# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

1 Import stock prices

Choose your stocks from 2012-12-31 to present.

symbols <- c("AMZN", "MSFT", "HD", "WMT")

prices <- tq_get(x    = symbols, 
                 get  = "stock.prices", 
                 from = "2012-12-31",
                 to   = "2022-11-30")
prices
## # A tibble: 9,988 × 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 AMZN   2012-12-31  12.2  12.6  12.1  12.5 68380000     12.5
##  2 AMZN   2013-01-02  12.8  12.9  12.7  12.9 65420000     12.9
##  3 AMZN   2013-01-03  12.9  13.0  12.8  12.9 55018000     12.9
##  4 AMZN   2013-01-04  12.9  13.0  12.8  13.0 37484000     13.0
##  5 AMZN   2013-01-07  13.1  13.5  13.1  13.4 98200000     13.4
##  6 AMZN   2013-01-08  13.4  13.4  13.2  13.3 60214000     13.3
##  7 AMZN   2013-01-09  13.4  13.5  13.3  13.3 45312000     13.3
##  8 AMZN   2013-01-10  13.4  13.4  13.1  13.3 57268000     13.3
##  9 AMZN   2013-01-11  13.3  13.4  13.2  13.4 48266000     13.4
## 10 AMZN   2013-01-14  13.4  13.7  13.4  13.6 85500000     13.6
## # … with 9,978 more rows

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>% 
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 476 × 3
##    asset date        returns
##    <chr> <date>        <dbl>
##  1 AMZN  2013-01-31  0.0567 
##  2 AMZN  2013-02-28 -0.00464
##  3 AMZN  2013-03-28  0.00837
##  4 AMZN  2013-04-30 -0.0488 
##  5 AMZN  2013-05-31  0.0589 
##  6 AMZN  2013-06-28  0.0311 
##  7 AMZN  2013-07-31  0.0813 
##  8 AMZN  2013-08-30 -0.0696 
##  9 AMZN  2013-09-30  0.107  
## 10 AMZN  2013-10-31  0.152  
## # … with 466 more rows

