1. I understand my life’s meaning.
  2. I am looking for something that makes my life feel meaningful.
  3. I am always looking to find my life’s purpose.
  4. My life has a clear sense of purpose.
  5. I have a good sense of what makes my life meaningful.
  6. I have discovered a satisfying life purpose.
  7. I am always searching for something that makes my life feel significant.
  8. I am seeking a purpose or mission for my life.
  9. My life has no clear purpose. (reverse coded)
  10. I am searching for meaning in my life.

library(lavaan)
## This is lavaan 0.5-18
## lavaan is BETA software! Please report any bugs.
library(semPlot)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)
library(car)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
library(GGally)
## 
## Attaching package: 'GGally'
## 
## The following object is masked from 'package:dplyr':
## 
##     nasa

loadthedata

data <- read.csv("~/Psychometric_study_data/allsurveysYT1.csv")
data<-tbl_df(data)
MLQ<-select(data, MLQ_1, MLQ_2, MLQ_3, MLQ_4, MLQ_5, MLQ_6,MLQ_7, MLQ_8, MLQ_9, MLQ_10)
MLQ$MLQ_9  <-  8- MLQ$MLQ_9
MLQ<-tbl_df(MLQ)
MLQ
## Source: local data frame [1,160 x 10]
## 
##    MLQ_1 MLQ_2 MLQ_3 MLQ_4 MLQ_5 MLQ_6 MLQ_7 MLQ_8 MLQ_9 MLQ_10
## 1      4     7     7     5     6     4     5     7     3      7
## 2      3     5     5     5     4     3     5     4     3      5
## 3      4     7     5     4     4     4     4     5     4      4
## 4      5     6     7     3     5     5     5     5     3      6
## 5      4     6     5     4     4     4     5     5     5      5
## 6      5     5     3     4     5     5     3     4     7      3
## 7      6     2     2     3     6     3     5     4     5      4
## 8      3     7     7     5     5     4     5     7     4      5
## 9      6     5     2     7     6     6     5     7     7      2
## 10     1     7     1     3     5     1     5     5     6      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...    ...

create the models

two.model= ' Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9   
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10'  #Models two factors:Purpose and Seraching for Purpose     
              

one.model= 'MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10' #Models as a single purpose factor

Second order models

second.model = ' Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9   
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
              MLQ =~ p1*Purpose + p1*Searching
             # MLQ ~~ 1*MLQ
' #Second order models as Purpose being the higher factor made up of Purpose and Searching

Bifactor Models (similar to Models 6, 7 & 8 in Marsh, Scalas & Nagengast, 2010)

bifactor.negative.model = 'Negative =~ MLQ_9  
                MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10
                MLQ ~~ 0*Negative
                '#Models bifactor as the negatively worded item as a factor uncorolated with the main factor

bifactor.model1 = 'MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10
                Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9    
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
                MLQ ~~ 0*Purpose
                MLQ ~~ 0*Searching
                Purpose~~0*Searching
'#Models bifactor with Searching and Purpose as factors uncorolated with the main factor
bifactor.model1WO9 = 'MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_10
                Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6    
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
                MLQ ~~ 0*Purpose
                MLQ ~~ 0*Searching
                Purpose~~0*Searching
                '
#Models bifactor with Searching and Purpose as factors uncorolated with the main factor leaving negatively worded questions out

run the models

two.fit=cfa(two.model, data=MLQ, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   17 22 23 24 28 29 43 45 78 79 80 81 85 94 110 111 112 116 121 122 123 124 125 128 129 130 131 133 135 137 138 140 147 151 152 155 156 162 166 169 170 171 172 173 174 176 177 179 180 183 184 186 187 188 189 192 194 195 197 200 202 203 204 207 208 210 212 214 215 217 220 222 223 224 226 227 228 229 230 234 238 240 243 245 246 247 249 252 255 256 265 266 267 268 270 271 274 275 280 281 282 284 286 287 289 291 292 298 300 304 309 310 311 312 315 316 317 320 322 325 327 330 333 334 336 339 340 344 348 350 351 352 354 355 357 360 361 362 364 365 366 367 368 369 370 371 372 373 374 375 376 377 379 380 381 384 385 386 389 390 397 398 399 400 401 402 403 404 405 406 407 408 410 416 417 418 419 420 421 422 423 424 425 427 428 429 430 431 432 434 436 444 445 446 447 448 452 453 454 455 456 457 459 460 462 463 464 465 467 468 470 472 473 474 475 476 478 481 482 485 486 490 491 493 495 539 540 541 542 543 544 545 546 548 549 552 553 555 557 559 560 561 562 563 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 581 582 584 585 586 587 588 589 590 591 592 593 594 596 597 598 599 600 601 602 603 604 605 606 609 610 662 679 687 782 783 784 785 809 810 829 903 906 907 909 911 1110 1113 1114 1116 1117 1120 1125 1128 1129 1130 1139 1140 1146 1150 1151 1154 1159 1160
one.fit=cfa(one.model, data=MLQ, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   17 22 23 24 28 29 43 45 78 79 80 81 85 94 110 111 112 116 121 122 123 124 125 128 129 130 131 133 135 137 138 140 147 151 152 155 156 162 166 169 170 171 172 173 174 176 177 179 180 183 184 186 187 188 189 192 194 195 197 200 202 203 204 207 208 210 212 214 215 217 220 222 223 224 226 227 228 229 230 234 238 240 243 245 246 247 249 252 255 256 265 266 267 268 270 271 274 275 280 281 282 284 286 287 289 291 292 298 300 304 309 310 311 312 315 316 317 320 322 325 327 330 333 334 336 339 340 344 348 350 351 352 354 355 357 360 361 362 364 365 366 367 368 369 370 371 372 373 374 375 376 377 379 380 381 384 385 386 389 390 397 398 399 400 401 402 403 404 405 406 407 408 410 416 417 418 419 420 421 422 423 424 425 427 428 429 430 431 432 434 436 444 445 446 447 448 452 453 454 455 456 457 459 460 462 463 464 465 467 468 470 472 473 474 475 476 478 481 482 485 486 490 491 493 495 539 540 541 542 543 544 545 546 548 549 552 553 555 557 559 560 561 562 563 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 581 582 584 585 586 587 588 589 590 591 592 593 594 596 597 598 599 600 601 602 603 604 605 606 609 610 662 679 687 782 783 784 785 809 810 829 903 906 907 909 911 1110 1113 1114 1116 1117 1120 1125 1128 1129 1130 1139 1140 1146 1150 1151 1154 1159 1160
second.fit=cfa(second.model, data=MLQ, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   17 22 23 24 28 29 43 45 78 79 80 81 85 94 110 111 112 116 121 122 123 124 125 128 129 130 131 133 135 137 138 140 147 151 152 155 156 162 166 169 170 171 172 173 174 176 177 179 180 183 184 186 187 188 189 192 194 195 197 200 202 203 204 207 208 210 212 214 215 217 220 222 223 224 226 227 228 229 230 234 238 240 243 245 246 247 249 252 255 256 265 266 267 268 270 271 274 275 280 281 282 284 286 287 289 291 292 298 300 304 309 310 311 312 315 316 317 320 322 325 327 330 333 334 336 339 340 344 348 350 351 352 354 355 357 360 361 362 364 365 366 367 368 369 370 371 372 373 374 375 376 377 379 380 381 384 385 386 389 390 397 398 399 400 401 402 403 404 405 406 407 408 410 416 417 418 419 420 421 422 423 424 425 427 428 429 430 431 432 434 436 444 445 446 447 448 452 453 454 455 456 457 459 460 462 463 464 465 467 468 470 472 473 474 475 476 478 481 482 485 486 490 491 493 495 539 540 541 542 543 544 545 546 548 549 552 553 555 557 559 560 561 562 563 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 581 582 584 585 586 587 588 589 590 591 592 593 594 596 597 598 599 600 601 602 603 604 605 606 609 610 662 679 687 782 783 784 785 809 810 829 903 906 907 909 911 1110 1113 1114 1116 1117 1120 1125 1128 1129 1130 1139 1140 1146 1150 1151 1154 1159 1160
bifactor1.fit=cfa(bifactor.model1, data=MLQ, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   17 22 23 24 28 29 43 45 78 79 80 81 85 94 110 111 112 116 121 122 123 124 125 128 129 130 131 133 135 137 138 140 147 151 152 155 156 162 166 169 170 171 172 173 174 176 177 179 180 183 184 186 187 188 189 192 194 195 197 200 202 203 204 207 208 210 212 214 215 217 220 222 223 224 226 227 228 229 230 234 238 240 243 245 246 247 249 252 255 256 265 266 267 268 270 271 274 275 280 281 282 284 286 287 289 291 292 298 300 304 309 310 311 312 315 316 317 320 322 325 327 330 333 334 336 339 340 344 348 350 351 352 354 355 357 360 361 362 364 365 366 367 368 369 370 371 372 373 374 375 376 377 379 380 381 384 385 386 389 390 397 398 399 400 401 402 403 404 405 406 407 408 410 416 417 418 419 420 421 422 423 424 425 427 428 429 430 431 432 434 436 444 445 446 447 448 452 453 454 455 456 457 459 460 462 463 464 465 467 468 470 472 473 474 475 476 478 481 482 485 486 490 491 493 495 539 540 541 542 543 544 545 546 548 549 552 553 555 557 559 560 561 562 563 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 581 582 584 585 586 587 588 589 590 591 592 593 594 596 597 598 599 600 601 602 603 604 605 606 609 610 662 679 687 782 783 784 785 809 810 829 903 906 907 909 911 1110 1113 1114 1116 1117 1120 1125 1128 1129 1130 1139 1140 1146 1150 1151 1154 1159 1160
bifactor1WO9.fit=cfa(bifactor.model1WO9, data=MLQ, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   17 22 23 24 28 29 43 45 78 79 80 81 85 94 110 111 112 116 121 122 123 124 125 128 129 130 131 133 135 137 138 140 147 151 152 155 156 162 166 169 170 171 172 173 174 176 177 179 180 183 184 186 187 188 189 192 194 195 197 200 202 203 204 207 208 210 212 214 215 217 220 222 223 224 226 227 228 229 230 234 238 240 243 245 246 247 249 252 255 256 265 266 267 268 270 271 274 275 280 281 282 284 286 287 289 291 292 298 300 304 309 310 311 312 315 316 317 320 322 325 327 330 333 334 336 339 340 344 348 350 351 352 354 355 357 360 361 362 364 365 366 367 368 369 370 371 372 373 374 375 376 377 379 380 381 384 385 386 389 390 397 398 399 400 401 402 403 404 405 406 407 408 410 416 417 418 419 420 421 422 423 424 425 427 428 429 430 431 432 434 436 444 445 446 447 448 452 453 454 455 456 457 459 460 462 463 464 465 467 468 470 472 473 474 475 476 478 481 482 485 486 490 491 493 495 539 540 541 542 543 544 545 546 548 549 552 553 555 557 559 560 561 562 563 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 581 582 584 585 586 587 588 589 590 591 592 593 594 596 597 598 599 600 601 602 603 604 605 606 609 610 662 679 687 782 783 784 785 809 810 829 903 906 907 909 911 1110 1113 1114 1116 1117 1120 1125 1128 1129 1130 1139 1140 1146 1150 1151 1154 1159 1160
bifactor.negative.fit=cfa(bifactor.negative.model, data=MLQ, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   17 22 23 24 28 29 43 45 78 79 80 81 85 94 110 111 112 116 121 122 123 124 125 128 129 130 131 133 135 137 138 140 147 151 152 155 156 162 166 169 170 171 172 173 174 176 177 179 180 183 184 186 187 188 189 192 194 195 197 200 202 203 204 207 208 210 212 214 215 217 220 222 223 224 226 227 228 229 230 234 238 240 243 245 246 247 249 252 255 256 265 266 267 268 270 271 274 275 280 281 282 284 286 287 289 291 292 298 300 304 309 310 311 312 315 316 317 320 322 325 327 330 333 334 336 339 340 344 348 350 351 352 354 355 357 360 361 362 364 365 366 367 368 369 370 371 372 373 374 375 376 377 379 380 381 384 385 386 389 390 397 398 399 400 401 402 403 404 405 406 407 408 410 416 417 418 419 420 421 422 423 424 425 427 428 429 430 431 432 434 436 444 445 446 447 448 452 453 454 455 456 457 459 460 462 463 464 465 467 468 470 472 473 474 475 476 478 481 482 485 486 490 491 493 495 539 540 541 542 543 544 545 546 548 549 552 553 555 557 559 560 561 562 563 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 581 582 584 585 586 587 588 589 590 591 592 593 594 596 597 598 599 600 601 602 603 604 605 606 609 610 662 679 687 782 783 784 785 809 810 829 903 906 907 909 911 1110 1113 1114 1116 1117 1120 1125 1128 1129 1130 1139 1140 1146 1150 1151 1154 1159 1160
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING: could not compute standard errors!
##   lavaan NOTE: this may be a symptom that the model is not identified.

