ANALISIS DE COYUNTURA PARA LOS PAISES CENTROAMERICANOS Y PANAMÁ

#librerías a utilizar
library(readxl)
library(magrittr)
library(tidyverse)
library(dplyr)
library(stats)
library(zoo)
library(ggplot2)
library(forecast)

DATA A USAR

DATA_CA_y_PAN <- read_excel("C:/Users/8abla/Documents/MAE118/Tarea/IVAE CA y PAN.xlsx", 
    col_types = c("skip", "numeric", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric"), skip = 4)
colnames(DATA_CA_y_PAN)<-c("Costa Rica", "El Salvador", "Guatemala", "Honduras", "Nicaragua", "Panamá")

COSTA RICA

Datos

DATA_CA_y_PAN %>% select("Costa Rica") %>% as.data.frame() %>% na.omit()->IVAE_CRC
  
  IVAE_CRC<- ts(data = IVAE_CRC, start = c(2009,1), frequency = 12)
  print(IVAE_CRC)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009  73.05  70.50  75.68  70.13  72.30  73.43  72.93  72.00  73.64  76.77
## 2010  75.10  73.53  79.92  73.27  75.74  76.43  76.13  75.58  77.14  79.74
## 2011  78.27  76.77  82.00  76.03  79.23  79.63  77.99  77.89  80.05  83.57
## 2012  82.37  82.95  86.03  78.55  82.23  81.83  80.60  81.77  82.75  85.69
## 2013  83.10  82.79  85.62  81.13  84.12  83.77  83.88  83.97  86.04  88.53
## 2014  86.41  87.04  89.12  83.12  86.04  85.36  86.63  86.17  88.14  92.55
## 2015  88.30  90.04  92.86  88.50  92.09  92.53  93.84  92.75  93.78  96.67
## 2016  94.53  95.60  96.36  93.13  95.39  95.66  94.94  94.84  98.12 101.26
## 2017  96.71  96.96 100.85  94.84  99.06  99.90  96.26  96.64  98.99 103.96
## 2018  99.21  99.00 103.55  99.62 104.59 103.43 101.46 101.10 101.62 106.09
## 2019 101.48 101.93 105.94  99.98 103.78 103.63 102.45 101.43 103.57 109.05
## 2020 102.20 104.23 102.60  89.65  91.81  95.78  91.86  92.51  97.39 101.72
## 2021  96.63 100.29 108.09 101.66 104.50 104.73 107.77 105.71 108.62 111.23
## 2022 106.31 108.14 117.49 105.61 108.90 109.10 110.06 110.34              
##         Nov    Dec
## 2009  78.18  78.35
## 2010  82.16  81.06
## 2011  85.93  84.67
## 2012  89.26  88.63
## 2013  90.77  90.80
## 2014  94.00  95.23
## 2015  98.43  97.87
## 2016 103.90 103.79
## 2017 107.71 108.11
## 2018 108.90 108.01
## 2019 111.47 111.09
## 2020 105.12 110.61
## 2021 116.91 119.84
## 2022
  autoplot(IVAE_CRC,xlab = "años",ylab = "Indice",main = "IVAE-Costa Rica total, periodo 2009-2022 (Agosto)")+theme_classic()

Proyección a Seis meses

modelo_CRC<-auto.arima(y = IVAE_CRC)
summary(modelo_CRC)
## Series: IVAE_CRC 
## ARIMA(1,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     sma1   drift
##       0.8563  -0.5052  0.2377
## s.e.  0.0419   0.0810  0.0442
## 
## sigma^2 = 3.366:  log likelihood = -308.74
## AIC=625.48   AICc=625.76   BIC=637.58
## 
## Training set error measures:
##                      ME     RMSE      MAE         MPE     MAPE      MASE
## Training set 0.01259946 1.748727 1.157394 -0.00975326 1.211633 0.2864043
##                    ACF1
## Training set -0.0658692
pronosticos_CRC<-forecast(modelo_CRC,h = 6)
autoplot(pronosticos_CRC)+xlab("Años")+ylab("indice")+theme_bw()

autoplot(pronosticos_CRC$x,series = "IVAE")+autolayer(pronosticos_CRC$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

Serie ampliada

IVAE_CRC_Amp<-ts(as.numeric(rbind(as.matrix(pronosticos_CRC$x),as.matrix(pronosticos_CRC$mean))),start = c(2009,1),frequency = 12)
print(IVAE_CRC_Amp)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009  73.0500  70.5000  75.6800  70.1300  72.3000  73.4300  72.9300  72.0000
## 2010  75.1000  73.5300  79.9200  73.2700  75.7400  76.4300  76.1300  75.5800
## 2011  78.2700  76.7700  82.0000  76.0300  79.2300  79.6300  77.9900  77.8900
## 2012  82.3700  82.9500  86.0300  78.5500  82.2300  81.8300  80.6000  81.7700
## 2013  83.1000  82.7900  85.6200  81.1300  84.1200  83.7700  83.8800  83.9700
## 2014  86.4100  87.0400  89.1200  83.1200  86.0400  85.3600  86.6300  86.1700
## 2015  88.3000  90.0400  92.8600  88.5000  92.0900  92.5300  93.8400  92.7500
## 2016  94.5300  95.6000  96.3600  93.1300  95.3900  95.6600  94.9400  94.8400
## 2017  96.7100  96.9600 100.8500  94.8400  99.0600  99.9000  96.2600  96.6400
## 2018  99.2100  99.0000 103.5500  99.6200 104.5900 103.4300 101.4600 101.1000
## 2019 101.4800 101.9300 105.9400  99.9800 103.7800 103.6300 102.4500 101.4300
## 2020 102.2000 104.2300 102.6000  89.6500  91.8100  95.7800  91.8600  92.5100
## 2021  96.6300 100.2900 108.0900 101.6600 104.5000 104.7300 107.7700 105.7100
## 2022 106.3100 108.1400 117.4900 105.6100 108.9000 109.1000 110.0600 110.3400
## 2023 109.9052 111.7756                                                      
##           Sep      Oct      Nov      Dec
## 2009  73.6400  76.7700  78.1800  78.3500
## 2010  77.1400  79.7400  82.1600  81.0600
## 2011  80.0500  83.5700  85.9300  84.6700
## 2012  82.7500  85.6900  89.2600  88.6300
## 2013  86.0400  88.5300  90.7700  90.8000
## 2014  88.1400  92.5500  94.0000  95.2300
## 2015  93.7800  96.6700  98.4300  97.8700
## 2016  98.1200 101.2600 103.9000 103.7900
## 2017  98.9900 103.9600 107.7100 108.1100
## 2018 101.6200 106.0900 108.9000 108.0100
## 2019 103.5700 109.0500 111.4700 111.0900
## 2020  97.3900 101.7200 105.1200 110.6100
## 2021 108.6200 111.2300 116.9100 119.8400
## 2022 112.9157 116.0689 120.0131 122.4011
## 2023

Descomposición de la Serie Temporal

FIT_CRC<-stl(IVAE_CRC_Amp,"periodic")
autoplot(FIT_CRC)+theme_classic()

