39 41 42 44 51 55 56 59 60 66 70 73 74 75 76 77 78 80 81 83 84 87 88 90 91 92 93 96 98 99 101 104 106 107 108 111 112 114 116 118 119 121 124 126 127 128 130 131 132 133 134 138 142 144 147 149 150 151 153 156 159 160 169 170 171 172 174 175 178 179 184 185 186 188 190 191 193 195 196 202 204 208 213 214 215 216 219 220 221 224 226 229 231 234 237 238 240 243 244 248 252 254 255 256 258 259 261 264 265 266 268 269 270 271 272 273 274 275 276 277 278 279 280 281 283 284 285 288 289 290 293 294 301 302 303 304 305 306 307 308 309 310 311 312 314 320 321 322 323 324 325 326 327 328 329 331 332 333 334 335 336 338 340 348 349 350 351 352 356 357 358 359 360 361 363 364 366 367 368 369 371 372 374 376 377 378 379 380 382 385 386 389 390 394 395 397 399 443 444 445 446 447 448 449 450 452 453 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 485 486 488 489 490 491 492 493 494 495 496 497 498 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
one.fit=cfa(one.model, data=data, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   14 15 16 20 25 26 27 28 29 32 33 34 35 37 39 41 42 44 51 55 56 59 60 66 70 73 74 75 76 77 78 80 81 83 84 87 88 90 91 92 93 96 98 99 101 104 106 107 108 111 112 114 116 118 119 121 124 126 127 128 130 131 132 133 134 138 142 144 147 149 150 151 153 156 159 160 169 170 171 172 174 175 178 179 184 185 186 188 190 191 193 195 196 202 204 208 213 214 215 216 219 220 221 224 226 229 231 234 237 238 240 243 244 248 252 254 255 256 258 259 261 264 265 266 268 269 270 271 272 273 274 275 276 277 278 279 280 281 283 284 285 288 289 290 293 294 301 302 303 304 305 306 307 308 309 310 311 312 314 320 321 322 323 324 325 326 327 328 329 331 332 333 334 335 336 338 340 348 349 350 351 352 356 357 358 359 360 361 363 364 366 367 368 369 371 372 374 376 377 378 379 380 382 385 386 389 390 394 395 397 399 443 444 445 446 447 448 449 450 452 453 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 485 486 488 489 490 491 492 493 494 495 496 497 498 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

create pictures

semPaths(seven.fit, whatLabels = "std", layout = "tree")

semPaths(one.fit, whatLabels = "std", layout = "tree")

#summaries

summary(seven.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after 200 iterations
## 
##                                                   Used       Total
##   Number of observations                           237         670
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              134.168
##   Degrees of freedom                               100
##   P-value (Chi-square)                           0.013
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Acomplishment =~
##     PERMA_1           1.000                               1.921    0.765
##     PERMA_6           0.791    0.092    8.569    0.000    1.520    0.602
##     PERMA_12          0.802    0.089    8.981    0.000    1.541    0.632
##   Engagement =~
##     PERMA_2           1.000                               1.558    0.646
##     PERMA_8           0.997    0.127    7.847    0.000    1.553    0.664
##     PERMA_15          0.657    0.124    5.289    0.000    1.024    0.393
##   PositiveEmotion =~
##     PERMA_3           1.000                               1.739    0.747
##     PERMA_7           1.172    0.095   12.299    0.000    2.037    0.789
##     PERMA_16          0.920    0.093    9.879    0.000    1.599    0.658
##   Relationship =~
##     PERMA_4           1.000                               1.371    0.480
##     PERMA_11          1.443    0.225    6.416    0.000    1.979    0.689
##     PERMA_13          1.244    0.208    5.978    0.000    1.706    0.586
##   NegativeEmotion =~
##     PERMA_5           1.000                               1.424    0.443
##     PERMA_10          0.695    0.277    2.513    0.012    0.990    0.293
##     PERMA_14          1.027    0.437    2.353    0.019    1.463    0.438
##   Lonely =~
##     PERMA_9           1.000                               3.710    1.000
##   Happy =~
##     PERMA_17          1.000                               2.569    1.000
## 
## Covariances:
##   Acomplishment ~~
##     Engagement        2.556    0.385    6.634    0.000    0.854    0.854
##     PositiveEmotn     2.961    0.394    7.517    0.000    0.886    0.886
##     Relationship      2.210    0.415    5.328    0.000    0.839    0.839
##     NegativeEmotn    -0.422    0.360   -1.174    0.241   -0.154   -0.154
##     Lonely           -1.491    0.554   -2.691    0.007   -0.209   -0.209
##     Happy             2.755    0.436    6.314    0.000    0.558    0.558
##   Engagement ~~
##     PositiveEmotn     2.355    0.348    