create pictures

semPaths(two.fit, whatLabels = "std", layout = "tree")

semPaths(one.fit, whatLabels = "std", layout = "tree")

semPaths(second.fit, whatLabels = "std", layout = "tree")

semPaths(bifactor1.fit, whatLabels = "std", layout = "tree")

semPaths(bifactor1WO9.fit, whatLabels = "std", layout = "tree")

semPaths(bifactor.negative.fit, whatLabels = "std", layout = "tree")
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING: could not compute standard errors!
##   lavaan NOTE: this may be a symptom that the model is not identified.

#summaries

summary(two.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  33 iterations
## 
##                                                   Used       Total
##   Number of observations                           842        1160
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              219.172
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Purpose =~
##     MLQ_1             1.000                               1.370    0.811
##     MLQ_4             0.886    0.040   22.396    0.000    1.213    0.766
##     MLQ_5             0.829    0.035   23.656    0.000    1.135    0.778
##     MLQ_6             0.947    0.041   22.863    0.000    1.297    0.772
##     MLQ_9             0.593    0.052   11.416    0.000    0.811    0.409
##   Searching =~
##     MLQ_2             1.000                               1.298    0.807
##     MLQ_3             0.897    0.041   22.121    0.000    1.165    0.744
##     MLQ_7             0.874    0.040   21.698    0.000    1.135    0.721
##     MLQ_8             0.896    0.040   22.336    0.000    1.163    0.738
##     MLQ_10            1.046    0.043   24.307    0.000    1.358    0.795
## 
## Covariances:
##   Purpose ~~
##     Searching         0.152    0.071    2.138    0.033    0.085    0.085
## 
## Intercepts:
##     MLQ_1             4.700    0.058   80.722    0.000    4.700    2.782
##     MLQ_4             4.985    0.055   91.351    0.000    4.985    3.148
##     MLQ_5             5.242    0.050  104.254    0.000    5.242    3.593
##     MLQ_6             4.786    0.058   82.650    0.000    4.786    2.848
##     MLQ_9             4.844    0.068   70.828    0.000    4.844    2.441
##     MLQ_2             5.368    0.055   96.855    0.000    5.368    3.338
##     MLQ_3             5.249    0.054   97.252    0.000    5.249    3.352
##     MLQ_7             5.183    0.054   95.553    0.000    5.183    3.293
##     MLQ_8             5.316    0.054   97.955    0.000    5.316    3.376
##     MLQ_10            5.058    0.059   85.972    0.000    5.058    2.963
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             0.978    0.069                      0.978    0.343
##     MLQ_4             1.036    0.066                      1.036    0.413
##     MLQ_5             0.841    0.055                      0.841    0.395
##     MLQ_6             1.140    0.073                      1.140    0.404
##     MLQ_9             3.281    0.165                      3.281    0.833
##     MLQ_2             0.901    0.060                      0.901    0.348
##     MLQ_3             1.096    0.065                      1.096    0.447
##     MLQ_7             1.188    0.069                      1.188    0.480
##     MLQ_8             1.128    0.067                      1.128    0.455
##     MLQ_10            1.071    0.070                      1.071    0.368
##     Purpose           1.876    0.140                      1.000    1.000
##     Searching         1.686    0.125                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.657
##     MLQ_4             0.587
##     MLQ_5             0.605
##     MLQ_6             0.596
##     MLQ_9             0.167
##     MLQ_2             0.652
##     MLQ_3             0.553
##     MLQ_7             0.520
##     MLQ_8             0.545
##     MLQ_10            0.632
summary(one.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  28 iterations
## 
##                                                   Used       Total
##   Number of observations                           842        1160
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             2092.057
##   Degrees of freedom                                35
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   MLQ =~
##     MLQ_1             1.000                               1.358    0.804
##     MLQ_2             0.062    0.045    1.383    0.167    0.085    0.053
##     MLQ_3             0.214    0.044    4.874    0.000    0.290    0.185
##     MLQ_4             0.898    0.040   22.420    0.000    1.220    0.771
##     MLQ_5             0.834    0.035   23.528    0.000    1.134    0.777
##     MLQ_6             0.955    0.042   22.811    0.000    1.298    0.772
##     MLQ_7             0.222    0.044    5.080    0.000    0.302    0.192
##     MLQ_8             0.207    0.044    4.705    0.000    0.281    0.178
##     MLQ_9             0.575    0.053   10.955    0.000    0.782    0.394
##     MLQ_10            0.015    0.048    0.313    0.754    0.020    0.012
## 
## Intercepts:
##     MLQ_1             4.700    0.058   80.722    0.000    4.700    2.782
##     MLQ_2             5.368    0.055   96.855    0.000    5.368    3.338
##     MLQ_3             5.249    0.054   97.252    0.000    5.249    3.352
##     MLQ_4             4.985    0.055   91.351    0.000    4.985    3.148
##     MLQ_5             5.242    0.050  104.254    0.000    5.242    3.593
##     MLQ_6             4.786    0.058   82.650    0.000    4.786    2.848
##     MLQ_7             5.183    0.054   95.553    0.000    5.183    3.293
##     MLQ_8             5.316    0.054   97.955    0.000    5.316    3.376
##     MLQ_9             4.844    0.068   70.828    0.000    4.844    2.441
##     MLQ_10            5.058    0.059   85.972    0.000    5.058    2.963
##     MLQ               0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             1.008    0.070                      1.008    0.353
##     MLQ_2             2.579    0.126                      2.579    0.997
##     MLQ_3             2.369    0.116                      2.369    0.966
##     MLQ_4             1.018    0.065                      1.018    0.406
##     MLQ_5             0.844    0.055                      0.844    0.396
##     MLQ_6             1.140    0.073                      1.140    0.404
##     MLQ_7             2.386    0.117                      2.386    0.963
##     MLQ_8             2.401    0.118                      2.401    0.968
##     MLQ_9             3.328    0.167                      3.328    0.845
##     MLQ_10            2.914    0.142                      2.914    1.000
##     MLQ               1.845    0.139                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.647
##     MLQ_2             0.003
##     MLQ_3             0.034
##     MLQ_4             0.594
##     MLQ_5             0.604
##     MLQ_6             0.596
##     MLQ_7             0.037
##     MLQ_8             0.032
##     MLQ_9             0.155
##     MLQ_10            0.000
summary(second.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  30 iterations
## 
##                                                   Used       Total
##   Number of observations                           842        1160
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              219.172
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Purpose =~
##     MLQ_1             1.000                               1.370    0.811
##     MLQ_4             0.886    0.040   22.396    0.000    1.213    0.766
##     MLQ_5             0.829    0.035   23.656    0.000    1.135    0.778
##     MLQ_6             0.947    0.041   22.863    0.000    1.297    0.772
##     MLQ_9             0.593    0.052   11.416    0.000    0.811    0.409
##   Searching =~
##     MLQ_2             1.000                               1.298    0.807
##     MLQ_3             0.897    0.041   22.121    0.000    1.165    0.744
##     MLQ_7             0.874    0.040   21.698    0.000    1.135    0.721
##     MLQ_8             0.896    0.040   22.336    0.000    1.163    0.738
##     MLQ_10            1.046    0.043   24.307    0.000    1.358    0.795
##   MLQ =~
##     Purpose  (p1)     1.000                               0.285    0.285
##     Searchng (p1)     1.000                               0.300    0.300
## 
## Intercepts:
##     MLQ_1             4.700    0.058   80.722    0.000    4.700    2.782
##     MLQ_4             4.985    0.055   91.351    0.000    4.985    3.148
##     MLQ_5             5.242    0.050  104.254    0.000    5.242    3.593
##     MLQ_6             4.786    0.058   82.650    0.000    4.786    2.848
##     MLQ_9             4.844    0.068   70.828    0.000    4.844    2.441
##     MLQ_2             5.368    0.055   96.855    0.000    5.368    3.338
##     MLQ_3             5.249    0.054   97.252    0.000    5.249    3.352
##     MLQ_7             5.183    0.054   95.553    0.000    5.183    3.293
##     MLQ_8             5.316    0.054   97.955    0.000    5.316    3.376
##     MLQ_10            5.058    0.059   85.972    0.000    5.058    2.963
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
##     MLQ               0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             0.978    0.069                      0.978    0.343
##     MLQ_4             1.036    0.066                      1.036    0.413
##     MLQ_5             0.841    0.055                      0.841    0.395
##     MLQ_6             1.140    0.073                      1.140    0.404
##     MLQ_9             3.281    0.165                      3.281    0.833
##     MLQ_2             0.901    0.060                      0.901    0.348
##     MLQ_3             1.096    0.065                      1.096    0.447
##     MLQ_7             1.188    0.069                      1.188    0.480
##     MLQ_8             1.128    0.067                      1.128    0.455
##     MLQ_10            1.071    0.070                      1.071    0.368
##     Purpose           1.724    0.150                      0.919    0.919
##     Searching         1.534    0.138                      0.910    0.910
##     MLQ               0.152    0.071                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.657
##     MLQ_4             0.587
##     MLQ_5             0.605
##     MLQ_6             0.596
##     MLQ_9             0.167
##     MLQ_2             0.652
##     MLQ_3             0.553
##     MLQ_7             0.520
##     MLQ_8             0.545
##     MLQ_10            0.632
##     Purpose           0.081
##     Searching         0.090
summary(bifactor1.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  69 iterations
## 
##                                                   Used       Total
##   Number of observations                           842        1160
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              109.158
##   Degrees of freedom                                25
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   MLQ =~
