# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062313041 -0.0029353124 0.0366064355 0.052133422 4.992325e-02
## 2013-02-28 0.0058916191 -0.0231052744 -0.0129696171 0.016174972 1.267811e-02
## 2013-03-28 0.0009850262 -0.0102348677 0.0129696171 0.040258218 3.726811e-02
## 2013-04-30 0.0096386457 0.0120844530 0.0489676327 0.001222605 1.903027e-02
## 2013-05-31 -0.0202138402 -0.0494833338 -0.0306556296 0.041976445 2.333494e-02
## 2013-06-28 -0.0157781851 -0.0547283691 -0.0271443704 -0.001402900 -1.343421e-02
## 2013-07-31 0.0026879943 0.0131598886 0.0518602672 0.063541159 5.038586e-02
## 2013-08-30 -0.0082986740 -0.0257056700 -0.0197461504 -0.034743610 -3.045118e-02
## 2013-09-30 0.0111439959 0.0695887817 0.0753385205 0.063873724 3.115602e-02
## 2013-10-31 0.0082919544 0.0408615063 0.0320816411 0.034234144 4.526617e-02
## 2013-11-29 -0.0025094516 -0.0025941817 0.0054497373 0.041661091 2.920695e-02
## 2013-12-31 -0.0055836107 -0.0040742756 0.0215279437 0.012892367 2.559664e-02
## 2014-01-31 0.0152919283 -0.0903227151 -0.0534132614 -0.035775541 -3.588448e-02
## 2014-02-28 0.0037570294 0.0332207522 0.0595051336 0.045257351 4.450999e-02
## 2014-03-31 -0.0014811583 0.0380214150 -0.0046027887 0.013315406 8.261468e-03
## 2014-04-30 0.0081825347 0.0077728543 0.0165296677 -0.023184269 6.927308e-03
## 2014-05-30 0.0117217996 0.0290911140 0.0158281734 0.006205324 2.294128e-02
## 2014-06-30 -0.0005753527 0.0237339392 0.0091655182 0.037718692 2.043460e-02
## 2014-07-31 -0.0025124933 0.0135557339 -0.0263798058 -0.052009333 -1.352867e-02
## 2014-08-29 0.0114310783 0.0279045096 0.0018003562 0.043657791 3.870502e-02
## 2014-09-30 -0.0061671012 -0.0808568044 -0.0395984830 -0.061260462 -1.389265e-02
## 2014-10-31 0.0105840938 0.0140966491 -0.0026548068 0.068874697 2.327807e-02
## 2014-11-28 0.0065487385 -0.0155413696 0.0006253064 0.004773576 2.710136e-02
## 2014-12-31 0.0014748581 -0.0404421779 -0.0407465234 0.025296133 -2.539648e-03
## 2015-01-30 0.0203156117 -0.0068955808 0.0062264252 -0.054627933 -3.007745e-02
## 2015-02-27 -0.0089882687 0.0431358027 0.0614505048 0.056914515 5.468210e-02
## 2015-03-31 0.0037402186 -0.0150860192 -0.0143889049 0.010156385 -1.583002e-02
## 2015-04-30 -0.0032330465 0.0662811751 0.0358167484 -0.018417793 9.785643e-03
## 2015-05-29 -0.0043837525 -0.0419108359 0.0019526185 0.007510148 1.277431e-02
## 2015-06-30 -0.0108256687 -0.0297466973 -0.0316789046 0.004171037 -2.052132e-02
## 2015-07-31 0.0085849663 -0.0651782181 0.0201145412 -0.027375097 2.233769e-02
## 2015-08-31 -0.0033636664 -0.0925122172 -0.0771524349 -0.047268601 -6.288677e-02
## 2015-09-30 0.0080813377 -0.0318250881 -0.0451948211 -0.038464611 -2.584691e-02
## 2015-10-30 0.0006850351 0.0618083177 0.0640259263 0.063589745 8.163502e-02
## 2015-11-30 -0.0038976607 -0.0255602848 -0.0075558630 0.024415187 3.648553e-03
## 2015-12-31 -0.0019196470 -0.0389472414 -0.0235950985 -0.052157049 -1.743379e-02
## 2016-01-29 0.0123306159 -0.0516366466 -0.0567579170 -0.060306590 -5.106862e-02
## 2016-02-29 0.0088316485 -0.0082115806 -0.0339138580 0.020605088 -8.262157e-04
## 2016-03-31 0.0087084100 0.1218790120 0.0637457289 0.089910327 6.510017e-02
## 2016-04-29 0.0025462500 0.0040792678 0.0219752093 0.021044021 3.933459e-03
## 2016-05-31 0.0001358536 -0.0376283437 -0.0008561489 0.004397250 1.686853e-02
## 2016-06-30 0.0191664230 0.0445823071 -0.0244915330 0.008292369 3.469675e-03
## 2016-07-29 0.0054298346 0.0524421428 0.0390002318 0.049348297 3.582203e-02
## 2016-08-31 -0.0021563825 0.0087985889 0.0053268061 0.011261070 1.196923e-03
## 2016-09-30 0.0005158470 0.0248729101 0.0132791638 0.008614610 5.804248e-05
## 