6.761    0.000    0.869    0.869
##     Relationship      1.851    0.365    5.077    0.000    0.866    0.866
##     NegativeEmotn    -0.028    0.305   -0.092    0.927   -0.013   -0.013
##     Lonely           -0.092    0.479   -0.193    0.847   -0.016   -0.016
##     Happy             2.284    0.387    5.909    0.000    0.570    0.570
##   PositiveEmotion ~~
##     Relationship      2.062    0.374    5.509    0.000    0.865    0.865
##     NegativeEmotn    -0.861    0.351   -2.455    0.014   -0.348   -0.348
##     Lonely           -1.635    0.491   -3.330    0.001   -0.253   -0.253
##     Happy             3.600    0.441    8.162    0.000    0.806    0.806
##   Relationship ~~
##     NegativeEmotn    -0.504    0.297   -1.695    0.090   -0.258   -0.258
##     Lonely           -1.024    0.437   -2.343    0.019   -0.201   -0.201
##     Happy             2.579    0.458    5.627    0.000    0.732    0.732
##   NegativeEmotion ~~
##     Lonely            1.490    0.645    2.309    0.021    0.282    0.282
##     Happy            -1.241    0.441   -2.816    0.005   -0.339   -0.339
##   Lonely ~~
##     Happy            -1.994    0.633   -3.153    0.002   -0.209   -0.209
## 
## Intercepts:
##     PERMA_1           6.485    0.163   39.775    0.000    6.485    2.584
##     PERMA_6           7.051    0.164   42.982    0.000    7.051    2.792
##     PERMA_12          7.810    0.158   49.321    0.000    7.810    3.204
##     PERMA_2           7.624    0.157   48.686    0.000    7.624    3.162
##     PERMA_8           7.519    0.152   49.516    0.000    7.519    3.216
##     PERMA_15          8.451    0.169   49.878    0.000    8.451    3.240
##     PERMA_3           6.899    0.151   45.636    0.000    6.899    2.964
##     PERMA_7           7.105    0.168   42.361    0.000    7.105    2.752
##     PERMA_16          6.481    0.158   41.093    0.000    6.481    2.669
##     PERMA_4           7.122    0.186   38.389    0.000    7.122    2.494
##     PERMA_11          7.498    0.186   40.208    0.000    7.498    2.612
##     PERMA_13          6.992    0.189   36.941    0.000    6.992    2.400
##     PERMA_5           6.519    0.209   31.245    0.000    6.519    2.030
##     PERMA_10          5.759    0.220   26.195    0.000    5.759    1.702
##     PERMA_14          5.890    0.217   27.112    0.000    5.890    1.761
##     PERMA_9           6.055    0.241   25.124    0.000    6.055    1.632
##     PERMA_17          7.283    0.167   43.643    0.000    7.283    2.835
##     Acomplishment     0.000                               0.000    0.000
##     Engagement        0.000                               0.000    0.000
##     PositiveEmotn     0.000                               0.000    0.000
##     Relationship      0.000                               0.000    0.000
##     NegativeEmotn     0.000                               0.000    0.000
##     Lonely            0.000                               0.000    0.000
##     Happy             0.000                               0.000    0.000
## 
## Variances:
##     PERMA_1           2.609    0.355                      2.609    0.414
##     PERMA_6           4.067    0.425                      4.067    0.638
##     PERMA_12          3.569    0.381                      3.569    0.600
##     PERMA_2           3.384    0.398                      3.384    0.582
##     PERMA_8           3.052    0.355                      3.052    0.558
##     PERMA_15          5.756    0.566                      5.756    0.846
##     PERMA_3           2.393    0.269                      2.393    0.442
##     PERMA_7           2.518    0.304                      2.518    0.378
##     PERMA_16          3.339    0.334                      3.339    0.566
##     PERMA_4           6.279    0.616                      6.279    0.770
##     PERMA_11          4.327    0.551                      4.327    0.525
##     PERMA_13          5.579    0.596                      5.579    0.657
##     PERMA_5           8.288    1.186                      8.288    0.803
##     PERMA_10         10.476    1.122                     10.476    0.914
##     PERMA_14          9.045    1.266                      9.045    0.809
##     PERMA_9           0.000                               0.000    0.000
##     PERMA_17          0.000                               0.000    0.000
##     Acomplishment     3.692    0.588                      1.000    1.000
##     Engagement        2.429    0.500                      1.000    1.000
##     PositiveEmotn     3.023    0.472                      1.000    1.000
##     Relationship      1.880    0.525                      1.000    1.000
##     NegativeEmotn     