##     MLQ_1             1.000                               1.201    0.711
##     MLQ_2             0.025    0.058    0.427    0.669    0.030    0.019
##     MLQ_3             0.232    0.078    2.953    0.003    0.278    0.178
##     MLQ_4             0.976    0.096   10.192    0.000    1.172    0.740
##     MLQ_5             0.804    0.047   16.934    0.000    0.966    0.662
##     MLQ_6             1.199    0.120    9.970    0.000    1.439    0.857
##     MLQ_7             0.210    0.067    3.130    0.002    0.252    0.160
##     MLQ_8             0.194    0.066    2.944    0.003    0.233    0.148
##     MLQ_9             0.493    0.099    5.006    0.000    0.592    0.299
##     MLQ_10           -0.061    0.055   -1.101    0.271   -0.073   -0.043
##   Purpose =~
##     MLQ_1             1.000                               0.653    0.386
##     MLQ_4             0.477    0.176    2.714    0.007    0.311    0.197
##     MLQ_5             1.034    0.200    5.159    0.000    0.675    0.463
##     MLQ_6             0.060    0.590    0.102    0.919    0.039    0.023
##     MLQ_9             1.117    0.322    3.471    0.001    0.729    0.367
##   Searching =~
##     MLQ_2             1.000                               1.302    0.810
##     MLQ_3             0.880    0.040   22.065    0.000    1.146    0.731
##     MLQ_7             0.854    0.040   21.538    0.000    1.112    0.707
##     MLQ_8             0.877    0.039   22.203    0.000    1.141    0.725
##     MLQ_10            1.065    0.043   24.513    0.000    1.387    0.813
## 
## Covariances:
##   MLQ ~~
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
##   Purpose ~~
##     Searching         0.000                               0.000    0.000
## 
## Intercepts:
##     MLQ_1             4.700    0.058   80.722    0.000    4.700    2.782
##     MLQ_2             5.368    0.055   96.855    0.000    5.368    3.338
##     MLQ_3             5.249    0.054   97.252    0.000    5.249    3.352
##     MLQ_4             4.985    0.055   91.351    0.000    4.985    3.148
##     MLQ_5             5.242    0.050  104.254    0.000    5.242    3.593
##     MLQ_6             4.786    0.058   82.650    0.000    4.786    2.848
##     MLQ_7             5.183    0.054   95.553    0.000    5.183    3.293
##     MLQ_8             5.316    0.054   97.955    0.000    5.316    3.376
##     MLQ_9             4.844    0.068   70.828    0.000    4.844    2.441
##     MLQ_10            5.058    0.059   85.972    0.000    5.058    2.963
##     MLQ               0.000                               0.000    0.000
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             0.985    0.079                      0.985    0.345
##     MLQ_2             0.891    0.060                      0.891    0.344
##     MLQ_3             1.063    0.064                      1.063    0.433
##     MLQ_4             1.036    0.087                      1.036    0.413
##     MLQ_5             0.741    0.078                      0.741    0.348
##     MLQ_6             0.750    0.251                      0.750    0.266
##     MLQ_7             1.177    0.068                      1.177    0.475
##     MLQ_8             1.123    0.066                      1.123    0.453
##     MLQ_9             3.056    0.185                      3.056    0.776
##     MLQ_10            0.985    0.069                      0.985    0.338
##     MLQ               1.442    0.353                      1.000    1.000
##     Purpose           0.426    0.350                      1.000    1.000
##     Searching         1.695    0.126                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.655
##     MLQ_2             0.656
##     MLQ_3             0.567
##     MLQ_4             0.587
##     MLQ_5             0.652
##     MLQ_6             0.734
##     MLQ_7             0.525
##     MLQ_8             0.547
##     MLQ_9             0.224
##     MLQ_10            0.662
summary(bifactor1WO9.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  72 iterations
## 
##                                                   Used       Total
##   Number of observations                           842        1160
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               39.702
##   Degrees of freedom                                18
##   P-value (Chi-square)                           0.002
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   MLQ =~
##     MLQ_1             1.000                               0.995    0.589
##     MLQ_2             0.058    0.068    0.850    0.395    0.058    0.036
##     MLQ_3             0.316    0.096    3.292    0.001    0.315    0.201
##     MLQ_4             1.252    0.172    7.295    0.000    1.246    0.787
##     MLQ_5             0.944    0.121    7.807    0.000    0.940    0.644
##     MLQ_6             1.271    0.168    7.555    0.000    1.266    0.753
##     MLQ_7             0.275    0.080    3.420    0.001    0.274    0.174
##     MLQ_8             0.271    0.085    3.202    0.001    0.270    0.171
##     MLQ_10           -0.061    0.070   -0.871    0.384   -0.061   -0.036
##   Purpose =~
##     MLQ_1             1.000                               1.218    0.721
##     MLQ_4             0.243    0.206    1.178    0.239    0.295    0.187
##     MLQ_5             0.451    0.337    1.337    0.181    0.550    0.377
##     MLQ_6             0.340    0.272    1.253    0.210    0.415    0.247
##   Searching =~
##     MLQ_2             1.000                               1.300    0.808
##     MLQ_3             0.876    0.040   22.034    0.000    1.139    0.727
##     MLQ_7             0.851    0.040   21.485    0.000    1.106    0.703
##     MLQ_8             0.873    0.039   22.151    0.000    1.135    0.720
##     MLQ_10            1.072    0.044   24.420    0.000    1.393    0.816
## 
## Covariances:
##   MLQ ~~
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
##   Purpose ~~
##     Searching         0.000                               0.000    0.000
## 
## Intercepts:
##     MLQ_1             4.700    0.058   80.722    0.000    4.700    2.782
##     MLQ_2             5.368    0.055   96.855    0.000    5.368    3.338
##     MLQ_3             5.249    0.054   97.252    0.000    5.249    3.352
##     MLQ_4             4.985    0.055   91.351    0.000    4.985    3.148
##     MLQ_5             5.242    0.050  104.254    0.000    5.242    3.593
##     MLQ_6             4.786    0.058   82.650    0.000    4.786    2.848
##     MLQ_7             5.183    0.054   95.553    0.000    5.183    3.293
##     MLQ_8             5.316    0.054   97.955    0.000    5.316    3.376
##     MLQ_10            5.058    0.059   85.972    0.000    5.058    2.963
##     MLQ               0.000                               0.000    0.000
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             0.379    0.856                      0.379    0.133
##     MLQ_2             0.894    0.060                      0.894    0.346
##     MLQ_3             1.057    0.064                      1.057    0.431
##     MLQ_4             0.867    0.102                      0.867    0.346
##     MLQ_5             0.943    0.100                      0.943    0.443
##     MLQ_6             1.050    0.094                      1.050    0.372
##     MLQ_7             1.179    0.068                      1.179    0.476
##     MLQ_8             1.120    0.066                      1.120    0.452
##     MLQ_10            0.971    0.070                      0.971    0.333
##     MLQ               0.991    0.331                      1.000    1.000
##     Purpose           1.484    0.863                      1.000    1.000
##     Searching         1.690    0.126                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.867
##     MLQ_2             0.654
##     MLQ_3             0.569
##     MLQ_4             0.654
##     MLQ_5             0.557
##     MLQ_6             0.628
##     MLQ_7             0.524
##     MLQ_8             0.548
##     MLQ_10            0.667
summary(bifactor.negative.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  28 iterations
## 
##                                                   Used       Total
##   Number of observations                           842        1160
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             2092.057
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Negative =~
##     MLQ_9             1.000                               0.564    0.284
##   MLQ =~
##     MLQ_1             1.000                               1.358    0.804
##     MLQ_2             0.062                               0.085    0.053
##     MLQ_3             0.214                               0.290    0.185
##     MLQ_4             0.898                               1.220    0.771
##     MLQ_5             0.834                               1.134    0.777
##     MLQ_6             0.955                               1.298    0.772
##     MLQ_7             0.222                               0.302    0.192
##     MLQ_8             0.207                               0.281    0.178
##     MLQ_9             0.575                               0.782    0.394
##     MLQ_10            0.015                               0.020    0.012
## 
## Covariances:
##   Negative ~~
##     MLQ               0.000                               0.000    0.000
## 
## Intercepts:
##     MLQ_9             4.844                               4.844    2.441
##     MLQ_1             4.700                               4.700    2.782
##     MLQ_2             5.368                               5.368    3.338
##     MLQ_3             5.249                               5.249    3.352
##     MLQ_4             4.985                               4.985    3.148
##     MLQ_5             5.242                               5.242    3.593
##     MLQ_6             4.786                               4.786    2.848
##     MLQ_7             5.183                               5.183    3.293
##     MLQ_8             5.316                               5.316    3.376
##     MLQ_10            5.058                               5.058    2.963
##     Negative          0.000                               0.000    0.000
##     MLQ               0.000                               0.000    0.000
## 
## Variances:
##     MLQ_9             3.010                               3.010    0.764
##     MLQ_1             1.008                               1.008    0.353
##     MLQ_2             2.579                               2.579    0.997
##     MLQ_3             2.369                               2.369    0.966
##     MLQ_4             1.018                               1.018    0.406
##     MLQ_5             0.844                               0.844    0.396
##     MLQ_6             1.140                               1.140    0.404
##     MLQ_7             2.386                               2.386    0.963
##     MLQ_8             2.401                               2.401    0.968
##     MLQ_10            2.914                               2.914    1.000
##     Negative          0.318                               1.000    1.000
##     MLQ               1.845                               1.000    1.000
## 
## R-Square:
## 
##     MLQ_9             0.236
##     MLQ_1             0.647
##     MLQ_2             0.003
##     MLQ_3             0.034
##     MLQ_4             0.594
##     MLQ_5             0.604
##     MLQ_6             0.596
##     MLQ_7             0.037
##     MLQ_8             0.032
##     MLQ_10            0.000