2016-10-31 -0.0082049878 -0.0083123874 -0.0224036854 -0.038134779 -1.748917e-02
## 2016-11-30 -0.0259898122 -0.0451619009 -0.0179742708 0.125246347 3.617599e-02
## 2016-12-30 0.0025382804 -0.0025299428 0.0267027002 0.031492083 2.006913e-02
## 2017-01-31 0.0021261131 0.0644315225 0.0323818409 -0.012143809 1.773644e-02
## 2017-02-28 0.0064375459 0.0172578147 0.0118365830 0.013428265 3.853916e-02
## 2017-03-31 -0.0005525661 0.0361891292 0.0318055449 -0.006532986 1.249175e-03
## 2017-04-28 0.0090290915 0.0168662940 0.0239523044 0.005108111 9.877084e-03
## 2017-05-31 0.0068473869 0.0280597502 0.0348101417 -0.022862888 1.401469e-02
## 2017-06-30 -0.0001823048 0.0092240007 0.0029559199 0.029151812 6.354578e-03
## 2017-07-31 0.0033341710 0.0565945255 0.0261880645 0.007481585 2.034578e-02
## 2017-08-31 0.0093689202 0.0232436443 -0.0004484375 -0.027564845 2.913398e-03
## 2017-09-29 -0.0057319979 -0.0004462966 0.0233427901 0.082321756 1.994922e-02
## 2017-10-31 0.0009776490 0.0322787125 0.0166538254 0.005916111 2.329059e-02
## 2017-11-30 -0.0014836245 -0.0038970809 0.0068698428 0.036913387 3.010819e-02
## 2017-12-29 0.0047399550 0.0369253525 0.0133984000 -0.003731344 1.205496e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398397e-05 0.0001042065 4.178074e-05 -7.811971e-05 -9.032440e-06
## EEM 1.042065e-04 0.0017547099 1.039017e-03 6.437738e-04 6.795434e-04
## EFA 4.178074e-05 0.0010390169 1.064237e-03 6.490305e-04 6.975412e-04
## IJS -7.811971e-05 0.0006437738 6.490305e-04 1.565449e-03 8.290263e-04
## SPY -9.032440e-06 0.0006795434 6.975412e-04 8.290263e-04 7.408295e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003873988 0.009257139 0.005815634 0.005684473 0.002330252
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062313041 -0.0029353124 0.0366064355 0.052133422 4.992325e-02
## 2013-02-28 0.0058916191 -0.0231052744 -0.0129696171 0.016174972 1.267811e-02
## 2013-03-28 0.0009850262 -0.0102348677 0.0129696171 0.040258218 3.726811e-02
## 2013-04-30 0.0096386457 0.0120844530 0.0489676327 0.001222605 1.903027e-02
## 2013-05-31 -0.0202138402 -0.0494833338 -0.0306556296 0.041976445 2.333494e-02
## 2013-06-28 -0.0157781851 -0.0547283691 -0.0271443704 -0.001402900 -1.343421e-02
## 2013-07-31 0.0026879943 0.0131598886 0.0518602672 0.063541159 5.038586e-02
## 2013-08-30 -0.0082986740 -0.0257056700 -0.0197461504 -0.034743610 -3.045118e-02
## 2013-09-30 0.0111439959 0.0695887817 0.0753385205 0.063873724 3.115602e-02
## 2013-10-31 0.0082919544 0.0408615063 0.0320816411 0.034234144 4.526617e-02
## 2013-11-29 -0.0025094516 -0.0025941817 0.0054497373 0.041661091 2.920695e-02
## 2013-12-31 -0.0055836107 -0.0040742756 0.0215279437 0.012892367 2.559664e-02
## 2014-01-31 0.0152919283 -0.0903227151 -0.0534132614 -0.035775541 -3.588448e-02
## 2014-02-28 0.0037570294 0.0332207522 0.0595051336 0.045257351 4.450999e-02
## 2014-03-31 -0.0014811583 0.0380214150 -0.0046027887 0.013315406 8.261468e-03
## 2014-04-30 0.0081825347 0.0077728543 0.0165296677 -0.023184269 6.927308e-03
## 2014-05-30 0.0117217996 0.0290911140 0.0158281734 0.006205324 2.294128e-02
## 2014-06-30 -0.0005753527 0.0237339392 0.0091655182 0.037718692 2.043460e-02
## 2014-07-31 -0.0025124933 0.0135557339 -0.0263798058 -0.052009333 -1.352867e-02
## 2014-08-29 0.0114310783 0.0279045096 0.0018003562 0.043657791 3.870502e-02
## 2014-09-30 -0.0061671012 -0.0808568044 -0.0395984830 -0.061260462 -1.389265e-02
## 2014-10-31 0.0105840938 0.0140966491 -0.0026548068 0.068874697 2.327807e-02
## 2014-11-28 0.0065487385 -0.0155413696 0.0006253064 0.004773576 2.710136e-02
## 2014-12-31 0.0014748581 -0.0404421779 -0.0407465234 0.025296133 -2.539648e-03