3 Calculate Component Contribution to Portfolio Volatility

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                     AMZN            HD         MSFT           WMT
## 2013-01-31  0.0566799640  0.0787859351  0.027327946  0.0248963751
## 2013-02-28 -0.0046435329  0.0233354638  0.020915524  0.0117959006
## 2013-03-28  0.0083654117  0.0239971337  0.028720185  0.0620731511
## 2013-04-30 -0.0487507638  0.0498954036  0.145777070  0.0378936132
## 2013-05-31  0.0588686422  0.0698920561  0.059941086 -0.0317798065
## 2013-06-28  0.0310507858 -0.0103002441 -0.010368741 -0.0046877928
## 2013-07-31  0.0813355112  0.0199370832 -0.081394844  0.0452746211
## 2013-08-30 -0.0695574024 -0.0591630457  0.054854662 -0.0597001052
## 2013-09-30  0.1067688764  0.0233423914 -0.003599339  0.0133391417
## 2013-10-31  0.1521839130  0.0265395857  0.062037644  0.0370290088
## 2013-11-29  0.0781496951  0.0350694176  0.081562329  0.0540190909
## 2013-12-31  0.0130490358  0.0253913661 -0.019063311 -0.0232520715
## 2014-01-31 -0.1059765070 -0.0690017285  0.011428608 -0.0523039108
## 2014-02-28  0.0094619111  0.0652295603  0.019814922  0.0002675567
## 2014-03-31 -0.0737086127 -0.0302570985  0.067617132  0.0293262461
## 2014-04-30 -0.1007565625  0.0047905155 -0.014497947  0.0420198454
## 2014-05-30  0.0273092148  0.0090150281  0.020307413 -0.0314092358
## 2014-06-30  0.0383835737  0.0148884622  0.018393640 -0.0223929697
## 2014-07-31 -0.0369767889 -0.0013596655  0.034412912 -0.0200475740
## 2014-08-29  0.0799468534  0.1453658565  0.057484967  0.0323257942
## 2014-09-30 -0.0502010221 -0.0139635202  0.020264347  0.0127657707
## 2014-10-31 -0.0540982353  0.0610988276  0.012646342 -0.0026188517
## 2014-11-28  0.1031187000  0.0190947559  0.024438838  0.1378160783
## 2014-12-31 -0.0872368443  0.0592868769 -0.028858292 -0.0135735468
## 2015-01-30  0.1330922758 -0.0052531698 -0.139546347 -0.0105350785
## 2015-02-27  0.0697991955  0.0943345582  0.089035747 -0.0124330150
## 2015-03-31 -0.0214295288 -0.0048516941 -0.075529585 -0.0142312504
## 2015-04-30  0.1253212631 -0.0601298101  0.179201281 -0.0524133621
## 2015-05-29  0.0175090073  0.0406649653 -0.030803999 -0.0433513626
## 2015-06-30  0.0112589801  0.0026913033 -0.059571387 -0.0460138284
## 2015-07-31  0.2111621241  0.0517295394  0.056151346  0.0146949230
## 2015-08-31 -0.0443525737 -0.0048824469 -0.063951060 -0.0993583301
## 2015-09-30 -0.0019516780 -0.0032848495  0.016860689  0.0016978457
## 2015-10-30  0.2010808557  0.0681901178  0.173395132 -0.1246696684
## 2015-11-30  0.0602956898  0.0795695605  0.038686222  0.0275687753
## 2015-12-31  0.0165439780 -0.0078329472  0.020577889  0.0492992352
## 2016-01-29 -0.1410054619 -0.0503185974 -0.007054510  0.0793144714
## 2016-02-29 -0.0605352242 -0.0131267893 -0.072344166 -0.0003011973
## 2016-03-31  0.0717834457  0.0778121822  0.082036390  0.0392702592
## 2016-04-29  0.1053453885  0.0034415821 -0.102086550 -0.0239371790
## 2016-05-31  0.0915002937 -0.0081431574  0.067842532  0.0641208094
## 2016-06-30 -0.0099694796 -0.0341052657 -0.035138826  0.0311571570
## 2016-07-29  0.0586021200  0.0793862306  0.102268176 -0.0006848384