Residual correlations

correl = residuals(two.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.023  0.000                                                 
## MLQ_5   0.020 -0.016  0.000                                          
## MLQ_6  -0.004  0.045 -0.023  0.000                                   
## MLQ_9   0.021 -0.007  0.046 -0.058  0.000                            
## MLQ_2  -0.070 -0.011 -0.034 -0.048 -0.233  0.000                     
## MLQ_3   0.033  0.123  0.065  0.100 -0.151 -0.025  0.000              
## MLQ_7   0.081  0.096  0.092  0.064 -0.113  0.009 -0.001  0.000       
## MLQ_8   0.043  0.095  0.087  0.057 -0.103  0.010 -0.009  0.014  0.000
## MLQ_10 -0.077 -0.070 -0.044 -0.112 -0.262  0.007  0.031 -0.022 -0.016
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl$cor)
correl1 = residuals(one.fit, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 
## MLQ_1   0.000                                                        
## MLQ_2  -0.056  0.000                                                 
## MLQ_3  -0.065  0.566  0.000                                          
## MLQ_4  -0.022  0.001  0.029  0.000                                   
## MLQ_5   0.026 -0.021 -0.029 -0.019  0.000                            
## MLQ_6   0.001 -0.036  0.006  0.041 -0.022  0.000                     
## MLQ_7  -0.023  0.581  0.500 -0.005 -0.010 -0.037  0.000              
## MLQ_8  -0.050  0.597  0.507  0.006 -0.003 -0.032  0.512  0.000       
## MLQ_9   0.036 -0.225 -0.198  0.003  0.058 -0.047 -0.163 -0.148  0.000
## MLQ_10 -0.032  0.649  0.620 -0.027 -0.001 -0.069  0.549  0.569 -0.239
##        MLQ_10
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_9        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl1$cor)
correl0 = residuals(second.fit, type="cor")
correl0
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.023  0.000                                                 
## MLQ_5   0.020 -0.016  0.000                                          
## MLQ_6  -0.004  0.045 -0.023  0.000                                   
## MLQ_9   0.021 -0.007  0.046 -0.058  0.000                            
## MLQ_2  -0.070 -0.011 -0.034 -0.048 -0.233  0.000                     
## MLQ_3   0.033  0.123  0.065  0.100 -0.151 -0.025  0.000              
## MLQ_7   0.081  0.096  0.092  0.064 -0.113  0.009 -0.001  0.000       
## MLQ_8   0.043  0.095  0.087  0.057 -0.103  0.010 -0.009  0.014  0.000
## MLQ_10 -0.077 -0.070 -0.044 -0.112 -0.262  0.007  0.031 -0.022 -0.016
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl0$cor)
correl4 = residuals(bifactor1.fit, type="cor")
correl4
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 
## MLQ_1   0.000                                                        
## MLQ_2  -0.027  0.000                                                 
## MLQ_3  -0.042 -0.019  0.000                                          
## MLQ_4  -0.004  0.028  0.041  0.000                                   
## MLQ_5   0.002  0.007 -0.003 -0.001  0.000                            
## MLQ_6   0.004 -0.011 -0.003 -0.003  0.000  0.000                     
## MLQ_7   0.017  0.016 -0.010  0.024  0.033 -0.026  0.000              
## MLQ_8  -0.011  0.017 -0.016  0.034  0.038 -0.021  0.011  0.000       
## MLQ_9  -0.001 -0.210 -0.178  0.013 -0.003 -0.007 -0.135 -0.122  0.000
## MLQ_10  0.009 -0.008  0.036  0.014  0.037 -0.023 -0.016 -0.012 -0.222
##        MLQ_10
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_9        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl4$cor)
correl6 = residuals(bifactor1WO9.fit, type="cor")
correl6
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_10
## MLQ_1   0.000                                                        
## MLQ_2  -0.035  0.000                                                 
## MLQ_3  -0.034 -0.019  0.000                                          
## MLQ_4   0.000  0.013  0.014  0.000                                   
## MLQ_5   0.000 -0.004 -0.015  0.003  0.000                            
## MLQ_6   0.000 -0.022 -0.003 -0.003 -0.001  0.000                     
## MLQ_7   0.028  0.017 -0.010  0.006  0.027 -0.020  0.000              
## MLQ_8  -0.007  0.018 -0.018  0.009  0.025 -0.023  0.010  0.000       
## MLQ_10 -0.001 -0.009  0.036  0.010  0.032 -0.033 -0.016 -0.011  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0
View(correl6$cor)
correl3 = residuals(bifactor.negative.fit, type="cor")
correl3
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 
## MLQ_9   0.000                                                        
## MLQ_1   0.036  0.000                                                 
## MLQ_2  -0.225 -0.056  0.000                                          
## MLQ_3  -0.198 -0.065  0.566  0.000                                   
## MLQ_4   0.003 -0.022  0.001  0.029  0.000                            
## MLQ_5   0.058  0.026 -0.021 -0.029 -0.019  0.000                     
## MLQ_6  -0.047  0.001 -0.036  0.006  0.041 -0.022  0.000              
## MLQ_7  -0.163 -0.023  0.581  0.500 -0.005 -0.010 -0.037  0.000       
## MLQ_8  -0.148 -0.050  0.597  0.507  0.006 -0.003 -0.032  0.512  0.000
## MLQ_10 -0.239 -0.032  0.649  0.620 -0.027 -0.001 -0.069  0.549  0.569
##        MLQ_10
## MLQ_9        
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl3$cor)

zscore correlation anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(two.fit, type = "standardized")
View(zcorrels$cov)
zcorrels1 = residuals(one.fit, type = "standardized")
View(zcorrels1$cov)
zcorrel0 = residuals(second.fit, type="cor")
zcorrel0
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.023  0.000                                                 
## MLQ_5   0.020 -0.016  0.000                                          
## MLQ_6  -0.004  0.045 -0.023  0.000                                   
## MLQ_9   0.021 -0.007  0.046 -0.058  0.000                            
## MLQ_2  -0.070 -0.011 -0.034 -0.048 -0.233  0.000                     
## MLQ_3   0.033  0.123  0.065  0.100 -0.151 -0.025  0.000              
## MLQ_7   0.081  0.096  0.092  0.064 -0.113  0.009 -0.001  0.000       
## MLQ_8   0.043  0.095  0.087  0.057 -0.103  0.010 -0.009  0.014  0.000
## MLQ_10 -0.077 -0.070 -0.044 -0.112 -0.262  0.007  0.031 -0.022 -0.016
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel0$cor)
correl6 = residuals(bifactor1WO9.fit, type="cor")
correl6
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_10
## MLQ_1   0.000                                                        
## MLQ_2  -0.035  0.000                                                 
## MLQ_3  -0.034 -0.019  0.000                                          
## MLQ_4   0.000  0.013  0.014  0.000                                   
## MLQ_5   0.000 -0.004 -0.015  0.003  0.000                            
## MLQ_6   0.000 -0.022 -0.003 -0.003 -0.001  0.000                     
## MLQ_7   0.028  0.017 -0.010  0.006  0.027 -0.020  0.000              
## MLQ_8  -0.007  0.018 -0.018  0.009  0.025 -0.023  0.010  0.000       
## MLQ_10 -0.001 -0.009  0.036  0.010  0.032 -0.033 -0.016 -0.011  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0
View(correl6$cor)
zcorrel3 = residuals(bifactor.negative.fit, type="cor")
zcorrel3
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 
## MLQ_9   0.000                                                        
## MLQ_1   0.036  0.000                                                 
## MLQ_2  -0.225 -0.056  0.000                                          
## MLQ_3  -0.198 -0.065  0.566  0.000                                   
## MLQ_4   0.003 -0.022  0.001  0.029  0.000                            
## MLQ_5   0.058  0.026 -0.021 -0.029 -0.019  0.000                     
## MLQ_6  -0.047  0.001 -0.036  0.006  0.041 -0.022  0.000              
## MLQ_7  -0.163 -0.023  0.581  0.500 -0.005 -0.010 -0.037  0.000       
## MLQ_8  -0.148 -0.050  0.597  0.507  0.006 -0.003 -0.032  0.512  0.000
## MLQ_10 -0.239 -0.032  0.649  0.620 -0.027 -0.001 -0.069  0.549  0.569
##        MLQ_10
## MLQ_9        
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel3$cor)
zcorrel4 = residuals(bifactor1.fit, type="cor")
zcorrel4
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 
## MLQ_1   0.000                                                        
## MLQ_2  -0.027  0.000                                                 
## MLQ_3  -0.042 -0.019  0.000                                          
## MLQ_4  -0.004  0.028  0.041  0.000                                   
## MLQ_5   0.002  0.007 -0.003 -0.001  0.000                            
## MLQ_6   0.004 -0.011 -0.003 -0.003  0.000  0.000                     
## MLQ_7   0.017  0.016 -0.010  0.024  0.033 -0.026  0.000              
## MLQ_8  -0.011  0.017 -0.016  0.034  0.038 -0.021  0.011  0.000       
## MLQ_9  -0.001 -0.210 -0.178  0.013 -0.003 -0.007 -0.135 -0.122  0.000
## MLQ_10  0.009 -0.008  0.036  0.014  0.037 -0.023 -0.016 -0.012 -0.222
##        MLQ_10
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_9        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel4$cor)