2.029    1.071                      1.000    1.000
##     Lonely           13.765    1.264                      1.000    1.000
##     Happy             6.599    0.606                      1.000    1.000
## 
## R-Square:
## 
##     PERMA_1           0.586
##     PERMA_6           0.362
##     PERMA_12          0.400
##     PERMA_2           0.418
##     PERMA_8           0.442
##     PERMA_15          0.154
##     PERMA_3           0.558
##     PERMA_7           0.622
##     PERMA_16          0.434
##     PERMA_4           0.230
##     PERMA_11          0.475
##     PERMA_13          0.343
##     PERMA_5           0.197
##     PERMA_10          0.086
##     PERMA_14          0.191
##     PERMA_9           1.000
##     PERMA_17          1.000
summary(one.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  40 iterations
## 
##                                                   Used       Total
##   Number of observations                           237         670
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              225.764
##   Degrees of freedom                               119
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   One =~
##     PERMA_1           1.000                               1.762    0.702
##     PERMA_2           0.754    0.095    7.953    0.000    1.329    0.551
##     PERMA_3           0.978    0.094   10.398    0.000    1.723    0.740
##     PERMA_4           0.734    0.111    6.592    0.000    1.294    0.453
##     PERMA_5          -0.220    0.125   -1.759    0.079   -0.387   -0.121
##     PERMA_6           0.756    0.098    7.704    0.000    1.332    0.527
##     PERMA_7           1.130    0.103   10.932    0.000    1.991    0.771
##     PERMA_8           0.848    0.092    9.251    0.000    1.494    0.639
##     PERMA_9          -0.467    0.145   -3.228    0.001   -0.823   -0.222
##     PERMA_10         -0.184    0.132   -1.399    0.162   -0.324   -0.096
##     PERMA_11          1.036    0.114    9.107    0.000    1.824    0.636
##     PERMA_12          0.816    0.095    8.567    0.000    1.437    0.589
##     PERMA_13          0.912    0.115    7.959    0.000    1.607    0.552
##     PERMA_14         -0.242    0.130   -1.859    0.063   -0.427   -0.128
##     PERMA_15          0.451    0.102    4.419    0.000    0.795    0.305
##     PERMA_16          0.932    0.096    9.741    0.000    1.641    0.676
##     PERMA_17          1.074    0.104   10.319    0.000    1.892    0.736
## 
## Intercepts:
##     PERMA_1           6.485    0.163   39.775    0.000    6.485    2.584
##     PERMA_2           7.624    0.157   48.686    0.000    7.624    3.162
##     PERMA_3           6.899    0.151   45.636    0.000    6.899    2.964
##     PERMA_4           7.122    0.186   38.389    0.000    7.122    2.494
##     PERMA_5           6.519    0.209   31.245    0.000    6.519    2.030
##     PERMA_6           7.051    0.164   42.982    0.000    7.051    2.792
##     PERMA_7           7.105    0.168   42.361    0.000    7.105    2.752
##     PERMA_8           7.519    0.152   49.516    0.000    7.519    3.216
##     PERMA_9           6.055    0.241   25.124    0.000    6.055    1.632
##     PERMA_10          5.759    0.220   26.195    0.000    5.759    1.702
##     PERMA_11          7.498    0.186   40.208    0.000    7.498    2.612
##     PERMA_12          7.810    0.158   49.321    0.000    7.810    3.204
##     PERMA_13          6.992    0.189   36.941    0.000    6.992    2.400
##     PERMA_14          5.890    0.217   27.112    0.000    5.890    1.761
##     PERMA_15          8.451    0.169   49.878    0.000    8.451    3.240
##     PERMA_16          6.481    0.158   41.093    0.000    6.481    2.669
##     PERMA_17          7.283    0.167   43.643    0.000    7.283    2.835
##     One               0.000                               0.000    0.000
## 
## Variances:
##     PERMA_1           3.196    0.330                      3.196    0.507
##     PERMA_2           4.046    0.391                      4.046    0.696
##     PERMA_3           2.447    0.261                      2.447    0.452
##     PERMA_4           6.484    0.613                      6.484    0.795
##     PERMA_5          10.167    0.936                     10.167    0.985
##     PERMA_6           4.603    0.442                      4.603    0.722
##     PERMA_7           2.704    0.299                      2.704    0.405
##     PERMA_8           3.233    0.321                      3.233    0.592
##     PERMA_9          13.088    1.209                     13.088    0.951
##     PERMA_10         11.352    1.044                     11.352    0.991
##     PERMA_11          