## 2016-08-31  0.0135476463 -0.0251416775  0.019880925 -0.0143682961
## 2016-09-30  0.0848953859 -0.0414059025  0.002433700  0.0094734268
## 2016-10-31 -0.0583892995 -0.0532259220  0.039487517 -0.0295504129
## 2016-11-30 -0.0509721788  0.0641009482  0.012390934  0.0058383834
## 2016-12-30 -0.0009330597  0.0355285138  0.030721548 -0.0116436368
## 2017-01-31  0.0936394046  0.0257688134  0.039598291 -0.0350397856
## 2017-02-28  0.0258446771  0.0519073275 -0.004373203  0.0608891389
## 2017-03-31  0.0479423059  0.0192299531  0.028960376  0.0234092672
## 2017-04-28  0.0424566809  0.0612214113  0.038718637  0.0421087426
## 2017-05-31  0.0725778079 -0.0109689652  0.025672663  0.0511561498
## 2017-06-30 -0.0271286060 -0.0007169619 -0.013115549 -0.0378581004
## 2017-07-31  0.0202278723 -0.0250833726  0.053249877  0.0553878186
## 2017-08-31 -0.0072953921  0.0076989500  0.033389270 -0.0180253803
## 2017-09-29 -0.0198260414  0.0874119372 -0.003751696  0.0008963573
## 2017-10-31  0.1395154081  0.0134816048  0.110341923  0.1109627299
## 2017-11-30  0.0626577388  0.0863478981  0.016840979  0.1076144166
## 2017-12-29 -0.0062057977  0.0525910960  0.016145686  0.0207684968
## 2018-01-31  0.2156265512  0.0582598892  0.104998014  0.0764919297
## 2018-02-28  0.0415536373 -0.0973178983 -0.008450576 -0.1691626278
## 2018-03-29 -0.0440034786 -0.0166715388 -0.027023030 -0.0056772628
## 2018-04-30  0.0788802990  0.0361431169  0.024353300 -0.0057488960
## 2018-05-31  0.0397392491  0.0150081495  0.059651954 -0.0629872101
## 2018-06-29  0.0421636779  0.0448131779 -0.002329832  0.0369863730
## 2018-07-31  0.0446635758  0.0123273668  0.073021174  0.0409480727
## 2018-08-31  0.1243079035  0.0214330045  0.061088248  0.0774625094
## 2018-09-28 -0.0048359762  0.0312831120  0.017997817 -0.0205519103
## 2018-10-31 -0.2258870091 -0.1636409972 -0.068387264  0.0656295403
## 2018-11-30  0.0560700362  0.0308949028  0.041797919 -0.0265764790
## 2018-12-31 -0.1180514840 -0.0482854831 -0.087790414 -0.0417363774
## 2019-01-31  0.1348080379  0.0659304558  0.027768702  0.0283646790
## 2019-02-28 -0.0469930675  0.0087342282  0.074511213  0.0324429213
## 2019-03-29  0.0824420113  0.0432288572  0.051409442 -0.0094925515
## 2019-04-30  0.0786806236  0.0597260898  0.101963216  0.0530144131
## 2019-05-31 -0.0818753437 -0.0704141318 -0.050746851 -0.0084088107
## 2019-06-28  0.0646557723  0.0981493479  0.079843771  0.0854574574
## 2019-07-31 -0.0142806642  0.0271327464  0.017096730 -0.0009959740
## 2019-08-30 -0.0496880811  0.0644242343  0.014924943  0.0394579787
## 2019-09-30 -0.0229951136  0.0239609329  0.008450903  0.0379541740
## 2019-10-31  0.0232034025  0.0109731623  0.030739249 -0.0120370114
## 2019-11-29  0.0134958246 -0.0618538632  0.057761620  0.0154857896
## 2019-12-31  0.0257863460 -0.0033308619  0.040901072  0.0023739170
## 2020-01-31  0.0834803057  0.0435474794  0.076456133 -0.0372906561
## 2020-02-28 -0.0642332025 -0.0460232239 -0.046765147 -0.0613234360
## 2020-03-31  0.0344213016 -0.1475361035 -0.026899867  0.0581106729
## 2020-04-30  0.2381504772  0.1632980198  0.127800401  0.0674660910
## 2020-05-29 -0.0128673704  0.1225077594  