Modification indicies

modindices(two.fit, sort. = TRUE, minimum.value = 3.84)
##          lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  Searching =~  MLQ_9 52.330 -0.379  -0.492   -0.248   -0.248
## 2    Purpose =~ MLQ_10 33.919 -0.188  -0.257   -0.151   -0.151
## 3      MLQ_4 ~~  MLQ_6 24.055  0.284   0.284    0.107    0.107
## 4    Purpose =~  MLQ_7 16.061  0.129   0.176    0.112    0.112
## 5    Purpose =~  MLQ_3 14.209  0.118   0.161    0.103    0.103
## 6    Purpose =~  MLQ_2 14.134 -0.113  -0.155   -0.096   -0.096
## 7      MLQ_6 ~~  MLQ_3 12.821  0.167   0.167    0.063    0.063
## 8      MLQ_6 ~~  MLQ_9 11.725 -0.268  -0.268   -0.080   -0.080
## 9      MLQ_6 ~~ MLQ_10 11.702 -0.164  -0.164   -0.057   -0.057
## 10   Purpose =~  MLQ_8 11.654  0.108   0.148    0.094    0.094
## 11     MLQ_9 ~~ MLQ_10 11.333 -0.248  -0.248   -0.073   -0.073
## 12     MLQ_3 ~~ MLQ_10 10.366  0.174   0.174    0.065    0.065
## 13     MLQ_1 ~~  MLQ_4  9.361 -0.184  -0.184   -0.069   -0.069
## 14     MLQ_4 ~~  MLQ_3  9.331  0.135   0.135    0.055    0.055
## 15     MLQ_1 ~~  MLQ_5  8.390  0.162   0.162    0.066    0.066
## 16     MLQ_5 ~~  MLQ_9  7.733  0.188   0.188    0.065    0.065
## 17     MLQ_2 ~~  MLQ_3  7.235 -0.137  -0.137   -0.055   -0.055
## 18     MLQ_5 ~~  MLQ_6  7.054 -0.143  -0.143   -0.058   -0.058
## 19     MLQ_4 ~~ MLQ_10  6.255 -0.114  -0.114   -0.042   -0.042
## 20     MLQ_9 ~~  MLQ_2  5.997 -0.168  -0.168   -0.053   -0.053
## 21 Searching =~  MLQ_4  4.836  0.072   0.094    0.059    0.059
## 22     MLQ_7 ~~ MLQ_10  4.725 -0.118  -0.118   -0.044   -0.044
## 23     MLQ_1 ~~  MLQ_7  3.910  0.091   0.091    0.034    0.034
modindices(one.fit, sort. = TRUE, minimum.value = 3.84)
##      lhs op    rhs      mi    epc sepc.lv sepc.all sepc.nox
## 1  MLQ_2 ~~ MLQ_10 355.421  1.782   1.782    0.649    0.649
## 2  MLQ_3 ~~ MLQ_10 337.480  1.668   1.668    0.624    0.624
## 3  MLQ_2 ~~  MLQ_8 312.484  1.520   1.520    0.600    0.600
## 4  MLQ_2 ~~  MLQ_7 297.968  1.480   1.480    0.585    0.585
## 5  MLQ_8 ~~ MLQ_10 282.892  1.537   1.537    0.572    0.572
## 6  MLQ_2 ~~  MLQ_3 281.972  1.435   1.435    0.570    0.570
## 7  MLQ_7 ~~ MLQ_10 264.960  1.484   1.484    0.552    0.552
## 8  MLQ_7 ~~  MLQ_8 239.477  1.283   1.283    0.518    0.518
## 9  MLQ_3 ~~  MLQ_8 233.973  1.264   1.264    0.512    0.512
## 10 MLQ_3 ~~  MLQ_7 228.860  1.247   1.247    0.506    0.506
## 11 MLQ_9 ~~ MLQ_10  58.730 -0.834  -0.834   -0.246   -0.246
## 12 MLQ_2 ~~  MLQ_9  52.235 -0.740  -0.740   -0.232   -0.232
## 13 MLQ_3 ~~  MLQ_9  41.914 -0.637  -0.637   -0.205   -0.205
## 14 MLQ_7 ~~  MLQ_9  28.488 -0.527  -0.527   -0.169   -0.169
## 15 MLQ_8 ~~  MLQ_9  23.220 -0.477  -0.477   -0.153   -0.153
## 16 MLQ_4 ~~  MLQ_6  20.798  0.262   0.262    0.099    0.099
## 17 MLQ_1 ~~  MLQ_3  14.489 -0.240  -0.240   -0.091   -0.091
## 18 MLQ_6 ~~ MLQ_10  12.673 -0.254  -0.254   -0.088   -0.088
## 19 MLQ_1 ~~  MLQ_5  12.426  0.193   0.193    0.078    0.078
## 20 MLQ_5 ~~  MLQ_9  11.902  0.234   0.234    0.081    0.081
## 21 MLQ_1 ~~  MLQ_2  10.528 -0.212  -0.212   -0.078   -0.078
## 22 MLQ_1 ~~  MLQ_8   8.554 -0.186  -0.186   -0.070   -0.070
## 23 MLQ_1 ~~  MLQ_4   7.786 -0.165  -0.165   -0.062   -0.062
## 24 MLQ_6 ~~  MLQ_9   7.397 -0.214  -0.214   -0.064   -0.064
## 25 MLQ_5 ~~  MLQ_6   6.473 -0.135  -0.135   -0.055   -0.055
## 26 MLQ_1 ~~  MLQ_9   5.415  0.179   0.179    0.053    0.053
## 27 MLQ_4 ~~  MLQ_5   4.468 -0.106  -0.106   -0.046   -0.046
## 28 MLQ_6 ~~  MLQ_7   3.852 -0.127  -0.127   -0.048   -0.048
#modindices(second.fit, sort. = TRUE, minimum.value = 3.84)
#modindices(bifactor.fit, sort. = TRUE, minimum.value = 3.84)
modindices(bifactor1WO9.fit, sort. = TRUE, minimum.value = 3.84)
##       lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1   MLQ_3 ~~ MLQ_10 18.099  0.227   0.227    0.085    0.085
## 2 Purpose =~  MLQ_7  6.616  0.123   0.149    0.095    0.095
## 3   MLQ_1 ~~  MLQ_7  5.708  0.121   0.121    0.045    0.045
## 4   MLQ_3 ~~  MLQ_6  4.635  0.108   0.108    0.041    0.041
## 5   MLQ_2 ~~  MLQ_3  4.536 -0.106  -0.106   -0.042   -0.042
## 6 Purpose =~  MLQ_2  4.108 -0.084  -0.103   -0.064   -0.064
#modindices(bifactor.fitWO9, sort. = TRUE, minimum.value = 3.84)
modindices(bifactor1.fit, sort. = TRUE, minimum.value = 3.84)
##          lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  Searching =~  MLQ_9 52.713 -0.376  -0.489   -0.246   -0.246
## 2      MLQ_3 ~~ MLQ_10 16.784  0.217   0.217    0.081    0.081
## 3      MLQ_9 ~~ MLQ_10 15.067 -0.289  -0.289   -0.085   -0.085
## 4    Purpose =~  MLQ_3  7.424 -0.314  -0.205   -0.131   -0.131
## 5  Searching =~  MLQ_5  5.946  0.071   0.093    0.064    0.064
## 6    Purpose =~  MLQ_2  5.177 -0.221  -0.144   -0.090   -0.090
## 7      MLQ_2 ~~  MLQ_9  5.018 -0.152  -0.152   -0.048   -0.048
## 8      MLQ_2 ~~  MLQ_3  4.700 -0.108  -0.108   -0.043   -0.043
## 9      MLQ_3 ~~  MLQ_4  4.328  0.097   0.097    0.039    0.039
## 10     MLQ_1 ~~  MLQ_3  4.152 -0.092  -0.092   -0.035   -0.035
## 11 Searching =~  MLQ_4  3.949  0.065   0.084    0.053    0.053
## 12     MLQ_1 ~~ MLQ_10  3.940  0.092   0.092    0.032    0.032
#modindices(bifactor.negative.fit, sort. = TRUE, minimum.value = 3.84)