4.913    0.489                      4.913    0.596
##     PERMA_12          3.878    0.379                      3.878    0.653
##     PERMA_13          5.906    0.571                      5.906    0.696
##     PERMA_14         11.004    1.013                     11.004    0.984
##     PERMA_15          6.172    0.574                      6.172    0.907
##     PERMA_16          3.201    0.325                      3.201    0.543
##     PERMA_17          3.020    0.322                      3.020    0.458
##     One               3.104    0.521                      1.000    1.000
## 
## R-Square:
## 
##     PERMA_1           0.493
##     PERMA_2           0.304
##     PERMA_3           0.548
##     PERMA_4           0.205
##     PERMA_5           0.015
##     PERMA_6           0.278
##     PERMA_7           0.595
##     PERMA_8           0.408
##     PERMA_9           0.049
##     PERMA_10          0.009
##     PERMA_11          0.404
##     PERMA_12          0.347
##     PERMA_13          0.304
##     PERMA_14          0.016
##     PERMA_15          0.093
##     PERMA_16          0.457
##     PERMA_17          0.542

Residual correlations

correl = residuals(seven.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##          PERMA_1 PERMA_6 PERMA_12 PERMA_2 PERMA_8 PERMA_15 PERMA_3 PERMA_7
## PERMA_1   0.000                                                           
## PERMA_6   0.004   0.000                                                   
## PERMA_12 -0.005   0.002   0.000                                           
## PERMA_2  -0.040  -0.021   0.026    0.000                                  
## PERMA_8   0.064   0.025   0.044   -0.054   0.000                          
## PERMA_15 -0.104  -0.080  -0.057    0.138   0.001   0.000                  
## PERMA_3  -0.052  -0.047   0.003   -0.046   0.040  -0.030    0.000         
## PERMA_7   0.009  -0.004   0.013   -0.037   0.041  -0.019    0.042   0.000 
## PERMA_16  0.063   0.045  -0.006    0.021   0.008  -0.009   -0.018  -0.046 
## PERMA_4   0.052  -0.033   0.018    0.030   0.019  -0.030   -0.095   0.047 
## PERMA_11  0.002  -0.040  -0.066   -0.027   0.005  -0.081    0.019  -0.072 
## PERMA_13  0.018   0.031   0.031    0.055  -0.019   0.054    0.058  -0.081 
## PERMA_5   0.017   0.024  -0.032    0.017  -0.059   0.075    0.023   0.024 
## PERMA_10 -0.043   0.041  -0.048   -0.009  -0.002   0.061   -0.072   0.039 
## PERMA_14 -0.015   0.092  -0.024    0.065  -0.084   0.075   -0.056   0.015 
## PERMA_9   0.031  -0.028  -0.029    0.072  -0.076   0.023    0.007   0.015 
## PERMA_17  0.017  -0.070   0.032   -0.031   0.057  -0.072    0.012   0.007 
##          PERMA_16 PERMA_4 PERMA_11 PERMA_13 PERMA_5 PERMA_10 PERMA_14
## PERMA_1                                                              
## PERMA_6                                                              
## PERMA_12                                                             
## PERMA_2                                                              
## PERMA_8                                                              
## PERMA_15                                                             
## PERMA_3                                                              
## PERMA_7                                                              
## PERMA_16  0.000                                                      
## PERMA_4   0.055    0.000                                             
## PERMA_11  0.100   -0.020   0.000                                     
## PERMA_13  0.063   -0.025   0.026    0.000                            
## PERMA_5  -0.037    0.035  -0.060    0.037    0.000                   
## PERMA_10 -0.036   -0.002  -0.003   -0.034    0.058   0.000           
## PERMA_14  0.057    0.102  -0.024    0.016   -0.011  -0.039    0.000  
## PERMA_9  -0.036    0.024  -0.034    0.033    0.003  -0.027    0.012  
## PERMA_17 -0.031    0.003   0.035   -0.054    0.031   0.044   -0.058  
##          PERMA_9 PERMA_17
## PERMA_1                  
## PERMA_6                  
## PERMA_12                 
## PERMA_2                  
## PERMA_8                  
## PERMA_15                 
## PERMA_3                  
## PERMA_7                  
## PERMA_16                 
## PERMA_4                  
## PERMA_11                 
## PERMA_13                 
## PERMA_5                  
## PERMA_10                 
## PERMA_14                 
## PERMA_9   0.000          
## PERMA_17  0.000   0.000  
## 
## $mean
##  PERMA_1  PERMA_6 PERMA_12  PERMA_2  PERMA_8 PERMA_15  PERMA_3  PERMA_7 
##        0        0        0        0        0        0        0        0 
## PERMA_16  PERMA_4 PERMA_11 PERMA_13  PERMA_5 PERMA_10 PERMA_14  PERMA_9 
##        0        0        0        0        0        0        0        0 
## PERMA_17 
##        0
View(correl$cor)