TC_CRC<-FIT_CRC$time.series[,2]
print(TC_CRC)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2009  73.55845  73.66361  73.76877  73.87732  73.98587  74.10813  74.23039
## 2010  75.56108  75.90012  76.23916  76.55988  76.88060  77.12051  77.36042
## 2011  78.62940  78.90955  79.18971  79.49489  79.80008  80.10809  80.41611
## 2012  82.17139  82.44383  82.71628  82.95071  83.18514  83.33500  83.48487
## 2013  84.20715  84.44451  84.68187  84.91242  85.14298  85.37199  85.60099
## 2014  86.87594  87.08498  87.29402  87.55247  87.81092  88.07629  88.34166
## 2015  90.79583  91.34470  91.89358  92.35602  92.81847  93.20111  93.58375
## 2016  95.28315  95.56729  95.85142  96.23567  96.61993  96.97517  97.33041
## 2017  98.74523  98.91736  99.08948  99.29462  99.49976  99.77008 100.04040
## 2018 101.95512 102.30107 102.64701 102.85097 103.05493 103.18860 103.32226
## 2019 103.65794 103.78257 103.90719 104.10184 104.29649 104.48535 104.67421
## 2020 101.93393 101.06685 100.19977  99.50832  98.81686  98.45479  98.09272
## 2021 102.02633 103.05512 104.08391 105.01445 105.94498 106.77451 107.60404
## 2022 110.65562 110.93377 111.21191 111.51284 111.81378 112.11677 112.41977
## 2023 114.05214 114.33706                                                  
##            Aug       Sep       Oct       Nov       Dec
## 2009  74.38098  74.53157  74.75088  74.97019  75.26563
## 2010  77.53958  77.71875  77.92781  78.13686  78.38313
## 2011  80.72591  81.03570  81.33322  81.63075  81.90107
## 2012  83.54768  83.61050  83.72350  83.83651  84.02183
## 2013  85.84741  86.09383  86.31105  86.52827  86.70210
## 2014  88.62847  88.91528  89.32809  89.74090  90.26837
## 2015  93.92133  94.25891  94.54322  94.82753  95.05534
## 2016  97.57679  97.82317  98.06297  98.30277  98.52400
## 2017 100.29498 100.54955 100.86216 101.17477 101.56495
## 2018 103.42024 103.51822 103.54701 103.57580 103.61687
## 2019 104.64153 104.60884 104.10143 103.59401 102.76397
## 2020  98.25937  98.42602  99.18059  99.93516 100.98075
## 2021 108.31104 109.01804 109.49925 109.98047 110.31805
## 2022 112.67839 112.93700 113.20927 113.48153 113.76683
## 2023

Calculo de las Tasa

TC_CRC %>% as.numeric() %>% as.data.frame()->TC_CRC_df
names(TC_CRC_df)<-c("TC_CRC")
TC_CRC_df %>% mutate(T_1_1=(TC_CRC/dplyr::lag(TC_CRC,n=1)-1)*100,
                     T_1_12=(TC_CRC/dplyr::lag(TC_CRC, n=12)-1)*100,
                    T_12_12=(rollapply(TC_CRC,12,mean,align="right",
                              fill=NA)/rollapply(dplyr::lag(TC_CRC, n=12), 12,mean,align="right", fill=NA)-1)*100) %>%
  mutate(T_1_12C=dplyr::lead(T_1_12, n=6),
         T_12_12C=dplyr::lead(T_12_12, n=12)) %>% 
  ts(start = c(2009,1), frequency = 12)->Coyun_CRC


print(tail(Coyun_CRC, n=12))
##            TC_CRC     T_1_1   T_1_12  T_12_12  T_1_12C T_12_12C
## Mar 2022 111.2119 0.2507289 6.848319 8.697905 3.594789       NA
## Apr 2022 111.5128 0.2705948 6.188098 8.740460 3.388166       NA
## May 2022 111.8138 0.2698646 5.539474 8.585336 3.183350       NA
## Jun 2022 112.1168 0.2709813 5.003311 8.283174 3.126223       NA
## Jul 2022 112.4198 0.2702490 4.475416 7.837832 3.069444       NA
## Aug 2022 112.6784 0.2300474 4.032229 7.316447 3.067861       NA
## Sep 2022 112.9370 0.2295194 3.594789 6.721524       NA       NA
## Oct 2022 113.2093 0.2410743 3.388166 6.143015       NA       NA
## Nov 2022 113.4815 0.2404945 3.183350 5.580147       NA       NA
## Dec 2022 113.7668 0.2514104 3.126223 5.080038       NA       NA
## Jan 2023 114.0521 0.2507799 3.069444 4.640502       NA       NA
## Feb 2023 114.3371 0.2498195 3.067861 4.267587       NA       NA

Gráfico de las Tasas (Centradas)

Coyun_CRC %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->Graficos_CRC
autoplot(Graficos_CRC)+theme_bw()

Coyun_CRC %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

EL SALVADOR

Datos

DATA_CA_y_PAN %>% select("El Salvador") %>% as.data.frame() %>% na.omit()->IVAE_CRC
  
  IVAE_ESA<- ts(data = IVAE_CRC, start = c(2009,1), frequency = 12)
  print(IVAE_ESA)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009  86.73  80.85  87.19  83.92  91.42  93.46  86.39  86.72  87.57  85.27
## 2010  85.56  84.69  90.90  85.94  94.33  92.23  87.18  90.25  89.00  88.74
## 2011  90.27  86.73  94.32  90.79  98.50  97.59  92.16  94.22  92.33  89.06
## 2012  92.65  91.20  98.46  91.23 102.83 102.84  93.61  98.21  93.94  93.49
## 2013  95.67  90.77  96.12  96.34 103.08 101.58  96.42  98.96  97.74  96.22
## 2014  98.70  94.70 101.30  97.12 103.86 104.73  98.48  98.60  98.25  96.43
## 2015  98.87  94.82 103.15  98.75 105.65 105.45 101.67 101.06 100.64 100.44
## 2016  99.25  97.76 102.58 103.43 107.76 110.71 104.01 106.24 104.83 102.04
## 2017 101.41  98.97 108.44 101.40 110.85 113.63 105.51 107.88 106.21 103.28
## 2018 105.17 102.53 108.39 107.93 112.46 113.55 108.80 111.94 107.54 105.81
## 2019 108.10 106.41 113.02 109.95 114.95 114.86 111.24 113.28 111.66 108.32
## 2020 109.49 109.27 104.04  87.36  89.33  96.05  96.95 103.34 106.72 106.12
## 2021 106.84 107.04 114.51 109.72 115.43 115.19 112.16 114.23 113.82 109.73
## 2022 109.25 110.28 118.85 111.15 120.33 118.27 113.36 116.30              
##         Nov    Dec
## 2009  91.86  99.64
## 2010  93.13 100.74
## 2011  96.86 103.91
## 2012  99.61 105.05
## 2013 101.24 108.37
## 2014 100.64 107.19
## 2015 104.90 109.86
## 2016 106.50 114.98
## 2017 110.39 117.56
## 2018 112.16 120.03
## 2019 116.10 122.08
## 2020 110.70 119.86
## 2021 116.70 123.69
## 2022
  autoplot(IVAE_ESA,xlab = "años",ylab = "Indice",main = "IVAE-El Salvador total, periodo 2009-2022 (Agosto)")+theme_classic()

