# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310402 -0.0029354222  0.0366061778  0.052132873  4.992294e-02
## 2013-02-28  0.0058912644 -0.0231051588 -0.0129696171  0.016175514  1.267836e-02
## 2013-03-28  0.0009842544 -0.0102350938  0.0129696171  0.040258111  3.726798e-02
## 2013-04-30  0.0096395066  0.0120846787  0.0489676327  0.001222528  1.902982e-02
## 2013-05-31 -0.0202136647 -0.0494835595 -0.0306553634  0.041976522  2.333562e-02
## 2013-06-28 -0.0157784359 -0.0547280873 -0.0271446366 -0.001403170 -1.343443e-02
## 2013-07-31  0.0026879824  0.0131596069  0.0518604186  0.063541429  5.038586e-02
## 2013-08-30 -0.0082983921 -0.0257056066 -0.0197464563 -0.034743347 -3.045063e-02
## 2013-09-30  0.0111438991  0.0695888366  0.0753385931  0.063873394  3.115526e-02
## 2013-10-31  0.0082919522  0.0408613880  0.0320815842  0.034234146  4.526679e-02
## 2013-11-29 -0.0025100731 -0.0025940678  0.0054499549  0.041661073  2.920673e-02
## 2013-12-31 -0.0055828944 -0.0040747038  0.0215280191  0.012891896  2.559635e-02
## 2014-01-31  0.0152916604 -0.0903225258 -0.0534134158 -0.035774753 -3.588469e-02
## 2014-02-28  0.0037569381  0.0332206353  0.0595051336  0.045257198  4.451039e-02
## 2014-03-31 -0.0014815909  0.0380215405 -0.0046029429  0.013315465  8.261373e-03
## 2014-04-30  0.0081831366  0.0077729708  0.0165296891 -0.023184327  6.927501e-03
## 2014-05-30  0.0117218869  0.0290911140  0.0158283807  0.006205079  2.294118e-02
## 2014-06-30 -0.0005762012  0.0237340214  0.0091654436  0.037718855  2.043470e-02
## 2014-07-31 -0.0025119016  0.0135556517 -0.0263797299 -0.052009416 -1.352876e-02
## 2014-08-29  0.0114306578  0.0279046148  0.0018002803  0.043657874  3.870476e-02
## 2014-09-30 -0.0061671817 -0.0808567956 -0.0395983253 -0.061260462 -1.389257e-02
## 2014-10-31  0.0105845067  0.0140964225 -0.0026549644  0.068874854  2.327799e-02
## 2014-11-28  0.0065486625 -0.0155412572  0.0006254644  0.004773712  2.710153e-02
## 2014-12-31  0.0014752737 -0.0404420590 -0.0407468459  0.025295629 -2.539732e-03
## 2015-01-30  0.0203151997 -0.0068959393  0.0062264467 -0.054627944 -3.007702e-02
## 2015-02-27 -0.0089883458  0.0431361569  0.0614506478  0.056914813  5.468175e-02
## 2015-03-31  0.0037397996 -0.0150864832 -0.0143887489  0.010156253 -1.583027e-02
## 2015-04-30 -0.0032323033  0.0662817424  0.0358165171 -0.018417602  9.785723e-03
## 2015-05-29 -0.0043839149 -0.0419113664  0.0019526938  0.007509937  1.277415e-02
## 2015-06-30 -0.0108253406 -0.0297463847 -0.0316788464  0.004171265 -2.052090e-02
## 2015-07-31  0.0085848772 -0.0651780932  0.0201144071 -0.027375327  2.233777e-02
## 2015-08-31 -0.0033644186 -0.0925121365 -0.0771522768 -0.047268134 -6.288667e-02
## 2015-09-30  0.0080819268 -0.0318251522 -0.0451949032 -0.038465169 -2.584717e-02
## 2015-10-30  0.0006854569  0.0618082427  0.0640259263  0.063589915  8.163494e-02
## 2015-11-30 -0.0038982453 -0.0255602149 -0.0075559238  0.024415031  3.648466e-03
## 2015-12-31 -0.0019188207 -0.0389473069 -0.0235950377 -0.052156832 -1.743346e-02
## 2016-01-29  0.0123297053 -0.0516365681 -0.0567578510 -0.060306912 -5.106870e-02
## 2016-02-29  0.0088314803 -0.0082116547 -0.0339138330  0.020605264 -8.263032e-04
## 2016-03-31  0.0087089098  0.1218790034  0.0637456380  0.089910471  6.510009e-02
## 2016-04-29  0.0025464920  0.0040792011  0.0219750423  0.021044249  3.933454e-03
## 2016-05-31  0.0001353587 -0.0376285505 -0.0008560654  0.004397040  1.686854e-02
## 2016-06-30  0.0191667568  0.0445825140 -0.0244913638  0.008292086  3.469756e-03
## 2016-07-29  0.0054297515  0.0524420803  0.0390003109  0.049348307  3.582211e-02
## 2016-08-31 -0.0021566191  0.0087985274  0.0053268052  0.011261391  1.196687e-03
## 2016-09-30  0.0005160837  0.0248727921  0.0132790000  0.008614486  5.811445e-05
## 2016-10-31 -0.0082051531 -0.0083122369 -0.0224036234 -0.038134633 -1.748917e-02
## 2016-11-30 -0.0259896546 -0.0451616817 -0.0179745854  0.125246378  3.617629e-02
## 2016-12-30  0.0025379616 -0.0025300065  0.0267030347  0.031491546  2.006897e-02
## 2017-01-31  