correl1 = residuals(one.fit, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##          PERMA_1 PERMA_2 PERMA_3 PERMA_4 PERMA_5 PERMA_6 PERMA_7 PERMA_8
## PERMA_1   0.000                                                         
## PERMA_2  -0.004   0.000                                                 
## PERMA_3  -0.065  -0.034   0.000                                         
## PERMA_4   0.042   0.049  -0.120   0.000                                 
## PERMA_5   0.049   0.080  -0.003   0.034   0.000                         
## PERMA_6   0.095   0.020  -0.039  -0.029   0.047   0.000                 
## PERMA_7   0.004  -0.019   0.060   0.025  -0.005   0.010   0.000         
## PERMA_8   0.050   0.023  -0.001   0.006   0.014   0.029   0.004   0.000 
## PERMA_9   0.027   0.184  -0.018   0.028   0.102  -0.037  -0.014   0.055 
## PERMA_10 -0.010   0.041  -0.077   0.005   0.176   0.064   0.032   0.057 
## PERMA_11 -0.002   0.008  -0.006   0.023  -0.063  -0.027  -0.092  -0.005 
## PERMA_12  0.065   0.050  -0.015   0.006  -0.004   0.072   0.000   0.026 
## PERMA_13  0.007   0.079   0.028   0.006   0.037   0.035  -0.107  -0.035 
## PERMA_14  0.023   0.132  -0.075   0.106   0.167   0.118  -0.007  -0.006 
## PERMA_15 -0.061   0.224  -0.001  -0.005   0.110  -0.039   0.015   0.067 
## PERMA_16  0.036   0.018  -0.027   0.022  -0.057   0.040  -0.047  -0.044 
## PERMA_17 -0.072  -0.068   0.069   0.020  -0.031  -0.123   0.075  -0.035 
##          PERMA_9 PERMA_10 PERMA_11 PERMA_12 PERMA_13 PERMA_14 PERMA_15
## PERMA_1                                                               
## PERMA_2                                                               
## PERMA_3                                                               
## PERMA_4                                                               
## PERMA_5                                                               
## PERMA_6                                                               
## PERMA_7                                                               
## PERMA_8                                                               
## PERMA_9   0.000                                                       
## PERMA_10  0.035   0.000                                               
## PERMA_11 -0.032   0.005    0.000                                      
## PERMA_12 -0.031  -0.020   -0.075    0.000                             
## PERMA_13  0.037  -0.026    0.079    0.017    0.000                    
## PERMA_14  0.108   0.076   -0.021    0.009    0.021    0.000           
## PERMA_15  0.085   0.088   -0.041   -0.025    0.085    0.112    0.000  
## PERMA_16 -0.053  -0.038    0.063   -0.036    0.024    0.043    0.009  
## PERMA_17 -0.046   0.016    0.072   -0.049   -0.031   -0.112   -0.072  
##          PERMA_16 PERMA_17
## PERMA_1                   
## PERMA_2                   
## PERMA_3                   
## PERMA_4                   
## PERMA_5                   
## PERMA_6                   
## PERMA_7                   
## PERMA_8                   
## PERMA_9                   
## PERMA_10                  
## PERMA_11                  
## PERMA_12                  
## PERMA_13                  
## PERMA_14                  
## PERMA_15                  
## PERMA_16  0.000           
## PERMA_17  0.002    0.000  
## 
## $mean
##  PERMA_1  PERMA_2  PERMA_3  PERMA_4  PERMA_5  PERMA_6  PERMA_7  PERMA_8 
##        0        0        0        0        0        0        0        0 
##  PERMA_9 PERMA_10 PERMA_11 PERMA_12 PERMA_13 PERMA_14 PERMA_15 PERMA_16 
##        0        0        0        0        0        0        0        0 
## PERMA_17 
##        0
View(correl1$cor)

zscore correlation anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(seven.fit, type = "standardized")
View(zcorrels$cov)
zcorrels1 = residuals(one.fit, type = "standardized")
View(zcorrels1$cov)

Modification indicies

modindices(seven.fit, sort. = TRUE, minimum.value = 3.84)