Proyección a Seis meses

modelo_ESA<-auto.arima(y = IVAE_ESA)
summary(modelo_ESA)
## Series: IVAE_ESA 
## ARIMA(2,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1      ar2     sma1   drift
##       0.9235  -0.1436  -0.8361  0.1618
## s.e.  0.0802   0.0807   0.0825  0.0199
## 
## sigma^2 = 5.79:  log likelihood = -354.8
## AIC=719.59   AICc=720   BIC=734.71
## 
## Training set error measures:
##                      ME   RMSE      MAE        MPE     MAPE      MASE
## Training set 0.06329184 2.2858 1.545284 0.03154945 1.523289 0.4028524
##                      ACF1
## Training set -0.003845263
pronosticos_ESA<-forecast(modelo_ESA,h = 6)
autoplot(pronosticos_ESA)+xlab("Años")+ylab("indice")+theme_bw()

autoplot(pronosticos_ESA$x,series = "IVAE")+autolayer(pronosticos_ESA$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

Serie ampliada

IVAE_ESA_Amp<-ts(as.numeric(rbind(as.matrix(pronosticos_ESA$x),as.matrix(pronosticos_ESA$mean))),start = c(2009,1),frequency = 12)
print(IVAE_ESA_Amp)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009  86.7300  80.8500  87.1900  83.9200  91.4200  93.4600  86.3900  86.7200
## 2010  85.5600  84.6900  90.9000  85.9400  94.3300  92.2300  87.1800  90.2500
## 2011  90.2700  86.7300  94.3200  90.7900  98.5000  97.5900  92.1600  94.2200
## 2012  92.6500  91.2000  98.4600  91.2300 102.8300 102.8400  93.6100  98.2100
## 2013  95.6700  90.7700  96.1200  96.3400 103.0800 101.5800  96.4200  98.9600
## 2014  98.7000  94.7000 101.3000  97.1200 103.8600 104.7300  98.4800  98.6000
## 2015  98.8700  94.8200 103.1500  98.7500 105.6500 105.4500 101.6700 101.0600
## 2016  99.2500  97.7600 102.5800 103.4300 107.7600 110.7100 104.0100 106.2400
## 2017 101.4100  98.9700 108.4400 101.4000 110.8500 113.6300 105.5100 107.8800
## 2018 105.1700 102.5300 108.3900 107.9300 112.4600 113.5500 108.8000 111.9400
## 2019 108.1000 106.4100 113.0200 109.9500 114.9500 114.8600 111.2400 113.2800
## 2020 109.4900 109.2700 104.0400  87.3600  89.3300  96.0500  96.9500 103.3400
## 2021 106.8400 107.0400 114.5100 109.7200 115.4300 115.1900 112.1600 114.2300
## 2022 109.2500 110.2800 118.8500 111.1500 120.3300 118.2700 113.3600 116.3000
## 2023 113.6007 112.1216                                                      
##           Sep      Oct      Nov      Dec
## 2009  87.5700  85.2700  91.8600  99.6400
## 2010  89.0000  88.7400  93.1300 100.7400
## 2011  92.3300  89.0600  96.8600 103.9100
## 2012  93.9400  93.4900  99.6100 105.0500
## 2013  97.7400  96.2200 101.2400 108.3700
## 2014  98.2500  96.4300 100.6400 107.1900
## 2015 100.6400 100.4400 104.9000 109.8600
## 2016 104.8300 102.0400 106.5000 114.9800
## 2017 106.2100 103.2800 110.3900 117.5600
## 2018 107.5400 105.8100 112.1600 120.0300
## 2019 111.6600 108.3200 116.1000 122.0800
## 2020 106.7200 106.1200 110.7000 119.8600
## 2021 113.8200 109.7300 116.7000 123.6900
## 2022 115.3201 112.9454 118.8018 125.9326
## 2023

Descomposición de la Serie Temporal

FIT_ESA<-stl(IVAE_ESA_Amp,"periodic")
autoplot(FIT_ESA)+theme_classic()

TC_ESA<-FIT_ESA$time.series[,2]
print(TC_ESA)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2009  87.44441  87.60681  87.76921  87.92794  88.08667  88.25008  88.41348
## 2010  89.40028  89.55340  89.70651  89.86944  90.03236  90.22289  90.41342
## 2011  92.44334  92.80161  93.15988  93.39982  93.63975  93.84970  94.05965
## 2012  95.62347  95.95655  96.28962  96.54669  96.80376  96.94365  97.08353
## 2013  97.37067  97.57465  97.77863  98.01141  98.24418  98.49901  98.75383
## 2014  99.97696 100.08692 100.19688 100.19388 100.19088 100.13145 100.07202
## 2015 100.61674 100.90043 101.18412 101.48393 101.78373 101.98809 102.19245
## 2016 103.31134 103.67683 104.04231 104.37187 104.70143 104.96083 105.22023
## 2017 105.98874 106.19442 106.40010 106.64005 106.87999 107.13555 107.39110
## 2018 108.53384 108.78914 109.04444 109.27664 109.50885 109.71924 109.92962
## 2019 111.20285 111.44804 111.69322 111.95644 112.21966 112.39504 112.57042
## 2020 106.56927 105.30931 104.04934 103.38688 102.72442 102.59403 102.46364
## 2021 110.00438 110.88175 111.75911 112.26149 112.76387 113.08083 113.39780
## 2022 114.86324 115.06235 115.26147 115.47510 115.68873 115.83923 115.98974
## 2023 116.75131 116.86242                                                  
##            Aug       Sep       Oct       Nov       Dec
## 2009  88.59338  88.77329  88.95274  89.13219  89.26623
## 2010  90.66268  90.91194  91.25980  91.60766  92.02550
## 2011  94.26976  94.47988  94.72779  94.97570  95.29959
## 2012  97.10042  97.11730  97.14252  97.16774  97.26920
## 2013  99.00009  99.24636  99.44622  99.64608  99.81152
## 2014 100.05130 100.03057 100.12173 100.21288 100.41481
## 2015 102.28931 102.38617 102.54615 102.70613 103.00874
## 2016 105.37231 105.52438 105.61158 105.69878 105.84376
## 2017 107.59635 107.80160 107.96728 108.13297 108.33340
## 2018 110.15601 110.38239 110.58903 110.79568 110.99926
## 2019 112.33843 112.10644 110.95596 109.80548 108.18737
## 2020 103.18295 103.90226 105.45812 107.01397 108.50918
## 2021 113.63685 113.87590 114.12496 114.37401 114.61862
## 2022 116.12786 116.26598 116.39214 116.51830 116.63480
## 2023