0.025074235  0.0248288042
## 2020-06-30  0.1218341292  0.0140897637  0.104863650 -0.0351086201
## 2020-07-31  0.1372488981  0.0580783640  0.007343664  0.0772517146
## 2020-08-31  0.0866005697  0.0710525449  0.097808938  0.0745885739
## 2020-09-30 -0.0916533239 -0.0207926596 -0.069775649  0.0076049044
## 2020-10-30 -0.0364089200 -0.0404156240 -0.038085818 -0.0083253780
## 2020-11-30  0.0425228235  0.0393349483  0.058325886  0.0963905829
## 2020-12-31  0.0276719595 -0.0379923144  0.038264431 -0.0545615554
## 2021-01-29 -0.0156985927  0.0193877173  0.041997553 -0.0257176320
## 2021-02-26 -0.0359675611 -0.0471778972  0.004109538 -0.0782177690
## 2021-03-31  0.0003717143  0.1731014175  0.014482679  0.0486518646
## 2021-04-30  0.1139202371  0.0585934165  0.067286432  0.0295951582
## 2021-05-28 -0.0730764730 -0.0148155873 -0.007656639  0.0189584089
## 2021-06-30  0.0651836186  0.0051673938  0.081569638 -0.0071364181
## 2021-07-30 -0.0332696344  0.0287466214  0.050423708  0.0107911734
## 2021-08-31  0.0421339383 -0.0061434159  0.059768766  0.0418678651
## 2021-09-30 -0.0550034402  0.0114278684 -0.068406208 -0.0606837125
## 2021-10-29  0.0262547660  0.1243888350  0.162366302  0.0695572290
## 2021-11-30  0.0391473427  0.0747937113 -0.001282880 -0.0606289782
## 2021-12-31 -0.0505062023  0.0394415138  0.017184182  0.0324795267
## 2022-01-31 -0.1085098100 -0.1229953660 -0.078334587 -0.0343091453
## 2022-02-28  0.0263230081 -0.1501032384 -0.037922007 -0.0338249566
## 2022-03-31  0.0596239187 -0.0476407627  0.031364736  0.1008100516
## 2022-04-29 -0.2711856809  0.0035682923 -0.105212719  0.0269634076
## 2022-05-31 -0.0333130912  0.0077925135 -0.018242512 -0.1698041918
## 2022-06-30 -0.1238178220 -0.0924988388 -0.056909700 -0.0563676086
## 2022-07-29  0.2394860603  0.0927979479  0.089014610  0.0826081523
## 2022-08-31 -0.0625299199 -0.0359896461 -0.068989117  0.0081250881
## 2022-09-30 -0.1149865786 -0.0442343382 -0.115710400 -0.0217358872
## 2022-10-31 -0.0981105379  0.0706151060 -0.003311557  0.0929242509
## 2022-11-29 -0.1029338971  0.0648170308  0.037529615  0.0720935111
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##              AMZN           HD         MSFT          WMT
## AMZN 0.0074641054 0.0021180678 0.0027861087 0.0007980405
## HD   0.0021180678 0.0034430660 0.0015253364 0.0009274973
## MSFT 0.0027861087 0.0015253364 0.0035400902 0.0007248449
## WMT  0.0007980405 0.0009274973 0.0007248449 0.0027751091
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.30, 0.30, 0.15, 0.25)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.04813749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##            AMZN         HD       MSFT         WMT
## [1,] 0.02176315 0.01326834 0.00624978 0.006856222
rowSums(component_contribution)
## [1] 0.04813749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 4
##    AMZN    HD  MSFT   WMT
##   <dbl> <dbl> <dbl> <dbl>
## 1 0.452 0.276  0.13 0.142
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 4 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AMZN         0.452
## 2 HD           0.276
## 3 MSFT         0.13 
## 4 WMT          0.142

Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                     AMZN            HD         MSFT           WMT
## 2013-01-31  0.0566799640  0.0787859351  0.027327946  0.0248963751
## 2013-02-28 -0.0046435329  0.0233354638  0.020915524  0.0117959006
## 2013-03-28  0.0083654117  0.0239971337  0.028720185  0.0620731511
## 2013-04-30 -0.0487507638  0.0498954036  0.145777070  0.0378936132
## 2013-05-31  0.0588686422  0.0698920561  0.059941086 -0.0317798065
## 2013-06-28  0.0310507858 -0.0103002441 -0.010368741 -0.0046877928
## 2013-07-31  0.0813355112  0.0199370832 -0.081394844  0.0452746211
## 2013-08-30 -0.0695574024 -0.0591630457  0.054854662 -0.0597001052
## 2013-09-30  0.1067688764  0.0233423914 -0.003599339  0.0133391417
## 2013-10-31  0.1521839130  0.0265395857  0.062037644  0.0370290088
## 2013-11-29  0.0781496951  0.0350694176  0.081562329  0.0540190909
## 2013-12-31  0.0130490358  0.0253913661 -0.019063311 -0.0232520715
## 2014-01-31 -0.1059765070 -0.0690017285  0.011428608 -0.0523039108
## 2014-02-28  0.0094619111  0.0652295603  0.019814922  0.0002675567
## 2014-03-31 -0.0737086127 -0.0302570985  0.067617132  0.0293262461
## 2014-04-30 -0.1007565625  0.0047905155 -0.014497947  0.0420198454
## 2014-05-30  0.0273092148  0.0090150281  0.020307413 -0.0314092358
## 2014-06-30  0.0383835737  0.0148884622  0.018393640 -0.0223929697
## 2014-07-31 -0.0369767889 -0.0013596655  0.034412912 -0.0200475740
## 2014-08-29  0.0799468534  0.1453658565  0.057484967  0.0323257942
## 2014-09-30 -0.0502010221 -0.0139635202  0.020264347  0.0127657707
## 2014-10-31 -0.0540982353  0.0610988276  0.012646342 -0.0026188517
## 2014-11-28  0.1031187000  0.0190947559  0.024438838  0.1378160783
## 2014-12-31 -0.0872368443  0.0592868769 -0.028858292 -0.0135735468
## 2015-01-30  0.1330922758 -0.0052531698 -0.139546347 -0.0105350785
## 2015-02-27  0.0697991955  0.0943345582  0.089035747 -0.0124330150
## 2015-03-31 -0.0214295288 -0.0048516941 -0.075529585 -0.0142312504
## 2015-04-30  0.1253212631 -0.0601298101  0.179201281 -0.0524133621
## 2015-05-29  0.0175090073  0.0406649653 -0.030803999 -0.0433513626
## 2015-06-30  0.0112589801  0.0026913033 -0.059571387 -0.0460138284
## 2015-07-31  0.2111621241  0.0517295394  0.056151346  0.0146949230
## 2015-08-31 -0.0443525737 -0.0048824469 -0.063951060 -0.0993583301
## 2015-09-30 -0.0019516780 -0.0032848495  0.016860689  0.0016978457
## 2015-10-30  0.2010808557  0.0681901178  0.173395132 -0.1246696684
## 2015-11-30  0.0602956898  0.0795695605  0.038686222  0.0275687753
## 2015-12-31  0.0165439780 -0.0078329472  0.020577889  0.0492992352
## 2016-01-29 -0.1410054619 -0.0503185974 -0.007054510  0.0793144714
## 2016-02-29 -0.0605352242 -0.0131267893 -0.072344166 -0.0003011973
## 2016-03-31  0.0717834457  0.0778121822  0.082036390  0.0392702592
## 2016-04-29  0.1053453885  0.0034415821 -0.102086550 -0.0239371790
## 2016-05-31  0.0915002937 -0.0081431574  0.067842532  0.0641208094
## 2016-06-30 -0.0099694796 -0.0341052657 -0.035138826  0.0311571570
## 2016-07-29  0.0586021200  0.0793862306  0.102268176 -0.0006848384
## 2016-08-31  0.0135476463 -0.0251416775  0.019880925 -0.0143682961
## 2016-09-30  0.0848953859 -0.0414059025  0.002433700  0.0094734268
## 2016-10-31 -0.0583892995 -0.0532259220  0.039487517 -0.0295504129
## 2016-11-30 -0.0509721788  0.0641009482  0.012390934  0.0058383834