##                lhs op      rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1    Acomplishment =~  PERMA_8 14.005  1.085   2.084    0.892    0.892
## 2     Relationship =~ PERMA_16 13.571  1.491   2.044    0.842    0.842
## 3  PositiveEmotion =~  PERMA_8 12.667  0.826   1.436    0.614    0.614
## 4          PERMA_2 ~~ PERMA_15 12.522  1.184   1.184    0.188    0.188
## 5  NegativeEmotion =~  PERMA_8  9.005 -0.502  -0.714   -0.306   -0.306
## 6          PERMA_2 ~~  PERMA_8  8.970 -1.277  -1.277   -0.227   -0.227
## 7    Acomplishment =~ PERMA_15  8.685 -0.842  -1.617   -0.620   -0.620
## 8     Relationship =~  PERMA_7  8.147 -1.251  -1.716   -0.664   -0.664
## 9          PERMA_3 ~~  PERMA_4  8.065 -0.790  -0.790   -0.119   -0.119
## 10         PERMA_7 ~~ PERMA_11  7.182 -0.733  -0.733   -0.099   -0.099
## 11    Relationship =~  PERMA_8  6.389  0.881   1.208    0.517    0.517
## 12         PERMA_3 ~~  PERMA_7  5.919  0.603   0.603    0.100    0.100
## 13      Engagement =~ PERMA_11  5.551 -0.904  -1.408   -0.491   -0.491
## 14        PERMA_16 ~~ PERMA_11  5.490  0.672   0.672    0.096    0.096
## 15   Acomplishment =~ PERMA_16  5.433  0.471   0.906    0.373    0.373
## 16         PERMA_7 ~~ PERMA_13  5.431 -0.670  -0.670   -0.089   -0.089
## 17    Relationship =~ PERMA_15  5.273 -0.824  -1.130   -0.433   -0.433
## 18 PositiveEmotion =~ PERMA_15  5.241 -0.545  -0.948   -0.363   -0.363
## 19        PERMA_14 ~~ PERMA_17  4.825 -0.994  -0.994   -0.116   -0.116
## 20 NegativeEmotion =~ PERMA_15  4.687  0.378   0.538    0.206    0.206
## 21          Lonely =~  PERMA_8  4.649 -0.090  -0.335   -0.143   -0.143
## 22           Happy =~ PERMA_13  4.550 -0.267  -0.686   -0.235   -0.235
## 23 PositiveEmotion =~  PERMA_2  4.438 -0.495  -0.860   -0.357   -0.357
## 24         PERMA_3 ~~ PERMA_13  4.432  0.572   0.572    0.084    0.084
## 25           Happy =~  PERMA_8  4.424  0.167   0.430    0.184    0.184
## 26 NegativeEmotion =~ PERMA_11  4.375 -0.462  -0.658   -0.229   -0.229
## 27         PERMA_1 ~~ PERMA_15  4.335 -0.622  -0.622   -0.095   -0.095
## 28   Acomplishment =~ PERMA_11  4.171 -0.628  -1.206   -0.420   -0.420
## 29 PositiveEmotion =~  PERMA_6  3.924 -0.499  -0.867   -0.343   -0.343
## 30           Happy =~  PERMA_6  3.862 -0.146  -0.374   -0.148   -0.148
## 31         PERMA_1 ~~  PERMA_3  3.857 -0.422  -0.422   -0.072   -0.072
## 32         PERMA_7 ~~ PERMA_16  3.855 -0.477  -0.477   -0.076   -0.076
modindices(one.fit, sort. = TRUE, minimum.value = 3.84)
##         lhs op      rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1   PERMA_2 ~~ PERMA_15 19.996  1.497   1.497    0.238    0.238
## 2   PERMA_6 ~~ PERMA_17 13.196 -0.972  -0.972   -0.150   -0.150
## 3   PERMA_2 ~~  PERMA_9 12.803  1.738   1.738    0.194    0.194
## 4   PERMA_7 ~~ PERMA_13 12.281 -1.031  -1.031   -0.137   -0.137
## 5   PERMA_3 ~~  PERMA_4 11.461 -0.959  -0.959   -0.144   -0.144
## 6   PERMA_7 ~~ PERMA_11 11.118 -0.915  -0.915   -0.123   -0.123
## 7   PERMA_7 ~~ PERMA_17 10.735  0.742   0.742    0.112    0.112
## 8   PERMA_3 ~~ PERMA_17  7.794  0.587   0.587    0.098    0.098
## 9  PERMA_14 ~~ PERMA_17  7.597 -1.106  -1.106   -0.129   -0.129
## 10  PERMA_5 ~~ PERMA_10  7.515  1.916   1.916    0.176    0.176
## 11  PERMA_1 ~~ PERMA_17  7.229 -0.631  -0.631   -0.098   -0.098
## 12  PERMA_3 ~~  PERMA_7  6.968  0.540   0.540    0.090    0.090
## 13  PERMA_5 ~~ PERMA_14  6.877  1.805   1.805    0.168    0.168
## 14  PERMA_1 ~~  PERMA_6  6.848  0.710   0.710    0.112    0.112
## 15  PERMA_2 ~~ PERMA_14  6.315  1.117   1.117    0.139    0.139
## 16  PERMA_1 ~~  PERMA_3  5.927 -0.516  -0.516   -0.088   -0.088
## 17 PERMA_11 ~~ PERMA_17  5.757  0.680   0.680    0.092    0.092
## 18  PERMA_6 ~~ PERMA_14  4.897  1.046   1.046    0.124    0.124
## 19  PERMA_2 ~~ PERMA_17  4.234 -0.518  -0.518   -0.084   -0.084
## 20 PERMA_11 ~~ PERMA_13  4.110  0.760   0.760    0.091    0.091
## 21 PERMA_11 ~~ PERMA_12  4.017 -0.613  -0.613   -0.088   -0.088

Fit Measures

fitmeasures(seven.fit)
##                npar                fmin               chisq 
##              70.000               0.283             134.168 
##                  df              pvalue      baseline.chisq 
##             100.000               0.013            1262.734 
##         baseline.df     baseline.pvalue                 cfi 
##             136.000               0.000               0.970 
##                 tli                nnfi                 rfi 
##               0.959               0.959               0.855 
##                 nfi                pnfi                 ifi 
##               0.894               0.657               0.971 
##                 rni                logl   unrestricted.logl 
##               0.970           -9211.899           -9144.815 
##                 aic                 bic              ntotal 
##           18563.797           18806.561             237.000 
##                bic2               rmsea      rmsea.ci.lower 
##           18584.686               0.038               0.018 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.054               0.889               0.311 
##          rmr_nomean                srmr        srmr_bentler 
##               0.327               0.041               0.041 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.043               0.041               0.043 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.041               0.043             220.644 
##               cn_01                 gfi                agfi 
##             240.895               0.988               0.979 
##                pgfi                 mfi                ecvi 
##               0.581               0.930                  NA
fitmeasures(one.fit)