Fit Measures

fitmeasures(two.fit)#Models two factors:Purpose and Seraching for Purpose  
##                npar                fmin               chisq 
##              31.000               0.130             219.172 
##                  df              pvalue      baseline.chisq 
##              34.000               0.000            3796.222 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.951 
##                 tli                nnfi                 rfi 
##               0.935               0.935               0.924 
##                 nfi                pnfi                 ifi 
##               0.942               0.712               0.951 
##                 rni                logl   unrestricted.logl 
##               0.951          -14312.146          -14202.560 
##                 aic                 bic              ntotal 
##           28686.292           28833.101             842.000 
##                bic2               rmsea      rmsea.ci.lower 
##           28734.655               0.080               0.070 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.091               0.000               0.202 
##          rmr_nomean                srmr        srmr_bentler 
##               0.220               0.067               0.067 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.073               0.067               0.073 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.067               0.073             187.717 
##               cn_01                 gfi                agfi 
##             216.371               0.993               0.986 
##                pgfi                 mfi                ecvi 
##               0.519               0.896                  NA
fitmeasures(one.fit) #Models as a single purpose factor
##                npar                fmin               chisq 
##              30.000               1.242            2092.057 
##                  df              pvalue      baseline.chisq 
##              35.000               0.000            3796.222 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.452 
##                 tli                nnfi                 rfi 
##               0.295               0.295               0.291 
##                 nfi                pnfi                 ifi 
##               0.449               0.349               0.453 
##                 rni                logl   unrestricted.logl 
##               0.452          -15248.589          -14202.560 
##                 aic                 bic              ntotal 
##           30557.178           30699.251             842.000 
##                bic2               rmsea      rmsea.ci.lower 
##           30603.981               0.264               0.255 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.274               0.000               0.606 
##          rmr_nomean                srmr        srmr_bentler 
##               0.659               0.230               0.230 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.250               0.230               0.250 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.230               0.250              21.044 
##               cn_01                 gfi                agfi 
##              24.079               0.944               0.895 
##                pgfi                 mfi                ecvi 
##               0.508               0.295                  NA
fitmeasures(second.fit)#Second order models as Purpose being the higher factor made up of Purpose and Searching
##                npar                fmin               chisq 
##              31.000               0.130             219.172 
##                  df              pvalue      baseline.chisq 
##              34.000               0.000            3796.222 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.951 
##                 tli                nnfi                 rfi 
##               0.935               0.935               0.924 
##                 nfi                pnfi                 ifi 
##               0.942               0.712               0.951 
##                 rni                logl   unrestricted.logl 
##               0.951          -14312.146          -14202.560 
##                 aic                 bic              ntotal 
##           28686.292           28833.101             842.000 
##                bic2               rmsea      rmsea.ci.lower 
##           28734.655               0.080               0.070 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.091               0.000               0.202 
##          rmr_nomean                srmr        srmr_bentler 
##               0.220               0.067               0.067 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.073               0.067               0.073 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.067               0.073             187.717 
##               cn_01                 gfi                agfi 
##             216.371               0.993               0.986 
##                pgfi                 mfi                ecvi 
##               0.519               0.896                  NA
fitmeasures(bifactor1.fit)#Models bifactor with Searching and Purpose as factors uncorolated with the main factor
##                npar                fmin               chisq 
##              40.000               0.065             109.158 
##                  df              pvalue      baseline.chisq 
##              25.000               0.000            3796.222 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.978 
##                 tli                nnfi                 rfi 
##               0.960               0.960               0.948 
##                 nfi                pnfi                 ifi 
##               0.971               0.540               0.978 
##                 rni                logl   unrestricted.logl 
##               0.978          -14257.139          -14202.560 
##                 aic                 bic              ntotal 
##           28594.278           28783.710             842.000 
##                bic2               rmsea      rmsea.ci.lower 
##           28656.682               0.063               0.051 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.076               0.034               0.164 
##          rmr_nomean                srmr        srmr_bentler 
##               0.178               0.052               0.052 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.056               0.052               0.056 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.052               0.056             291.436 
##               cn_01                 gfi                agfi 
##             342.821               0.996               0.991 
##                pgfi                 mfi                ecvi 
##               0.383               0.951                  NA
fitmeasures(bifactor1WO9.fit)#Models bifactor with Searching and Purpose as factors uncorolated with the main factor leaving negatively worded questions out
##                npar                fmin               chisq 
##              36.000               0.024              39.702 
##                  df              pvalue      baseline.chisq 
##              18.000               0.002            3583.218 
##         baseline.df     baseline.pvalue                 cfi 
##              36.000               0.000               0.994 
##                 tli                nnfi                 rfi 
##               0.988               0.988               0.978 
##                 nfi                pnfi                 ifi 
##               0.989               0.494               0.994 
##                 rni                logl   unrestricted.logl 
##               0.994          -12557.009          -12537.158 
##                 aic                 bic              ntotal 
##           25186.018           25356.506             842.000 
##                bic2               rmsea      rmsea.ci.lower 
##           25242.182               0.038               0.022 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.054               0.889               0.039 
##          rmr_nomean                srmr        srmr_bentler 
##               0.043               0.015               0.015 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.016               0.015               0.016 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.015               0.016             613.257 
##               cn_01                 gfi                agfi 
##             739.147               0.999               0.996 
##                pgfi                 mfi                ecvi 
##               0.333               0.987                  NA
fitmeasures(bifactor.negative.fit)#Models bifactor as the negatively worded item as a factor uncorolated with the main factor