Calculo de las Tasa

TC_ESA %>% as.numeric() %>% as.data.frame()->TC_ESA_df
names(TC_ESA_df)<-c("TC_ESA")
TC_ESA_df %>% mutate(T_1_1=(TC_ESA/dplyr::lag(TC_ESA,n=1)-1)*100,
                     T_1_12=(TC_ESA/dplyr::lag(TC_ESA, n=12)-1)*100,
                    T_12_12=(rollapply(TC_ESA,12,mean,align="right",
                              fill=NA)/rollapply(dplyr::lag(TC_ESA, n=12), 12,mean,align="right", fill=NA)-1)*100) %>%
  mutate(T_1_12C=dplyr::lead(T_1_12, n=6),
         T_12_12C=dplyr::lead(T_12_12, n=12)) %>% 
  ts(start = c(2009,1), frequency = 12)->Coyun_ESA


print(tail(Coyun_ESA, n=12))
##            TC_ESA      T_1_1   T_1_12  T_12_12  T_1_12C T_12_12C
## Mar 2022 115.2615 0.17304748 3.133843 7.503904 2.098839       NA
## Apr 2022 115.4751 0.18534593 2.862610 7.009903 1.986578       NA
## May 2022 115.6887 0.18500303 2.593794 6.404204 1.874805       NA
## Jun 2022 115.8392 0.13009289 2.439316 5.758686 1.759034       NA
## Jul 2022 115.9897 0.12992386 2.285702 5.074966 1.643756       NA
## Aug 2022 116.1279 0.11907927 2.192074 4.432823 1.564430       NA
## Sep 2022 116.2660 0.11893764 2.098839 3.830585       NA       NA
## Oct 2022 116.3921 0.10850962 1.986578 3.328714       NA       NA
## Nov 2022 116.5183 0.10839200 1.874805 2.923816       NA       NA
## Dec 2022 116.6348 0.09999144 1.759034 2.608495       NA       NA
## Jan 2023 116.7513 0.09989156 1.643756 2.380675       NA       NA
## Feb 2023 116.8624 0.09516974 1.564430 2.198828       NA       NA

Gráfico de las Tasas (Centradas)

Coyun_ESA %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->Graficos_ESA
autoplot(Graficos_ESA)+theme_bw()

Coyun_ESA %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

GUATEMALA

Datos

DATA_CA_y_PAN %>% select("Guatemala") %>% as.data.frame() %>% na.omit()->IVAE_GTM
  
  IVAE_GTM<- ts(data = IVAE_GTM, start = c(2009,1), frequency = 12)
  print(IVAE_GTM)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009  86.65  84.95  90.17  87.79  85.69  83.92  87.09  85.90  84.65  87.06
## 2010  88.43  87.09  94.14  89.68  88.28  87.49  88.03  87.35  86.92  88.69
## 2011  92.16  91.28  96.96  93.60  92.20  91.60  92.65  92.61  92.08  91.78
## 2012  95.05  94.95 101.10  95.13  95.58  94.13  94.97  95.31  94.02  96.32
## 2013  99.07  98.81 101.72 101.20  99.50  96.72  98.64  98.67  97.72  99.48
## 2014 102.75 102.57 106.76 104.80 104.40 101.05 103.78 102.20 101.78 103.90
## 2015 107.76 107.15 111.74 107.66 106.67 105.63 108.72 107.53 106.64 108.45
## 2016 109.74 109.44 112.96 112.29 111.12 108.40 109.35 110.41 109.80 110.43
## 2017 115.42 114.30 118.07 114.70 113.72 111.63 113.82 113.93 112.07 113.68
## 2018 117.75 117.77 121.77 119.59 118.71 116.35 118.22 118.04 115.42 117.98
## 2019 122.08 122.76 126.05 123.95 123.67 120.45 122.93 121.94 120.78 122.99
## 2020 127.01 125.51 121.38 112.73 111.49 111.55 118.50 120.60 121.73 125.20
## 2021 128.88 128.61 133.29 130.06 130.01 127.53 131.22 130.13 128.77 130.62
## 2022 134.95 134.14 139.23 135.83 135.53 132.00 135.09 136.00              
##         Nov    Dec
## 2009  87.94  95.19
## 2010  91.35  98.92
## 2011  95.86 101.43
## 2012  98.92 104.11
## 2013 102.16 106.30
## 2014 107.09 112.27
## 2015 111.44 115.24
## 2016 114.99 120.63
## 2017 116.91 122.56
## 2018 121.04 125.20
## 2019 126.94 130.45
## 2020 128.05 135.04
## 2021 135.34 140.77
## 2022
  autoplot(IVAE_GTM,xlab = "años",ylab = "Indice",main = "IVAE-Guatemala total, periodo 2009-2022 (Agosto)")+theme_classic()

Proyección a Seis meses

modelo_GTM<-auto.arima(y = IVAE_GTM)
summary(modelo_GTM)
## Series: IVAE_GTM 
## ARIMA(1,0,1)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     ma1     sma1   drift
##       0.7713  0.2210  -0.7828  0.3054
## s.e.  0.0643  0.1038   0.0736  0.0151
## 
## sigma^2 = 1.961:  log likelihood = -271.08
## AIC=552.16   AICc=552.57   BIC=567.28
## 
## Training set error measures:
##                       ME     RMSE       MAE         MPE      MAPE      MASE
## Training set -0.02077232 1.330162 0.8846027 -0.03576932 0.8034655 0.2047349
##                     ACF1
## Training set 0.003034942
pronosticos_GTM<-forecast(modelo_GTM,h = 6)
autoplot(pronosticos_GTM)+xlab("Años")+ylab("indice")+theme_bw()

autoplot(pronosticos_GTM$x,series = "IVAE")+autolayer(pronosticos_GTM$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

Serie ampliada

IVAE_GTM_Amp<-ts(as.numeric(rbind(as.matrix(pronosticos_GTM$x),as.matrix(pronosticos_GTM$mean))),start = c(2009,1),frequency = 12)
print(IVAE_GTM_Amp)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009  86.6500  84.9500  90.1700  87.7900  85.6900  83.9200  87.0900  85.9000
## 2010  88.4300  87.0900  94.1400  89.6800  88.2800  87.4900  88.0300  87.3500
## 2011  92.1600  91.2800  96.9600  93.6000  92.2000  91.6000  92.6500  92.6100
## 2012  95.0500  94.9500 101.1000  95.1300  95.5800  94.1300  94.9700  95.3100
## 2013  99.0700  98.8100 101.7200 101.2000  99.5000  96.7200  98.6400  98.6700
## 2014 102.7500 102.5700 106.7600 104.8000 104.4000 101.0500 103.7800 102.2000
## 2015 107.7600 107.1500 111.7400 107.6600 106.6700 105.6300 108.7200 107.5300
## 2016 109.7400 109.4400 112.9600 112.2900 111.1200 108.4000 109.3500 110.4100
## 2017 115.4200 114.3000 118.0700 114.7000 113.7200 111.6300 113.8200 113.9300
## 2018 117.7500 117.7700 121.7700 119.5900 118.7100 116.3500 118.2200 118.0400
## 2019 122.0800 122.7600 126.0500 123.9500 123.6700 120.4500 122.9300 121.9400
## 2020 127.0100 125.5100 121.3800 112.7300 111.4900 111.5500 118.5000 120.6000
## 2021 128.8800 128.6100 133.2900 130.0600 130.0100 127.5300 131.2200 130.1300
## 2022 134.9500 134.1400 139.2300 135.8300 135.5300 132.0000 135.0900 136.0000
## 2023 138.2722 137.4518                                                      
##           Sep      Oct      Nov      Dec
## 2009  84.6500  87.0600  87.9400  95.1900
## 2010  86.9200  88.6900  91.3500  98.9200
## 2011  92.0800  91.7800  95.8600 101.4300
## 2012  94.0200  96.3200  98.9200 104.1100
## 2013  97.7200  99.4800 102.1600 106.3000
## 2014 101.7800 103.9000 107.0900 112.2700
## 2015 106.6400 108.4500 111.4400 115.2400
## 2016 109.8000 110.4300 114.9900 120.6300
## 2017 112.0700 113.6800 116.9100 122.5600
## 2018 115.4200 117.9800 121.0400 125.2000
## 2019 120.7800 122.9900 126.9400 130.4500
## 2020 121.7300 125.2000 128.0500 135.0400
## 2021 128.7700 130.6200 135.3400 140.7700
## 2022 134.5206 135.8710 138.8395 143.6604
## 2023