##                npar                fmin               chisq 
##              51.000               0.476             225.764 
##                  df              pvalue      baseline.chisq 
##             119.000               0.000            1262.734 
##         baseline.df     baseline.pvalue                 cfi 
##             136.000               0.000               0.905 
##                 tli                nnfi                 rfi 
##               0.892               0.892               0.796 
##                 nfi                pnfi                 ifi 
##               0.821               0.719               0.907 
##                 rni                logl   unrestricted.logl 
##               0.905           -9257.697           -9144.815 
##                 aic                 bic              ntotal 
##           18617.393           18794.264             237.000 
##                bic2               rmsea      rmsea.ci.lower 
##           18632.612               0.062               0.049 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.074               0.062               0.460 
##          rmr_nomean                srmr        srmr_bentler 
##               0.485               0.055               0.055 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.058               0.055               0.058 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.055               0.058             153.700 
##               cn_01                 gfi                agfi 
##             166.653               0.982               0.974 
##                pgfi                 mfi                ecvi 
##               0.687               0.798                  NA

Create dataset for Target rotation

PermaTR<-select(data, PERMA_1  , PERMA_6 , PERMA_12, PERMA_2 ,  PERMA_8 , PERMA_15 ,PERMA_3 , PERMA_7 , PERMA_16 , PERMA_4 , PERMA_11 , PERMA_13 , PERMA_5 , PERMA_10 , PERMA_14, PERMA_9  , PERMA_17)
colnames(PermaTR) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17")
PermaTR<-tbl_df(PermaTR)
PermaTR
## Source: local data frame [670 x 17]
## 
##    1  2  3 4  5  6  7 8 9 10 11 12 13 14 15 16 17
## 1  6  9  9 8  7  7  7 7 8  9 11  8  2 13  3 13  8
## 2  9  9 11 7 11  7  9 9 9 11 11 11 13  2 13  2 11
## 3  2 13  2 3  3  5  2 3 5  2  3  2 13 13  4  3  3
## 4  9  9 11 9  6 11  7 7 7  8  7  7  4  3 13  2  7
## 5  8  6  9 6  7  8  8 4 9  7 11  7  4  7  4  2  9
## 6  8  9  9 6  6  6  7 7 8  6  9  7  6  5  3  3  8
## 7  7  7  9 5  8  9  9 7 9  8 11 11  4  3  6  1  7
## 8  7  7 11 8  9  8 11 9 8  5  9  7  4  5  3  2  8
## 9  5  5  5 5  7  7  5 5 5  5  7  5  5  5  4  5  6
## 10 7  7  8 9  9  9  9 9 8 11  8  9  2  2  2  2  9
## .. . .. .. . .. .. .. . . .. .. .. .. .. .. .. ..
#Target Roration
Targ_key <- make.keys(17,list(f1=1:3,f2=4:6, f3=7:9, f4=10:12, f5=13:15, f6=16, f7=17))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
Perma_cor <- corFiml(PermaTR) # convert the raw data to correlation matrix uisng FIML
out_targetQ <- fa(Perma_cor,7,rotate="TargetQ", n.obs = 670, Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR1    MR3    MR2    MR4    MR5    MR7    MR6   
## 1   0.846                                     0.480
## 2   0.887                             -0.147 -0.472
## 3   0.310  0.183  0.183                            
## 4                 0.665  0.156                     
## 5   0.246  0.217  0.201                            
## 6  -0.110  0.121  0.538                            
## 7          0.859         0.118                     
## 8   0.203  0.519  0.199 -0.228         0.395       
## 9   0.227         0.141  0.326 -0.133  0.112       
## 10  0.117 -0.101  0.211  0.165         0.317       
## 11                       0.615         0.176       
## 12  0.119         0.202  0.420                     
## 13         0.113                0.750              
## 14        -0.103                0.304  0.171       
## 15        -0.177  0.211         0.221              
## 16 -0.105         0.238         0.133 -0.140  0.111
## 17         0.356         0.317         0.454       
## 
##                  