## 2015-01-30 0.0203156117 -0.0068955808 0.0062264252 -0.054627933 -3.007745e-02
## 2015-02-27 -0.0089882687 0.0431358027 0.0614505048 0.056914515 5.468210e-02
## 2015-03-31 0.0037402186 -0.0150860192 -0.0143889049 0.010156385 -1.583002e-02
## 2015-04-30 -0.0032330465 0.0662811751 0.0358167484 -0.018417793 9.785643e-03
## 2015-05-29 -0.0043837525 -0.0419108359 0.0019526185 0.007510148 1.277431e-02
## 2015-06-30 -0.0108256687 -0.0297466973 -0.0316789046 0.004171037 -2.052132e-02
## 2015-07-31 0.0085849663 -0.0651782181 0.0201145412 -0.027375097 2.233769e-02
## 2015-08-31 -0.0033636664 -0.0925122172 -0.0771524349 -0.047268601 -6.288677e-02
## 2015-09-30 0.0080813377 -0.0318250881 -0.0451948211 -0.038464611 -2.584691e-02
## 2015-10-30 0.0006850351 0.0618083177 0.0640259263 0.063589745 8.163502e-02
## 2015-11-30 -0.0038976607 -0.0255602848 -0.0075558630 0.024415187 3.648553e-03
## 2015-12-31 -0.0019196470 -0.0389472414 -0.0235950985 -0.052157049 -1.743379e-02
## 2016-01-29 0.0123306159 -0.0516366466 -0.0567579170 -0.060306590 -5.106862e-02
## 2016-02-29 0.0088316485 -0.0082115806 -0.0339138580 0.020605088 -8.262157e-04
## 2016-03-31 0.0087084100 0.1218790120 0.0637457289 0.089910327 6.510017e-02
## 2016-04-29 0.0025462500 0.0040792678 0.0219752093 0.021044021 3.933459e-03
## 2016-05-31 0.0001358536 -0.0376283437 -0.0008561489 0.004397250 1.686853e-02
## 2016-06-30 0.0191664230 0.0445823071 -0.0244915330 0.008292369 3.469675e-03
## 2016-07-29 0.0054298346 0.0524421428 0.0390002318 0.049348297 3.582203e-02
## 2016-08-31 -0.0021563825 0.0087985889 0.0053268061 0.011261070 1.196923e-03
## 2016-09-30 0.0005158470 0.0248729101 0.0132791638 0.008614610 5.804248e-05
## 2016-10-31 -0.0082049878 -0.0083123874 -0.0224036854 -0.038134779 -1.748917e-02
## 2016-11-30 -0.0259898122 -0.0451619009 -0.0179742708 0.125246347 3.617599e-02
## 2016-12-30 0.0025382804 -0.0025299428 0.0267027002 0.031492083 2.006913e-02
## 2017-01-31 0.0021261131 0.0644315225 0.0323818409 -0.012143809 1.773644e-02
## 2017-02-28 0.0064375459 0.0172578147 0.0118365830 0.013428265 3.853916e-02
## 2017-03-31 -0.0005525661 0.0361891292 0.0318055449 -0.006532986 1.249175e-03
## 2017-04-28 0.0090290915 0.0168662940 0.0239523044 0.005108111 9.877084e-03
## 2017-05-31 0.0068473869 0.0280597502 0.0348101417 -0.022862888 1.401469e-02
## 2017-06-30 -0.0001823048 0.0092240007 0.0029559199 0.029151812 6.354578e-03
## 2017-07-31 0.0033341710 0.0565945255 0.0261880645 0.007481585 2.034578e-02
## 2017-08-31 0.0093689202 0.0232436443 -0.0004484375 -0.027564845 2.913398e-03
## 2017-09-29 -0.0057319979 -0.0004462966 0.0233427901 0.082321756 1.994922e-02
## 2017-10-31 0.0009776490 0.0322787125 0.0166538254 0.005916111 2.329059e-02
## 2017-11-30 -0.0014836245 -0.0038970809 0.0068698428 0.036913387 3.010819e-02
## 2017-12-29 0.0047399550 0.0369253525 0.0133984000 -0.003731344 1.205496e-02
calculate_component_contribution <- function (.data, w) {
covariance_matrix <- cov(.data)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(col = everything(), names_to = "Asset", values_to = "Contribution")
plot_data %>%
ggplot(aes(x = Asset, y = Contribution)) +
geom_col(fill = "cornflowerblue") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
Column Chart of Component Contribution and weight
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(col = everything(), names_to = "Asset", values_to = "Contribution") %>%
# Add weights
add_column(weight = c(.25, .25, .2, .2, .1)) %>%
# Transform to long
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data %>%
ggplot(aes(x = Asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent", x = NULL)