Descomposición de la Serie Temporal

FIT_GTM<-stl(IVAE_GTM_Amp,"periodic")
autoplot(FIT_GTM)+theme_classic()

TC_GTM<-FIT_GTM$time.series[,2]
print(TC_GTM)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2009  86.09008  86.30302  86.51596  86.71982  86.92368  87.12729  87.33089
## 2010  88.53281  88.72066  88.90851  89.12271  89.33692  89.59679  89.85667
## 2011  91.78915  92.20768  92.62621  92.98308  93.33995  93.61345  93.88695
## 2012  95.24916  95.49768  95.74620  96.02047  96.29475  96.56285  96.83096
## 2013  98.53034  98.84162  99.15290  99.43610  99.71930  99.97623 100.23316
## 2014 102.25034 102.65769 103.06505 103.46722 103.86939 104.26684 104.66429
## 2015 106.68884 107.10688 107.52491 107.90992 108.29492 108.56914 108.84337
## 2016 110.11376 110.33485 110.55594 110.83925 111.12257 111.49962 111.87668
## 2017 113.85089 114.13063 114.41037 114.61709 114.82382 115.00432 115.18482
## 2018 117.20653 117.60276 117.99900 118.34025 118.68149 118.96865 119.25582
## 2019 121.38350 121.83398 122.28446 122.73258 123.18071 123.55110 123.92150
## 2020 121.49722 121.07874 120.66026 120.62439 120.58853 120.91143 121.23433
## 2021 127.78876 128.59284 129.39692 129.96385 130.53078 131.02998 131.52918
## 2022 134.24461 134.67660 135.10859 135.50207 135.89556 136.14844 136.40131
## 2023 137.77995 137.98816                                                  
##            Aug       Sep       Oct       Nov       Dec
## 2009  87.53974  87.74860  87.93975  88.13090  88.33186
## 2010  90.13258  90.40849  90.71422  91.01994  91.40454
## 2011  94.12413  94.36131  94.57943  94.79755  95.02335
## 2012  97.08317  97.33538  97.61995  97.90451  98.21743
## 2013 100.50400 100.77484 101.11441 101.45398 101.85216
## 2014 105.01068 105.35707 105.66390 105.97072 106.32978
## 2015 109.03790 109.23242 109.44991 109.66740 109.89058
## 2016 112.25606 112.63543 112.94838 113.26134 113.55611
## 2017 115.43138 115.67793 116.03206 116.38619 116.79636
## 2018 119.54944 119.84307 120.19695 120.55084 120.96717
## 2019 123.95291 123.98431 123.45808 122.93185 122.21453
## 2020 122.05405 122.87377 124.14059 125.40742 126.59809
## 2021 132.00580 132.48241 132.93393 133.38544 133.81503
## 2022 136.63967 136.87802 137.10971 137.34140 137.56068
## 2023

Calculo de las Tasa

TC_GTM %>% as.numeric() %>% as.data.frame()->TC_GTM_df
names(TC_GTM_df)<-c("TC_GTM")
TC_GTM_df %>% mutate(T_1_1=(TC_GTM/dplyr::lag(TC_GTM,n=1)-1)*100,
                     T_1_12=(TC_GTM/dplyr::lag(TC_GTM, n=12)-1)*100,
                    T_12_12=(rollapply(TC_GTM,12,mean,align="right",
                              fill=NA)/rollapply(dplyr::lag(TC_GTM, n=12), 12,mean,align="right", fill=NA)-1)*100) %>%
  mutate(T_1_12C=dplyr::lead(T_1_12, n=6),
         T_12_12C=dplyr::lead(T_12_12, n=12)) %>% 
  ts(start = c(2009,1), frequency = 12)->Coyun_GTM


print(tail(Coyun_GTM, n=12))
##            TC_GTM     T_1_1   T_1_12  T_12_12  T_1_12C T_12_12C
## Mar 2022 135.1086 0.3207585 4.414071 6.810785 3.317881       NA
## Apr 2022 135.5021 0.2912372 4.261359 6.514875 3.141249       NA
## May 2022 135.8956 0.2903915 4.109973 6.168720 2.965813       NA
## Jun 2022 136.1484 0.1860811 3.906326 5.798607 2.799125       NA
## Jul 2022 136.4013 0.1857355 3.704225 5.405140 2.633505       NA
## Aug 2022 136.6397 0.1747457 3.510356 5.024860 2.458894       NA
## Sep 2022 136.8780 0.1744409 3.317881 4.657259       NA       NA
## Oct 2022 137.1097 0.1692665 3.141249 4.334650       NA       NA
## Nov 2022 137.3414 0.1689805 2.965813 4.055773       NA       NA
## Dec 2022 137.5607 0.1596577 2.799125 3.816555       NA       NA
## Jan 2023 137.7800 0.1594032 2.633505 3.616106       NA       NA
## Feb 2023 137.9882 0.1511127 2.458894 3.427442       NA       NA

Gráfico de las Tasas (Centradas)

Coyun_GTM %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->Graficos_GTM
autoplot(Graficos_GTM)+theme_bw()

Coyun_GTM %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

HONDURAS

Datos

DATA_CA_y_PAN %>% select("Honduras") %>% as.data.frame() %>% na.omit()->IVAE_HND
  
  IVAE_HND<- ts(data = IVAE_HND, start = c(2009,1), frequency = 12)
  print(IVAE_HND)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009 157.26 159.33 169.91 156.18 164.17 163.04 155.42 159.89 157.82 166.33
## 2010 165.28 166.91 179.91 165.46 173.89 171.00 162.53 166.65 175.18 172.00
## 2011 176.96 179.46 190.71 175.18 184.30 182.33 175.83 185.67 182.03 185.82
## 2012 181.51 189.25 202.52 183.81 193.45 192.28 185.89 193.61 188.79 199.97
## 2013 189.68 192.66 196.37 195.49 199.00 194.38 190.45 196.66 191.32 201.79
## 2014 194.20 197.58 205.41 197.36 207.03 198.09 194.18 199.21 197.73 205.50
## 2015 200.82 202.02 214.06 206.39 206.66 206.13 201.94 207.78 204.91 213.81
## 2016 207.87 210.56 220.51 211.07 214.45 216.00 205.61 215.98 212.31 220.76
## 2017 219.37 221.50 233.93 218.03 225.53 225.90 216.75 229.08 226.26 232.75
## 2018 228.97 228.12 237.11 227.12 234.88 234.03 225.04 238.66 232.55 244.93
## 2019 235.30 235.08 246.40 234.80 241.51 235.46 238.02 244.65 239.69 252.72
## 2020 242.49 241.65 218.27 186.88 189.07 208.71 209.30 225.80 230.24 249.34
## 2021 229.97 236.28 251.05 235.96 242.36 247.40 239.81 256.77 246.87 265.45
## 2022 247.27 246.62 263.70 248.77 254.73 256.23 246.20 272.14              
##         Nov    Dec
## 2009 163.97 176.16
## 2010 175.48 186.89
## 2011 188.18 198.66
## 2012 199.48 203.10
## 2013 201.54 213.57
## 2014 203.26 221.72
## 2015 214.73 231.40
## 2016 227.59 245.58
## 2017 235.80 251.23
## 2018 245.16 262.48
## 2019 250.26 273.80
## 2020 218.89 258.08
## 2021 264.73 279.05
## 2022
  autoplot(IVAE_HND,xlab = "años",ylab = "Indice",main = "IVAE-Honduras total, periodo 2009-2022 (Agosto)")+theme_classic()