MR1   MR3   MR2   MR4   MR5   MR7   MR6
## SS loadings    1.821 1.317 1.060 0.905 0.774 0.615 0.489
## Proportion Var 0.107 0.077 0.062 0.053 0.046 0.036 0.029
## Cumulative Var 0.107 0.185 0.247 0.300 0.346 0.382 0.411
## 
## $score.cor
##            [,1]       [,2]       [,3]       [,4]        [,5]        [,6]
## [1,]  1.0000000  0.6517600 0.42209816  0.6238968 -0.14501702  0.37541828
## [2,]  0.6517600  1.0000000 0.40164102  0.6439615 -0.26258967  0.36262289
## [3,]  0.4220982  0.4016410 1.00000000  0.4427165  0.08837512  0.25891489
## [4,]  0.6238968  0.6439615 0.44271654  1.0000000 -0.21445272  0.37665465
## [5,] -0.1450170 -0.2625897 0.08837512 -0.2144527  1.00000000 -0.03506908
## [6,]  0.3754183  0.3626229 0.25891489  0.3766547 -0.03506908  1.00000000
## 
## $TLI
## [1] 0.9694932
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.03426712 0.01964488 0.04667311 0.10000000 
## 
## $uniquenesses
##           1           2           3           4           5           6 
## 0.004999981 0.059650115 0.648825414 0.415489594 0.600265403 0.703317154 
##           7           8           9          10          11          12 
## 0.137827800 0.195878018 0.516483125 0.713541287 0.433101748 0.599760026 
##          13          14          15          16          17 
## 0.525056260 0.881583058 0.849595555 0.853397516 0.291440910
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = Perma_cor, nfactors = 7, n.obs = 670, rotate = "TargetQ", 
##     Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR1   MR3   MR2   MR4   MR5   MR7   MR6   h2    u2 com
## 1   0.85  0.01 -0.04  0.07 -0.02  0.03  0.48 1.00 0.005 1.6
## 2   0.89  0.02 -0.04  0.00  0.08 -0.15 -0.47 0.94 0.060 1.6
## 3   0.31  0.18  0.18  0.01 -0.10  0.03  0.02 0.35 0.649 2.6
## 4   0.04  0.04  0.66  0.16 -0.01 -0.04  0.01 0.58 0.415 1.1
## 5   0.25  0.22  0.20  0.08 -0.03  0.09  0.04 0.40 0.600 3.6
## 6  -0.11  0.12  0.54  0.02  0.07 -0.04  0.01 0.30 0.703 1.2
## 7   0.01  0.86  0.04  0.12 -0.03 -0.10  0.01 0.86 0.138 1.1
## 8   0.20  0.52  0.20 -0.23 -0.07  0.40 -0.04 0.80 0.196 3.1
## 9   0.23  0.05  0.14  0.33 -0.13  0.11 -0.02 0.48 0.516 3.0
## 10  0.12 -0.10  0.21  0.16 -0.01  0.32  0.02 0.29 0.714 2.9
## 11  0.06 -0.02  0.04  0.61 -0.08  0.18 -0.03 0.57 0.433 1.2
## 12  0.12  0.09  0.20  0.42  0.00 -0.09  0.00 0.40 0.600 1.9
## 13  0.05  0.11 -0.04  0.06  0.75  0.05  0.09 0.47 0.525 1.1
## 14  0.01 -0.10  0.02  0.00  0.30  0.17 -0.08 0.12 0.882 2.0
## 15  0.08 -0.18  0.21 -0.05  0.22 -0.07 -0.05 0.15 0.850 3.7
## 16 -0.10 -0.09  0.24 -0.09  0.13 -0.14  0.11 0.15 0.853 4.2
## 17 -0.06  0.36 -0.01  0.32 -0.04  0.45 -0.05 0.71 0.291 2.8
## 
##                        MR1  MR3  MR2  MR4  MR5  MR7  MR6
## SS loadings           2.11 1.74 1.30 1.27 0.84 0.82 0.49
## Proportion Var        0.12 0.10 0.08 0.07 0.05 0.05 0.03
## Cumulative Var        0.12 0.23 0.30 0.38 0.43 0.48 0.50
## Proportion Explained  0.25 0.20 0.15 0.15 0.10 0.10 0.06
## Cumulative Proportion 0.25 0.45 0.60 0.75 0.85 0.94 1.00
## 
##  With factor correlations of 
##       MR1   MR3   MR2   MR4   MR5   MR7   MR6
## MR1  1.00  0.48  0.46  0.47 -0.25  0.38 -0.03
## MR3  0.48  1.00  0.34  0.55 -0.35  0.35  0.01
## MR2  0.46  0.34  1.00  0.35 -0.01  0.26  0.01
## MR4  0.47  0.55  0.35  1.00 -0.34  0.24  0.05
## MR5 -0.25 -0.35 -0.01 -0.34  1.00 -0.27 -0.04
## MR7  0.38  0.35  0.26  0.24 -0.27  1.00  0.10
## MR6 -0.03  0.01  0.01  0.05 -0.04  0.10  1.00
## 
## Mean item complexity =  2.3
## Test of the hypothesis that 7 factors are sufficient.
## 
## The degrees of freedom for the null model are  136  and the objective function was  5.33 with Chi Square of  3530.06
## The degrees of freedom for the model are 38  and the objective function was  0.1 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  670 with the empirical chi square  56.78  with prob <  0.026 
## The total number of observations was  670  with MLE Chi Square =  66.72  with prob <  0.0027 
## 
## Tucker Lewis Index of factoring reliability =  0.969
## RMSEA index =  0.034  and the 90 % confidence intervals are  0.02 0.047
## BIC =  -180.56
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR1  MR3  MR2  MR4  MR5
## Correlation of scores with factors             0.99 0.94 0.84 0.86 0.79
## Multiple R square of scores with factors       0.98 0.89 0.70 0.74 0.62
## Minimum correlation of possible factor scores  0.96 0.77 0.41 0.48 0.24
##                                                 MR7  MR6
## Correlation of scores with factors             0.83 0.96
## Multiple R square of scores with factors       0.69 0.93
## Minimum correlation of possible factor scores  0.38 0.86