0.0021260288  0.0644313386  0.0323817590 -0.012143639  1.773667e-02
## 2017-02-28  0.0064380429  0.0172579347  0.0118365242  0.013428704  3.853908e-02
## 2017-03-31 -0.0005529032  0.0361890439  0.0318056037 -0.006533235  1.249170e-03
## 2017-04-28  0.0090293436  0.0168664912  0.0239523044  0.005108111  9.877225e-03
## 2017-05-31  0.0068474589  0.0280598559  0.0348102134 -0.022862952  1.401413e-02
## 2017-06-30 -0.0001828649  0.0092237832  0.0029558483  0.029151768  6.354652e-03
## 2017-07-31  0.0033346479  0.0565944491  0.0261877340  0.007481570  2.034585e-02
## 2017-08-31  0.0093690731  0.0232437207 -0.0004482462 -0.027564722  2.913531e-03
## 2017-09-29 -0.0057323880 -0.0004460229  0.0233429973  0.082321653  1.994895e-02
## 2017-10-31  0.0009782048  0.0322784387  0.0166535066  0.005916315  2.329092e-02
## 2017-11-30 -0.0014843247 -0.0038970809  0.0068700936  0.036913285  3.010800e-02
## 2017-12-29  0.0047405001  0.0369253525  0.0133984000 -0.003731246  1.205483e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398408e-05 0.0001042118 4.178389e-05 -7.812084e-05 -9.030875e-06
## EEM  1.042118e-04 0.0017547100 1.039016e-03  6.437734e-04  6.795414e-04
## EFA  4.178389e-05 0.0010390159 1.064237e-03  6.490292e-04  6.975392e-04
## IJS -7.812084e-05 0.0006437734 6.490292e-04  1.565448e-03  8.290242e-04
## SPY -9.030875e-06 0.0006795414 6.975392e-04  8.290242e-04  7.408276e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874189 0.009257145 0.005815633 0.005684461 0.002330246
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310402 -0.0029354222  0.0366061778  0.052132873  4.992294e-02
## 2013-02-28  0.0058912644 -0.0231051588 -0.0129696171  0.016175514  1.267836e-02
## 2013-03-28  0.0009842544 -0.0102350938  0.0129696171  0.040258111  3.726798e-02
## 2013-04-30  0.0096395066  0.0120846787  0.0489676327  0.001222528  1.902982e-02
## 2013-05-31 -0.0202136647 -0.0494835595 -0.0306553634  0.041976522  2.333562e-02
## 2013-06-28 -0.0157784359 -0.0547280873 -0.0271446366 -0.001403170 -1.343443e-02
## 2013-07-31  0.0026879824  0.0131596069  0.0518604186  0.063541429  5.038586e-02
## 2013-08-30 -0.0082983921 -0.0257056066 -0.0197464563 -0.034743347 -3.045063e-02
## 2013-09-30  0.0111438991  0.0695888366  0.0753385931  0.063873394  3.115526e-02
## 2013-10-31  0.0082919522  0.0408613880  0.0320815842  0.034234146  4.526679e-02
## 2013-11-29 -0.0025100731 -0.0025940678  0.0054499549  0.041661073  2.920673e-02
## 2013-12-31 -0.0055828944 -0.0040747038  0.0215280191  0.012891896  2.559635e-02
## 2014-01-31  0.0152916604 -0.0903225258 -0.0534134158 -0.035774753 -3.588469e-02
## 2014-02-28  0.0037569381  0.0332206353  0.0595051336  0.045257198  4.451039e-02
## 2014-03-31 -0.0014815909  0.0380215405 -0.0046029429  0.013315465  8.261373e-03
## 2014-04-30  0.0081831366  0.0077729708  0.0165296891 -0.023184327  6.927501e-03
## 2014-05-30  0.0117218869  0.0290911140  0.0158283807  0.006205079  2.294118e-02
## 2014-06-30 -0.0005762012  0.0237340214  0.0091654436  0.037718855  2.043470e-02
## 2014-07-31 -0.0025119016  0.0135556517 -0.0263797299 -0.052009416 -1.352876e-02
## 2014-08-29  0.0114306578  0.0279046148  0.0018002803  0.043657874  3.870476e-02
## 2014-09-30 -0.0061671817 -0.0808567956 -0.0395983253 -0.061260462 -1.389257e-02
## 2014-10-31  0.0105845067  0.0140964225 -0.0026549644  0.068874854  2.327799e-02
## 2014-11-28  0.0065486625 -0.0155412572  0.0006254644  0.004773712  2.710153e-02
## 2014-12-31  0.0014752737 -0.0404420590 -0.0407468459  0.025295629 -2.539732e-03
## 2015-01-30  0.0203151997 -0.0068959393  0.0062264467 -0.054627944 -3.007702e-02
## 2015-02-27 -0.0089883458  0.0431361569  0.0614506478  0.056914813  5.468175e-02
## 2015-03-31  0.0037397996 -0.0150864832 -0.0143887489  0.010156253 -1.583027e-02
## 2015-04-30 -0.0032323033  0.0662817424  0.0358165171 -0.018417602  9.785723e-03
## 2015-05-29 -0.0043839149 -0.0419113664  0.0019526938  0.007509937  1.277415e-02
## 2015-06-30 -0.0108253406 -0.0297463847 -0.0316788464  0.004171265 -2.052090e-02
## 2015-07-31  0.0085848772 -0.0651780932  0.0201144071 -0.027375327  2.233777e-02
## 2015-08-31 -0.0033644186 -0.0925121365 -0.0771522768 -0.047268134 -6.288667e-02
## 2015-09-30  0.0080819268 -0.0318251522 -0.0451949032 -0.038465169 -2.584717e-02
## 2015-10-30  0.0006854569  0.0618082427  0.0640259263  0.063589915  8.163494e-02
## 2015-11-30 -0.0038982453 -0.0255602149 -0.0075559238  0.024415031  3.648466e-03
## 2015-12-31 -0.0019188207 -0.0389473069 -0.0235950377 -0.052156832 -1.743346e-02
## 2016-01-29  0.0123297053 -0.0516365681 -0.0567578510 -0.060306912 -5.106870e-02
## 2016-02-29  0.0088314803 -0.0082116547 -0.0339138330  0.020605264 -8.263032e-04
## 2016-03-31  0.0087089098  0.1218790034  0.0637456380  0.089910471  6.510009e-02
## 2016-04-29  0.0025464920  0.0040792011  0.0219750423  0.021044249  3.933454e-03
## 2016-05-31  0.0001353587 -0.0376285505 -0.0008560654  0.004397040  1.686854e-02
## 2016-06-30  0.0191667568  0.0445825140 -0.0244913638  0.008292086  3.469756e-03
## 2016-07-29  0.0054297515  0.0524420803  0.0390003109  0.049348307  3.582211e-02
## 2016-08-31 -0.0021566191  0.0087985274  0.0053268052  0.011261391  1.196687e-03
## 2016-09-30  0.0005160837  0.0248727921  0.0132790000  0.008614486  5.811445e-05
## 2016-10-31 -0.0082051531 -0.0083122369 -0.0224036234 -0.038134633 -1.748917e-02
## 2016-11-30 -0.0259896546 -0.0451616817 -0.0179745854  0.125246378  3.617629e-02
## 2016-12-30  0.0025379616 -0.0025300065  0.0267030347  0.031491546  2.006897e-02
## 2017-01-31  0.0021260288  0.0644313386  0.0323817590 -0.012143639  1.773667e-02
## 2017-02-28  0.0064380429  0.0172579347  0.0118365242  0.013428704  3.853908e-02
## 2017-03-31 -0.0005529032  0.0361890439  0.0318056037 -0.006533235  1.249170e-03
## 2017-04-28  0.0090293436  0.0168664912  0.0239523044  0.005108111  9.877225e-03
## 2017-05-31  0.0068474589  0.0280598559  0.0348102134 -0.022862952  1.401413e-02
## 2017-06-30 -0.0001828649  0.0092237832  0.0029558483  0.029151768  6.354652e-03
## 2017-07-31  0.0033346479  0.0565944491  0.0261877340  0.007481570  2.034585e-02
## 2017-08-31  0.0093690731  0.0232437207 -0.0004482462 -0.027564722  2.913531e-03
## 2017-09-29 -0.0057323880 -0.0004460229  0.0233429973  0.082321653  1.994895e-02
## 2017-10-31  0.0009782048  0.0322784387  0.0166535066  0.005916315  2.329092e-02
## 2017-11-30 -0.0014843247 -0.0038970809  0.0068700936  0.036913285  3.010800e-02
## 2017-12-29  0.0047405001  0.0369253525  0.0133984000 -0.003731246  1.205483e-02
calculate_component_contribution <- function(.data, w) {
    
         # Covariance of asset returns
        covariance_matrix <- cov(asset_returns_wide_tbl)
        
        # Standard deviation of portfolio
        # Summarizes how much each asset's returns vary with those of             other assets within the portfolio into a single number

        sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
        
        # Component contribution
        # Similar to the formula for sd_portfolio
        # Mathematical trick to summarize the same, sd_portfolio, by asset         instead of a single number
        component_contribution <- (t(w) %*% covariance_matrix * w) /              sd_portfolio[1,1]
        component_contribution
        
        # Component contribution in percentage
        component_percentages <- (component_contribution /                        sd_portfolio[1,1]) %>%
            round(3) %>%
            as_tibble()
        
        return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    #Transform to long form
    pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue")+

    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    #Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%

#Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
#Transform to long
   pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +

    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq()+
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", 
         y = "Percent",
         X = NULL)

6 Rolling Component Contribution