Proyección a Seis meses

modelo_HND<-auto.arima(y = IVAE_HND)
summary(modelo_HND)
## Series: IVAE_HND 
## ARIMA(1,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     sma1   drift
##       0.7873  -0.6826  0.5907
## s.e.  0.0505   0.0664  0.0756
## 
## sigma^2 = 40.52:  log likelihood = -499.71
## AIC=1007.42   AICc=1007.69   BIC=1019.51
## 
## Training set error measures:
##                     ME     RMSE      MAE         MPE     MAPE      MASE
## Training set 0.1146119 6.067638 3.641689 0.003617344 1.685864 0.3224686
##                     ACF1
## Training set -0.03097548
pronosticos_HND<-forecast(modelo_HND,h = 6)
autoplot(pronosticos_HND)+xlab("Años")+ylab("indice")+theme_bw()

autoplot(pronosticos_HND$x,series = "IVAE")+autolayer(pronosticos_HND$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

Serie ampliada

IVAE_HND_Amp<-ts(as.numeric(rbind(as.matrix(pronosticos_HND$x),as.matrix(pronosticos_HND$mean))),start = c(2009,1),frequency = 12)
print(IVAE_HND_Amp)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 157.2600 159.3300 169.9100 156.1800 164.1700 163.0400 155.4200 159.8900
## 2010 165.2800 166.9100 179.9100 165.4600 173.8900 171.0000 162.5300 166.6500
## 2011 176.9600 179.4600 190.7100 175.1800 184.3000 182.3300 175.8300 185.6700
## 2012 181.5100 189.2500 202.5200 183.8100 193.4500 192.2800 185.8900 193.6100
## 2013 189.6800 192.6600 196.3700 195.4900 199.0000 194.3800 190.4500 196.6600
## 2014 194.2000 197.5800 205.4100 197.3600 207.0300 198.0900 194.1800 199.2100
## 2015 200.8200 202.0200 214.0600 206.3900 206.6600 206.1300 201.9400 207.7800
## 2016 207.8700 210.5600 220.5100 211.0700 214.4500 216.0000 205.6100 215.9800
## 2017 219.3700 221.5000 233.9300 218.0300 225.5300 225.9000 216.7500 229.0800
## 2018 228.9700 228.1200 237.1100 227.1200 234.8800 234.0300 225.0400 238.6600
## 2019 235.3000 235.0800 246.4000 234.8000 241.5100 235.4600 238.0200 244.6500
## 2020 242.4900 241.6500 218.2700 186.8800 189.0700 208.7100 209.3000 225.8000
## 2021 229.9700 236.2800 251.0500 235.9600 242.3600 247.4000 239.8100 256.7700
## 2022 247.2700 246.6200 263.7000 248.7700 254.7300 256.2300 246.2000 272.1400
## 2023 260.0353 260.4971                                                      
##           Sep      Oct      Nov      Dec
## 2009 157.8200 166.3300 163.9700 176.1600
## 2010 175.1800 172.0000 175.4800 186.8900
## 2011 182.0300 185.8200 188.1800 198.6600
## 2012 188.7900 199.9700 199.4800 203.1000
## 2013 191.3200 201.7900 201.5400 213.5700
## 2014 197.7300 205.5000 203.2600 221.7200
## 2015 204.9100 213.8100 214.7300 231.4000
## 2016 212.3100 220.7600 227.5900 245.5800
## 2017 226.2600 232.7500 235.8000 251.2300
## 2018 232.5500 244.9300 245.1600 262.4800
## 2019 239.6900 252.7200 250.2600 273.8000
## 2020 230.2400 249.3400 218.8900 258.0800
## 2021 246.8700 265.4500 264.7300 279.0500
## 2022 265.0962 277.6778 269.2452 289.4112
## 2023

Descomposición de la Serie Temporal

FIT_HND<-stl(IVAE_HND_Amp,"periodic")
autoplot(FIT_HND)+theme_classic()

TC_HND<-FIT_HND$time.series[,2]
print(TC_HND)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 162.8929 162.9561 163.0194 163.1303 163.2413 163.4432 163.6452 163.9242
## 2010 167.0260 168.0565 169.0871 170.0043 170.9216 171.6407 172.3599 173.0451
## 2011 177.8868 179.1969 180.5071 181.5959 182.6848 183.3904 184.0961 184.6435
## 2012 188.4348 189.4048 190.3749 191.3038 192.2328 192.7783 193.3238 193.4674
## 2013 194.8125 195.2254 195.6384 196.0381 196.4378 196.8346 197.2315 197.5486
## 2014 199.5783 200.0938 200.6092 201.0205 201.4318 201.7751 202.1184 202.4675
## 2015 205.0900 205.8980 206.7060 207.4727 208.2393 208.8819 209.5246 210.0341
## 2016 213.0173 213.7139 214.4105 215.1539 215.8972 216.7680 217.6388 218.5649
## 2017 223.3707 224.4099 225.4492 226.2883 227.1275 227.7553 228.3831 228.9430
## 2018 232.1604 232.9145 233.6685 234.4485 235.2286 236.0122 236.7959 237.4830
## 2019 240.4423 241.0225 241.6028 242.1963 242.7897 243.4264 244.0631 243.7318
## 2020 232.0460 229.5277 227.0094 225.2767 223.5440 222.7540 221.9639 223.2827
## 2021 237.1844 239.4830 241.7816 243.9924 246.2031 248.2298 250.2565 251.5898
## 2022 256.2256 257.0716 257.9175 258.9447 259.9720 261.0707 262.1694 263.1515
## 2023 268.2480 269.2274                                                      
##           Sep      Oct      Nov      Dec
## 2009 164.2033 164.7060 165.2087 166.1173
## 2010 173.7303 174.6313 175.5324 176.7096
## 2011 185.1909 185.9133 186.6357 187.5352
## 2012 193.6110 193.8109 194.0107 194.4116
## 2013 197.8658 198.2317 198.5976 199.0879
## 2014 202.8165 203.2806 203.7446 204.4173
## 2015 210.5437 211.0889 211.6342 212.3257
## 2016 219.4910 220.4128 221.3345 222.3526
## 2017 229.5029 230.1126 230.7224 231.4414
## 2018 238.1702 238.7462 239.3221 239.8822
## 2019 243.4005 240.9754 238.5503 235.2982
## 2020 224.6016 227.8072 231.0128 234.0986
## 2021 252.9232 253.8282 254.7332 255.4794
## 2022 264.1337 265.1653 266.1970 267.2225
## 2023