## 2016-12-30 -0.0009330597  0.0355285138  0.030721548 -0.0116436368
## 2017-01-31  0.0936394046  0.0257688134  0.039598291 -0.0350397856
## 2017-02-28  0.0258446771  0.0519073275 -0.004373203  0.0608891389
## 2017-03-31  0.0479423059  0.0192299531  0.028960376  0.0234092672
## 2017-04-28  0.0424566809  0.0612214113  0.038718637  0.0421087426
## 2017-05-31  0.0725778079 -0.0109689652  0.025672663  0.0511561498
## 2017-06-30 -0.0271286060 -0.0007169619 -0.013115549 -0.0378581004
## 2017-07-31  0.0202278723 -0.0250833726  0.053249877  0.0553878186
## 2017-08-31 -0.0072953921  0.0076989500  0.033389270 -0.0180253803
## 2017-09-29 -0.0198260414  0.0874119372 -0.003751696  0.0008963573
## 2017-10-31  0.1395154081  0.0134816048  0.110341923  0.1109627299
## 2017-11-30  0.0626577388  0.0863478981  0.016840979  0.1076144166
## 2017-12-29 -0.0062057977  0.0525910960  0.016145686  0.0207684968
## 2018-01-31  0.2156265512  0.0582598892  0.104998014  0.0764919297
## 2018-02-28  0.0415536373 -0.0973178983 -0.008450576 -0.1691626278
## 2018-03-29 -0.0440034786 -0.0166715388 -0.027023030 -0.0056772628
## 2018-04-30  0.0788802990  0.0361431169  0.024353300 -0.0057488960
## 2018-05-31  0.0397392491  0.0150081495  0.059651954 -0.0629872101
## 2018-06-29  0.0421636779  0.0448131779 -0.002329832  0.0369863730
## 2018-07-31  0.0446635758  0.0123273668  0.073021174  0.0409480727
## 2018-08-31  0.1243079035  0.0214330045  0.061088248  0.0774625094
## 2018-09-28 -0.0048359762  0.0312831120  0.017997817 -0.0205519103
## 2018-10-31 -0.2258870091 -0.1636409972 -0.068387264  0.0656295403
## 2018-11-30  0.0560700362  0.0308949028  0.041797919 -0.0265764790
## 2018-12-31 -0.1180514840 -0.0482854831 -0.087790414 -0.0417363774
## 2019-01-31  0.1348080379  0.0659304558  0.027768702  0.0283646790
## 2019-02-28 -0.0469930675  0.0087342282  0.074511213  0.0324429213
## 2019-03-29  0.0824420113  0.0432288572  0.051409442 -0.0094925515
## 2019-04-30  0.0786806236  0.0597260898  0.101963216  0.0530144131
## 2019-05-31 -0.0818753437 -0.0704141318 -0.050746851 -0.0084088107
## 2019-06-28  0.0646557723  0.0981493479  0.079843771  0.0854574574
## 2019-07-31 -0.0142806642  0.0271327464  0.017096730 -0.0009959740
## 2019-08-30 -0.0496880811  0.0644242343  0.014924943  0.0394579787
## 2019-09-30 -0.0229951136  0.0239609329  0.008450903  0.0379541740
## 2019-10-31  0.0232034025  0.0109731623  0.030739249 -0.0120370114
## 2019-11-29  0.0134958246 -0.0618538632  0.057761620  0.0154857896
## 2019-12-31  0.0257863460 -0.0033308619  0.040901072  0.0023739170
## 2020-01-31  0.0834803057  0.0435474794  0.076456133 -0.0372906561
## 2020-02-28 -0.0642332025 -0.0460232239 -0.046765147 -0.0613234360
## 2020-03-31  0.0344213016 -0.1475361035 -0.026899867  0.0581106729
## 2020-04-30  0.2381504772  0.1632980198  0.127800401  0.0674660910
## 2020-05-29 -0.0128673704  0.1225077594  0.025074235  0.0248288042
## 2020-06-30  0.1218341292  0.0140897637  0.104863650 -0.0351086201
## 2020-07-31  0.1372488981  0.0580783640  0.007343664  0.0772517146
## 2020-08-31  0.0866005697  0.0710525449  0.097808938  0.0745885739
## 2020-09-30 -0.0916533239 -0.0207926596 -0.069775649  0.0076049044
## 2020-10-30 -0.0364089200 -0.0404156240 -0.038085818 -0.0083253780
## 2020-11-30  0.0425228235  0.0393349483  0.058325886  0.0963905829
## 2020-12-31  0.0276719595 -0.0379923144  0.038264431 -0.0545615554
## 2021-01-29 -0.0156985927  0.0193877173  0.041997553 -0.0257176320
## 2021-02-26 -0.0359675611 -0.0471778972  0.004109538 -0.0782177690
## 2021-03-31  0.0003717143  0.1731014175  0.014482679  0.0486518646
## 2021-04-30  0.1139202371  0.0585934165  0.067286432  0.0295951582
## 2021-05-28 -0.0730764730 -0.0148155873 -0.007656639  0.0189584089
## 2021-06-30  0.0651836186  0.0051673938  0.081569638 -0.0071364181
## 2021-07-30 -0.0332696344  0.0287466214  0.050423708  0.0107911734
## 2021-08-31  0.0421339383 -0.0061434159  0.059768766  0.0418678651
## 2021-09-30 -0.0550034402  0.0114278684 -0.068406208 -0.0606837125
## 2021-10-29  0.0262547660  0.1243888350  0.162366302  0.0695572290
## 2021-11-30  0.0391473427  0.0747937113 -0.001282880 -0.0606289782
## 2021-12-31 -0.0505062023  0.0394415138  0.017184182  0.0324795267
## 2022-01-31 -0.1085098100 -0.1229953660 -0.078334587 -0.0343091453
## 2022-02-28  0.0263230081 -0.1501032384 -0.037922007 -0.0338249566
## 2022-03-31  0.0596239187 -0.0476407627  0.031364736  0.1008100516
## 2022-04-29 -0.2711856809  0.0035682923 -0.105212719  0.0269634076
## 2022-05-31 -0.0333130912  0.0077925135 -0.018242512 -0.1698041918
## 2022-06-30 -0.1238178220 -0.0924988388 -0.056909700 -0.0563676086
## 2022-07-29  0.2394860603  0.0927979479  0.089014610  0.0826081523
## 2022-08-31 -0.0625299199 -0.0359896461 -0.068989117  0.0081250881
## 2022-09-30 -0.1149865786 -0.0442343382 -0.115710400 -0.0217358872
## 2022-10-31 -0.0981105379  0.0706151060 -0.003311557  0.0929242509
## 2022-11-29 -0.1029338971  0.0648170308  0.037529615  0.0720935111
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.30, 0.30, 0.15, 0.25))
## # A tibble: 1 × 4
##    AMZN    HD  MSFT   WMT
##   <dbl> <dbl> <dbl> <dbl>
## 1 0.452 0.276  0.13 0.142

6 Plot: Colum Chart of Component Contribution and Weight

Column Chart of Component contribution

plot_data <- asset_returns_wide_tbl %>% 
    calculate_component_contribution(w = c(0.30, 0.30, 0.15, 0.25)) %>% 
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>% 
    
    ggplot(aes(x = Asset, y = Contribution)) + 
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) + 
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Contribution and Weight

plot_data <- asset_returns_wide_tbl %>% 
    calculate_component_contribution(w = c(0.30, 0.30, 0.15, 0.25)) %>% 
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%

    # Add weights
    add_column(weight = c(0.30, 0.30, 0.15, 0.25)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
    
plot_data %>% 
    
    ggplot(aes(x = Asset, y = value, fill = type)) + 
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq() + 
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", 
         y = "Percent", 
         x = NULL)

Which of the assets in your portfolio the largest contributor to the portfolio volatility? Do you think your portfolio risk is concentrated in any one asset?

The largest contributor to my portfolio volatility is Amazon, with a weight of 30% and a percent contribution of 50%. I think my portfolio risk is concentrated in any one asset because Amazon has the highest weight and the highest contribution. If amazon were to tank, I have other assets that will balance it out but my return would still decrease more than increase if something were to happen that negatively impacts Amazon.