##                npar                fmin               chisq 
##              31.000               1.242            2092.057 
##                  df              pvalue      baseline.chisq 
##              34.000               0.000            3796.222 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.451 
##                 tli                nnfi                 rfi 
##               0.274               0.274               0.271 
##                 nfi                pnfi                 ifi 
##               0.449               0.339               0.453 
##                 rni                logl   unrestricted.logl 
##               0.451          -15248.589          -14202.560 
##                 aic                 bic              ntotal 
##           30559.178           30705.987             842.000 
##                bic2               rmsea      rmsea.ci.lower 
##           30607.541               0.268               0.258 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.278               0.000               0.606 
##          rmr_nomean                srmr        srmr_bentler 
##               0.659               0.230               0.230 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.250               0.230               0.250 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.230               0.250              20.561 
##               cn_01                 gfi                agfi 
##              23.563               0.944               0.892 
##                pgfi                 mfi                ecvi 
##               0.494               0.295                  NA

Create dataset for Target rotation

all_surveys<-read.csv("allsurveysYT1.csv")
MLQ<-select(all_surveys, MLQ_1, MLQ_4,MLQ_5,MLQ_6,MLQ_9,MLQ_2,MLQ_3,MLQ_7,MLQ_8,MLQ_10)
MLQ<- data.frame(apply(MLQ,2, as.numeric))
library(GPArotation)
library(psych)
library(dplyr)

MLQ<-tbl_df(MLQ)
MLQ$MLQ_9  <-  8- MLQ$MLQ_9
MLQ
## Source: local data frame [1,160 x 10]
## 
##    MLQ_1 MLQ_4 MLQ_5 MLQ_6 MLQ_9 MLQ_2 MLQ_3 MLQ_7 MLQ_8 MLQ_10
## 1      4     5     6     4     3     7     7     5     7      7
## 2      3     5     4     3     3     5     5     5     4      5
## 3      4     4     4     4     4     7     5     4     5      4
## 4      5     3     5     5     3     6     7     5     5      6
## 5      4     4     4     4     5     6     5     5     5      5
## 6      5     4     5     5     7     5     3     3     4      3
## 7      6     3     6     3     5     2     2     5     4      4
## 8      3     5     5     4     4     7     7     5     7      5
## 9      6     7     6     6     7     5     2     5     7      2
## 10     1     3     5     1     6     7     1     5     5      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...    ...
str(MLQ)
## Classes 'tbl_df', 'tbl' and 'data.frame':    1160 obs. of  10 variables:
##  $ MLQ_1 : num  4 3 4 5 4 5 6 3 6 1 ...
##  $ MLQ_4 : num  5 5 4 3 4 4 3 5 7 3 ...
##  $ MLQ_5 : num  6 4 4 5 4 5 6 5 6 5 ...
##  $ MLQ_6 : num  4 3 4 5 4 5 3 4 6 1 ...
##  $ MLQ_9 : num  3 3 4 3 5 7 5 4 7 6 ...
##  $ MLQ_2 : num  7 5 7 6 6 5 2 7 5 7 ...
##  $ MLQ_3 : num  7 5 5 7 5 3 2 7 2 1 ...
##  $ MLQ_7 : num  5 5 4 5 5 3 5 5 5 5 ...
##  $ MLQ_8 : num  7 4 5 5 5 4 4 7 7 5 ...
##  $ MLQ_10: num  7 5 4 6 5 3 4 5 2 1 ...
colnames(MLQ) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10")
#Target rotation: choose "simple structure" a priori and can be applied to oblique and orthogonal rotation based on 
#what paper says facotrs should be MLQ
Targ_key <- make.keys(10,list(f1=1:5,f2=6:10))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
MLQ_cor <- corFiml(MLQ)
MLQ_cor
##              1           2           3           4           5           6
## 1   1.00000000  0.59813088 0.651078193  0.62208391  0.35265392 -0.01390057
## 2   0.59813088  1.00000000 0.579962389  0.63620295  0.30648208  0.04143454
## 3   0.65107819  0.57996239 1.000000000  0.57769010  0.36446540  0.01971311
## 4   0.62208391  0.63620295 0.577690100  1.00000000  0.25745157  0.00497097
## 5   0.35265392  0.30648208 0.364465398  0.25745157  1.00000000 -0.20454251
## 6  -0.01390057  0.04143454 0.019713111  0.00497097 -0.20454251  1.00000000
## 7   0.08444384  0.17205932 0.114931062  0.14887244 -0.12504985  0.57600524
## 8   0.13100874  0.14316875 0.139486113  0.11133895 -0.08745785  0.59132713
## 9   0.09373058  0.14344022 0.135724287  0.10586742 -0.07737298  0.60638994
## 10 -0.02191184 -0.01809295 0.008674444 -0.05939681 -0.23460477  0.64924594
##              7           8           9           10
## 1   0.08444384  0.13100874  0.09373058 -0.021911839
## 2   0.17205932  0.14316875  0.14344022 -0.018092948
## 3   0.11493106  0.13948611  0.13572429  0.008674444
## 4   0.14887244  0.11133895  0.10586742 -0.059396808
## 5  -0.12504985 -0.08745785 -0.07737298 -0.234604768
## 6   0.57600524  0.59132713  0.60638994  0.649245938
## 7   1.00000000  0.53553886  0.54011339  0.622603370
## 8   0.53553886  1.00000000  0.54644712  0.551190296
## 9   0.54011339  0.54644712  1.00000000  0.571000563
## 10  0.62260337  0.55119030  0.57100056  1.000000000
out_targetQ <- fa(MLQ_cor,2,rotate="TargetQ",n.obs = 840,Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA")]
## $loadings
## 
## Loadings:
##    MR2    MR1   
## 1          0.806
## 2          0.763
## 3          0.771
## 4          0.772
## 5  -0.231  0.441
## 6   0.814       
## 7   0.741       
## 8   0.713       
## 9   0.730       
## 10  0.812 -0.124
## 
##                  MR2   MR1
## SS loadings    2.971 2.658
## Proportion Var 0.297 0.266
## Cumulative Var 0.297 0.563
## 
## $score.cor
##            [,1]       [,2]
## [1,] 1.00000000 0.04814573
## [2,] 0.04814573 1.00000000
## 
## $TLI
## [1] 0.9713478
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.05333101 0.04104451 0.06551473 0.10000000
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = MLQ_cor, nfactors = 2, n.obs = 840, rotate = "TargetQ", 
##     Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR2   MR1   h2   u2 com
## 1   0.01  0.81 0.65 0.35 1.0
## 2   0.06  0.76 0.59 0.41 1.0
## 3   0.05  0.77 0.60 0.40 1.0
## 4   0.02  0.77 0.60 0.40 1.0
## 5  -0.23  0.44 0.23 0.77 1.5
## 6   0.81 -0.08 0.66 0.34 1.0
## 7   0.74  0.08 0.56 0.44 1.0
## 8   0.71  0.09 0.53 0.47 1.0
## 9   0.73  0.07 0.55 0.45 1.0
## 10  0.81 -0.12 0.66 0.34 1.0
## 
##                        MR2  MR1
## SS loadings           2.97 2.66
## Proportion Var        0.30 0.27
## Cumulative Var        0.30 0.56
## Proportion Explained  0.53 0.47
## Cumulative Proportion 0.53 1.00
## 
##  With factor correlations of 
##      MR2  MR1
## MR2 1.00 0.07
## MR1 0.07 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  45  and the objective function was  4.51 with Chi Square of  3763.95
## The degrees of freedom for the model are 26  and the objective function was  0.1 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  840 with the empirical chi square  35.61  with prob <  0.099 
## The total number of observations was  840  with MLE Chi Square =  87.47  with prob <  1.4e-08 
## 
## Tucker Lewis Index of factoring reliability =  0.971
## RMSEA index =  0.053  and the 90 % confidence intervals are  0.041 0.066
## BIC =  -87.6
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.94 0.93
## Multiple R square of scores with factors       0.88 0.87
## Minimum correlation of possible factor scores  0.76 0.74