Calculo de las Tasa

TC_HND %>% as.numeric() %>% as.data.frame()->TC_HND_df
names(TC_HND_df)<-c("TC_HND")
TC_HND_df %>% mutate(T_1_1=(TC_HND/dplyr::lag(TC_HND,n=1)-1)*100,
                     T_1_12=(TC_HND/dplyr::lag(TC_HND, n=12)-1)*100,
                    T_12_12=(rollapply(TC_HND,12,mean,align="right",
                              fill=NA)/rollapply(dplyr::lag(TC_HND, n=12), 12,mean,align="right", fill=NA)-1)*100) %>%
  mutate(T_1_12C=dplyr::lead(T_1_12, n=6),
         T_12_12C=dplyr::lead(T_12_12, n=12)) %>% 
  ts(start = c(2009,1), frequency = 12)->Coyun_HND


print(tail(Coyun_HND, n=12))
##            TC_HND     T_1_1   T_1_12   T_12_12  T_1_12C T_12_12C
## Mar 2022 257.9175 0.3290682 6.673751 10.013832 4.432366       NA
## Apr 2022 258.9447 0.3982731 6.128209  9.810425 4.466462       NA
## May 2022 259.9720 0.3966932 5.592463  9.412695 4.500315       NA
## Jun 2022 261.0707 0.4226321 5.172975  8.879544 4.596477       NA
## Jul 2022 262.1694 0.4208535 4.760281  8.216186 4.692079       NA
## Aug 2022 263.1515 0.3746166 4.595455  7.553127 4.728556       NA
## Sep 2022 264.1337 0.3732185 4.432366  6.890368       NA       NA
## Oct 2022 265.1653 0.3905831 4.466462  6.328132       NA       NA
## Nov 2022 266.1970 0.3890635 4.500315  5.862449       NA       NA
## Dec 2022 267.2225 0.3852338 4.596477  5.496442       NA       NA
## Jan 2023 268.2480 0.3837555 4.692079  5.227119       NA       NA
## Feb 2023 269.2274 0.3651127 4.728556  5.016246       NA       NA

Gráfico de las Tasas (Centradas)

Coyun_HND %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->Graficos_HND
autoplot(Graficos_HND)+theme_bw()

Coyun_HND %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

NICARAGUA

Datos

DATA_CA_y_PAN %>% select("Nicaragua") %>% as.data.frame() %>% na.omit()->IVAE_NIC
  
  IVAE_NIC<- ts(data = IVAE_HND, start = c(2009,1), frequency = 12)
  print(IVAE_NIC)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009 157.26 159.33 169.91 156.18 164.17 163.04 155.42 159.89 157.82 166.33
## 2010 165.28 166.91 179.91 165.46 173.89 171.00 162.53 166.65 175.18 172.00
## 2011 176.96 179.46 190.71 175.18 184.30 182.33 175.83 185.67 182.03 185.82
## 2012 181.51 189.25 202.52 183.81 193.45 192.28 185.89 193.61 188.79 199.97
## 2013 189.68 192.66 196.37 195.49 199.00 194.38 190.45 196.66 191.32 201.79
## 2014 194.20 197.58 205.41 197.36 207.03 198.09 194.18 199.21 197.73 205.50
## 2015 200.82 202.02 214.06 206.39 206.66 206.13 201.94 207.78 204.91 213.81
## 2016 207.87 210.56 220.51 211.07 214.45 216.00 205.61 215.98 212.31 220.76
## 2017 219.37 221.50 233.93 218.03 225.53 225.90 216.75 229.08 226.26 232.75
## 2018 228.97 228.12 237.11 227.12 234.88 234.03 225.04 238.66 232.55 244.93
## 2019 235.30 235.08 246.40 234.80 241.51 235.46 238.02 244.65 239.69 252.72
## 2020 242.49 241.65 218.27 186.88 189.07 208.71 209.30 225.80 230.24 249.34
## 2021 229.97 236.28 251.05 235.96 242.36 247.40 239.81 256.77 246.87 265.45
## 2022 247.27 246.62 263.70 248.77 254.73 256.23 246.20 272.14              
##         Nov    Dec
## 2009 163.97 176.16
## 2010 175.48 186.89
## 2011 188.18 198.66
## 2012 199.48 203.10
## 2013 201.54 213.57
## 2014 203.26 221.72
## 2015 214.73 231.40
## 2016 227.59 245.58
## 2017 235.80 251.23
## 2018 245.16 262.48
## 2019 250.26 273.80
## 2020 218.89 258.08
## 2021 264.73 279.05
## 2022
  autoplot(IVAE_NIC,xlab = "años",ylab = "Indice",main = "IVAE-Nicaragua total, periodo 2009-2022 (Agosto)")+theme_classic()

Proyección a Seis meses

modelo_NIC<-auto.arima(y = IVAE_NIC)
summary(modelo_NIC)
## Series: IVAE_NIC 
## ARIMA(1,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     sma1   drift
##       0.7873  -0.6826  0.5907
## s.e.  0.0505   0.0664  0.0756
## 
## sigma^2 = 40.52:  log likelihood = -499.71
## AIC=1007.42   AICc=1007.69   BIC=1019.51
## 
## Training set error measures:
##                     ME     RMSE      MAE         MPE     MAPE      MASE
## Training set 0.1146119 6.067638 3.641689 0.003617344 1.685864 0.3224686
##                     ACF1
## Training set -0.03097548
pronosticos_NIC<-forecast(modelo_NIC,h = 6)
autoplot(pronosticos_NIC)+xlab("Años")+ylab("indice")+theme_bw()

autoplot(pronosticos_NIC$x,series = "IVAE")+autolayer(pronosticos_NIC$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

Serie ampliada

IVAE_NIC_Amp<-ts(as.numeric(rbind(as.matrix(pronosticos_NIC$x),as.matrix(pronosticos_NIC$mean))),start = c(2009,1),frequency = 12)
print(IVAE_NIC_Amp)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 157.2600 159.3300 169.9100 156.1800 164.1700 163.0400 155.4200 159.8900
## 2010 165.2800 166.9100 179.9100 165.4600 173.8900 171.0000 162.5300 166.6500
## 2011 176.9600 179.4600 190.7100 175.1800 184.3000 182.3300 175.8300 185.6700
## 2012 181.5100 189.2500 202.5200 183.8100 193.4500 192.2800 185.8900 193.6100
## 2013 189.6800 192.6600 196.3700 195.4900 199.0000 194.3800 190.4500 196.6600
## 2014 194.2000 197.5800 205.4100 197.3600 207.0300 198.0900 194.1800 199.2100
## 2015 200.8200 202.0200 214.0600 206.3900 206.6600 206.1300 201.9400 207.7800
## 2016 207.8700 210.5600 220.5100 211.0700 214.4500 216.0000 205.6100 215.9800
## 2017 219.3700 221.5000 233.9300 218.0300 225.5300 225.9000 216.7500 229.0800
## 2018 228.9700 228.1200 237.1100 227.1200 234.8800 234.0300 225.0400 238.6600
## 2019 235.3000 235.0800 246.4000 234.8000 241.5100 235.4600 238.0200 244.6500
## 2020 242.4900 241.6500 218.2700 186.8800 189.0700 208.7100 209.3000 225.8000
## 2021 229.9700 236.2800 251.0500 235.9600 242.3600 247.4000 239.8100 256.7700
## 2022 247.2700 246.6200 263.7000 248.7700 254.7300 256.2300 246.2000 272.1400
## 2023 260.0353 260.4971                                                      
##           Sep      Oct      Nov      Dec
## 2009 157.8200 166.3300 163.9700 176.1600
## 2010 175.1800 172.0000 175.4800 186.8900
## 2011 182.0300 185.8200 188.1800 198.6600
## 2012 188.7900 199.9700 199.4800 203.1000
## 2013 191.3200 201.7900 201.5400 213.5700
## 2014 197.7300 205.5000 203.2600 221.7200
## 2015 204.9100 213.8100 214.7300 231.4000
## 2016 212.3100 220.7600 227.5900 245.5800
## 2017 226.2600 232.7500 235.8000 251.2300
## 2018 232.5500 244.9300 245.1600 262.4800
## 2019 239.6900 252.7200 250.2600 273.8000
## 2020 230.2400 249.3400 218.8900 258.0800
## 2021 246.8700 265.4500 264.7300 279.0500
## 2022 265.0962 277.6778 269.2452 289.4112
## 2023

