In this project, we analyze data on storms from the US National Oceanic and Atmospheric Administration (NOAA). We estimate the damage done by each type of event (Wind, Tornado, Storm, Snow, etc). We are trying to determine which event is most harmful to the US population and to the economy. Through the reseach, we can conclude that the Tornado is the most harmful to the US population and Flood is the most harmful to the US economy.
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(plyr)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#load data
if(!exists("storm.data")) {
storm.data <- read.csv(bzfile("repdata_data_StormData.csv.bz2"),header = TRUE)
}
vars <- c( "EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")
mydata <- storm.data[, vars]
tail(mydata)
## EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 902292 WINTER WEATHER 0 0 0 K 0 K
## 902293 HIGH WIND 0 0 0 K 0 K
## 902294 HIGH WIND 0 0 0 K 0 K
## 902295 HIGH WIND 0 0 0 K 0 K
## 902296 BLIZZARD 0 0 0 K 0 K
## 902297 HEAVY SNOW 0 0 0 K 0 K
#sorting
# create a new variable EVENT to transform variable EVTYPE in groups
mydata$EVENT <- "OTHER"
# group by keyword in EVTYPE
mydata$EVENT[grep("HAIL", mydata$EVTYPE, ignore.case = TRUE)] <- "HAIL"
mydata$EVENT[grep("HEAT", mydata$EVTYPE, ignore.case = TRUE)] <- "HEAT"
mydata$EVENT[grep("FLOOD", mydata$EVTYPE, ignore.case = TRUE)] <- "FLOOD"
mydata$EVENT[grep("WIND", mydata$EVTYPE, ignore.case = TRUE)] <- "WIND"
mydata$EVENT[grep("STORM", mydata$EVTYPE, ignore.case = TRUE)] <- "STORM"
mydata$EVENT[grep("SNOW", mydata$EVTYPE, ignore.case = TRUE)] <- "SNOW"
mydata$EVENT[grep("TORNADO", mydata$EVTYPE, ignore.case = TRUE)] <- "TORNADO"
mydata$EVENT[grep("WINTER", mydata$EVTYPE, ignore.case = TRUE)] <- "WINTER"
mydata$EVENT[grep("RAIN", mydata$EVTYPE, ignore.case = TRUE)] <- "RAIN"
# listing the transformed event types
sort(table(mydata$EVENT), decreasing = TRUE)
##
## HAIL WIND STORM FLOOD TORNADO OTHER WINTER SNOW RAIN HEAT
## 289270 255362 113156 82686 60700 48970 19604 17660 12241 2648
mydata$PROPDMGEXP <- as.character(mydata$PROPDMGEXP)
mydata$PROPDMGEXP[is.na(mydata$PROPDMGEXP)] <- 0 # NA's considered as dollars
mydata$PROPDMGEXP[!grepl("K|M|B", mydata$PROPDMGEXP, ignore.case = TRUE)] <- 0 # everything exept K,M,B is dollar
mydata$PROPDMGEXP[grep("K", mydata$PROPDMGEXP, ignore.case = TRUE)] <- "3"
mydata$PROPDMGEXP[grep("M", mydata$PROPDMGEXP, ignore.case = TRUE)] <- "6"
mydata$PROPDMGEXP[grep("B", mydata$PROPDMGEXP, ignore.case = TRUE)] <- "9"
mydata$PROPDMGEXP <- as.numeric(as.character(mydata$PROPDMGEXP))
mydata$property.damage <- mydata$PROPDMG * 10^mydata$PROPDMGEXP
mydata$CROPDMGEXP <- as.character(mydata$CROPDMGEXP)
mydata$CROPDMGEXP[is.na(mydata$CROPDMGEXP)] <- 0 # NA's considered as dollars
mydata$CROPDMGEXP[!grepl("K|M|B", mydata$CROPDMGEXP, ignore.case = TRUE)] <- 0 # everything exept K,M,B is dollar
mydata$CROPDMGEXP[grep("K", mydata$CROPDMGEXP, ignore.case = TRUE)] <- "3"
mydata$CROPDMGEXP[grep("M", mydata$CROPDMGEXP, ignore.case = TRUE)] <- "6"
mydata$CROPDMGEXP[grep("B", mydata$CROPDMGEXP, ignore.case = TRUE)] <- "9"
mydata$CROPDMGEXP <- as.numeric(as.character(mydata$CROPDMGEXP))
mydata$crop.damage <- mydata$CROPDMG * 10^mydata$CROPDMGEXP
agg.fatalites.and.injuries <- ddply(mydata, .(EVENT), summarize, Total = sum(FATALITIES + INJURIES, na.rm = TRUE))
agg.fatalites.and.injuries$type <- "fatalities and injuries"
# aggregate FATALITIES by type of EVENT
agg.fatalities <- ddply(mydata, .(EVENT), summarize, Total = sum(FATALITIES, na.rm = TRUE))
agg.fatalities$type <- "fatalities"
# aggregate INJURIES by type of EVENT
agg.injuries <- ddply(mydata, .(EVENT), summarize, Total = sum(INJURIES, na.rm = TRUE))
agg.injuries$type <- "injuries"
# combine all
agg.health <- rbind(agg.fatalities, agg.injuries)
health.by.event <- join (agg.fatalities, agg.injuries, by="EVENT", type="inner")
agg.propdmg.and.cropdmg <- ddply(mydata, .(EVENT), summarize, Total = sum(property.damage + crop.damage, na.rm = TRUE))
agg.propdmg.and.cropdmg$type <- "property and crop damage"
# aggregate PropDamage by type of EVENT
agg.prop <- ddply(mydata, .(EVENT), summarize, Total = sum(property.damage, na.rm = TRUE))
agg.prop$type <- "property"
# aggregate INJURIES by type of EVENT
agg.crop <- ddply(mydata, .(EVENT), summarize, Total = sum(crop.damage, na.rm = TRUE))
agg.crop$type <- "crop"
# combine all
agg.economic <- rbind(agg.prop, agg.crop)
economic.by.event <- join (agg.prop, agg.crop, by="EVENT", type="inner")
#Formatting results
# transform EVENT to factor variable for health variables
agg.health$EVENT <- as.factor(agg.health$EVENT)
# plot FATALITIES and INJURIES by EVENT
health.plot <- ggplot(agg.health, aes(x = EVENT, y = Total, fill = type)) + geom_bar(stat = "identity") +
coord_flip() +
xlab("Event Type") +
ylab("Total number of health impact") +
ggtitle("Weather event types impact on public health") +
theme(plot.title = element_text(hjust = 0.5))
print(health.plot)
## Results to question 2
# transform EVENT to factor variable for economic variables
agg.economic$EVENT <- as.factor(agg.economic$EVENT)
# plot PROPERTY damage and CROP damage by EVENT
economic.plot <- ggplot(agg.economic, aes(x = EVENT, y = Total, fill = type)) + geom_bar(stat = "identity") +
coord_flip() +
xlab("Event Type") +
ylab("Total damage in dollars") +
ggtitle("Weather event types impact on property and crop damage") +
theme(plot.title = element_text(hjust = 0.5))
print(economic.plot)
## Including Plots
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.