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9834722

Droping MLQ_9 which is a reversed scoded question

Create dataset for Target rotation

all_surveys<-read.csv("allsurveysYT1.csv")
MLQ<-select(all_surveys, MLQ_1, MLQ_4,MLQ_5,MLQ_6,MLQ_2,MLQ_3,MLQ_7,MLQ_8,MLQ_10)
MLQ<- data.frame(apply(MLQ,2, as.numeric))
library(GPArotation)
library(psych)
library(dplyr)

MLQ<-tbl_df(MLQ)
MLQ
## Source: local data frame [1,160 x 9]
## 
##    MLQ_1 MLQ_4 MLQ_5 MLQ_6 MLQ_2 MLQ_3 MLQ_7 MLQ_8 MLQ_10
## 1      4     5     6     4     7     7     5     7      7
## 2      3     5     4     3     5     5     5     4      5
## 3      4     4     4     4     7     5     4     5      4
## 4      5     3     5     5     6     7     5     5      6
## 5      4     4     4     4     6     5     5     5      5
## 6      5     4     5     5     5     3     3     4      3
## 7      6     3     6     3     2     2     5     4      4
## 8      3     5     5     4     7     7     5     7      5
## 9      6     7     6     6     5     2     5     7      2
## 10     1     3     5     1     7     1     5     5      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...    ...
str(MLQ)
## Classes 'tbl_df', 'tbl' and 'data.frame':    1160 obs. of  9 variables:
##  $ MLQ_1 : num  4 3 4 5 4 5 6 3 6 1 ...
##  $ MLQ_4 : num  5 5 4 3 4 4 3 5 7 3 ...
##  $ MLQ_5 : num  6 4 4 5 4 5 6 5 6 5 ...
##  $ MLQ_6 : num  4 3 4 5 4 5 3 4 6 1 ...
##  $ MLQ_2 : num  7 5 7 6 6 5 2 7 5 7 ...
##  $ MLQ_3 : num  7 5 5 7 5 3 2 7 2 1 ...
##  $ MLQ_7 : num  5 5 4 5 5 3 5 5 5 5 ...
##  $ MLQ_8 : num  7 4 5 5 5 4 4 7 7 5 ...
##  $ MLQ_10: num  7 5 4 6 5 3 4 5 2 1 ...
colnames(MLQ) <- c("1","2", "3", "4", "5", "6", "7", "8", "9")
#Target rotation: choose "simple structure" a priori and can be applied to oblique and orthogonal rotation based on 
#what paper says facotrs should be MLQ
Targ_key <- make.keys(9,list(f1=1:4,f2=6:9))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
MLQ_cor <- corFiml(MLQ)
MLQ_cor
##             1           2           3            4            5          6
## 1  1.00000000  0.59813149 0.651077932  0.622081664 -0.013934847 0.08441444
## 2  0.59813149  1.00000000 0.579962541  0.636199850  0.041409887 0.17204423
## 3  0.65107793  0.57996254 1.000000000  0.577687891  0.019677170 0.11490522
## 4  0.62208166  0.63619985 0.577687891  1.000000000  0.004946828 0.14885881
## 5 -0.01393485  0.04140989 0.019677170  0.004946828  1.000000000 0.57599748
## 6  0.08441444  0.17204423 0.114905217  0.148858805  0.575997484 1.00000000
## 7  0.13098426  0.14315510 0.139467672  0.111326784  0.591320574 0.53552880
## 8  0.09370972  0.14343059 0.135705484  0.105859470  0.606381378 0.54009983
## 9 -0.02194978 -0.01812080 0.008637832 -0.059422796  0.649239072 0.62259338
##           7          8            9
## 1 0.1309843 0.09370972 -0.021949785
## 2 0.1431551 0.14343059 -0.018120805
## 3 0.1394677 0.13570548  0.008637832
## 4 0.1113268 0.10585947 -0.059422796
## 5 0.5913206 0.60638138  0.649239072
## 6 0.5355288 0.54009983  0.622593378
## 7 1.0000000 0.54643821  0.551178983
## 8 0.5464382 1.00000000  0.570988969
## 9 0.5511790 0.57098897  1.000000000
out_targetQ <- fa(MLQ_cor,2,rotate="TargetQ",n.obs = 840,Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA")]
## $loadings
## 
## Loadings:
##   MR2    MR1   
## 1         0.803
## 2         0.768
## 3         0.763
## 4         0.787
## 5  0.814       
## 6  0.737       
## 7  0.712       
## 8  0.730       
## 9  0.811 -0.110
## 
##                  MR2   MR1
## SS loadings    2.907 2.476
## Proportion Var 0.323 0.275
## Cumulative Var 0.323 0.598
## 
## $score.cor
##           [,1]      [,2]
## [1,] 1.0000000 0.1083554
## [2,] 0.1083554 1.0000000
## 
## $TLI
## [1] 0.9770053
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.05194268 0.03761114 0.06636138 0.10000000
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = MLQ_cor, nfactors = 2, n.obs = 840, rotate = "TargetQ", 
##     Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##     MR2   MR1   h2   u2 com
## 1 -0.01  0.80 0.64 0.36   1
## 2  0.05  0.77 0.60 0.40   1
## 3  0.03  0.76 0.59 0.41   1
## 4  0.00  0.79 0.62 0.38   1
## 5  0.81 -0.06 0.66 0.34   1
## 6  0.74  0.09 0.56 0.44   1
## 7  0.71  0.10 0.53 0.47   1
## 8  0.73  0.08 0.55 0.45   1
## 9  0.81 -0.11 0.66 0.34   1
## 
##                        MR2  MR1
## SS loadings           2.91 2.48
## Proportion Var        0.32 0.28
## Cumulative Var        0.32 0.60
## Proportion Explained  0.54 0.46
## Cumulative Proportion 0.54 1.00
## 
##  With factor correlations of 
##      MR2  MR1
## MR2 1.00 0.08
## MR1 0.08 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  4.26 with Chi Square of  3554.14
## The degrees of freedom for the model are 19  and the objective function was  0.07 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic number of observations is  840 with the empirical chi square  19.67  with prob <  0.41 
## The total number of observations was  840  with MLE Chi Square =  61.63  with prob <  2.1e-06 
## 
## Tucker Lewis Index of factoring reliability =  0.977
## RMSEA index =  0.052  and the 90 % confidence intervals are  0.038 0.066
## BIC =  -66.31
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.94 0.93
## Multiple R square of scores with factors       0.88 0.87
## Minimum correlation of possible factor scores  0.76 0.73

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9878835