Descomposición de la Serie Temporal

FIT_NIC<-stl(IVAE_NIC_Amp,"periodic")
autoplot(FIT_NIC)+theme_classic()

TC_NIC<-FIT_NIC$time.series[,2]
print(TC_NIC)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 162.8929 162.9561 163.0194 163.1303 163.2413 163.4432 163.6452 163.9242
## 2010 167.0260 168.0565 169.0871 170.0043 170.9216 171.6407 172.3599 173.0451
## 2011 177.8868 179.1969 180.5071 181.5959 182.6848 183.3904 184.0961 184.6435
## 2012 188.4348 189.4048 190.3749 191.3038 192.2328 192.7783 193.3238 193.4674
## 2013 194.8125 195.2254 195.6384 196.0381 196.4378 196.8346 197.2315 197.5486
## 2014 199.5783 200.0938 200.6092 201.0205 201.4318 201.7751 202.1184 202.4675
## 2015 205.0900 205.8980 206.7060 207.4727 208.2393 208.8819 209.5246 210.0341
## 2016 213.0173 213.7139 214.4105 215.1539 215.8972 216.7680 217.6388 218.5649
## 2017 223.3707 224.4099 225.4492 226.2883 227.1275 227.7553 228.3831 228.9430
## 2018 232.1604 232.9145 233.6685 234.4485 235.2286 236.0122 236.7959 237.4830
## 2019 240.4423 241.0225 241.6028 242.1963 242.7897 243.4264 244.0631 243.7318
## 2020 232.0460 229.5277 227.0094 225.2767 223.5440 222.7540 221.9639 223.2827
## 2021 237.1844 239.4830 241.7816 243.9924 246.2031 248.2298 250.2565 251.5898
## 2022 256.2256 257.0716 257.9175 258.9447 259.9720 261.0707 262.1694 263.1515
## 2023 268.2480 269.2274                                                      
##           Sep      Oct      Nov      Dec
## 2009 164.2033 164.7060 165.2087 166.1173
## 2010 173.7303 174.6313 175.5324 176.7096
## 2011 185.1909 185.9133 186.6357 187.5352
## 2012 193.6110 193.8109 194.0107 194.4116
## 2013 197.8658 198.2317 198.5976 199.0879
## 2014 202.8165 203.2806 203.7446 204.4173
## 2015 210.5437 211.0889 211.6342 212.3257
## 2016 219.4910 220.4128 221.3345 222.3526
## 2017 229.5029 230.1126 230.7224 231.4414
## 2018 238.1702 238.7462 239.3221 239.8822
## 2019 243.4005 240.9754 238.5503 235.2982
## 2020 224.6016 227.8072 231.0128 234.0986
## 2021 252.9232 253.8282 254.7332 255.4794
## 2022 264.1337 265.1653 266.1970 267.2225
## 2023

Calculo de las Tasa

TC_NIC %>% as.numeric() %>% as.data.frame()->TC_NIC_df
names(TC_NIC_df)<-c("TC_NIC")
TC_NIC_df %>% mutate(T_1_1=(TC_NIC/dplyr::lag(TC_NIC,n=1)-1)*100,
                     T_1_12=(TC_NIC/dplyr::lag(TC_NIC, n=12)-1)*100,
                    T_12_12=(rollapply(TC_NIC,12,mean,align="right",
                              fill=NA)/rollapply(dplyr::lag(TC_NIC, n=12), 12,mean,align="right", fill=NA)-1)*100) %>%
  mutate(T_1_12C=dplyr::lead(T_1_12, n=6),
         T_12_12C=dplyr::lead(T_12_12, n=12)) %>% 
  ts(start = c(2009,1), frequency = 12)->Coyun_NIC


print(tail(Coyun_NIC, n=12))
##            TC_NIC     T_1_1   T_1_12   T_12_12  T_1_12C T_12_12C
## Mar 2022 257.9175 0.3290682 6.673751 10.013832 4.432366       NA
## Apr 2022 258.9447 0.3982731 6.128209  9.810425 4.466462       NA
## May 2022 259.9720 0.3966932 5.592463  9.412695 4.500315       NA
## Jun 2022 261.0707 0.4226321 5.172975  8.879544 4.596477       NA
## Jul 2022 262.1694 0.4208535 4.760281  8.216186 4.692079       NA
## Aug 2022 263.1515 0.3746166 4.595455  7.553127 4.728556       NA
## Sep 2022 264.1337 0.3732185 4.432366  6.890368       NA       NA
## Oct 2022 265.1653 0.3905831 4.466462  6.328132       NA       NA
## Nov 2022 266.1970 0.3890635 4.500315  5.862449       NA       NA
## Dec 2022 267.2225 0.3852338 4.596477  5.496442       NA       NA
## Jan 2023 268.2480 0.3837555 4.692079  5.227119       NA       NA
## Feb 2023 269.2274 0.3651127 4.728556  5.016246       NA       NA

Gráfico de las Tasas (Centradas)

Coyun_NIC %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->Graficos_NIC
autoplot(Graficos_NIC)+theme_bw()

Coyun_NIC %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

PANAMÁ

Datos

DATA_CA_y_PAN %>% select("Panamá") %>% as.data.frame() %>% na.omit()->IVAE_PAN
  
  IVAE_PAN<- ts(data = IVAE_PAN, start = c(2009,1), frequency = 12)
  print(IVAE_PAN)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009 195.71 189.71 204.64 188.06 193.65 199.60 188.20 190.96 195.45 204.89
## 2010 201.01 200.42 220.03 203.11 202.73 210.75 198.31 206.22 205.20 213.91
## 2011 212.36 218.50 228.61 218.93 227.12 226.92 210.41 225.69 222.92 233.74
## 2012 233.23 237.88 260.05 237.89 248.64 251.02 239.86 246.47 238.38 249.62
## 2013 253.29 254.04 276.60 262.60 268.38 269.16 256.27 265.08 259.72 280.51
## 2014 265.09 267.31 286.56 275.53 274.45 283.35 268.30 278.43 272.53 296.66
## 2015 281.48 276.75 307.31 280.85 281.06 294.76 279.85 290.40 283.40 310.57
## 2016 292.53 289.67 318.79 292.13 296.56 306.77 293.76 303.34 296.96 322.82
## 2017 305.84 307.27 344.01 309.60 316.06 324.68 304.97 318.19 310.13 335.94
## 2018 320.57 323.91 349.99 311.69 317.94 324.94 308.98 323.54 315.15 333.20
## 2019 332.39 332.73 353.65 319.17 325.72 332.45 325.11 336.06 332.01 346.53
## 2020 346.02 341.78 357.06 243.21 222.17 233.12 240.66 242.56 259.86 298.72
## 2021 304.59 322.77 354.90 307.26 314.67 309.91 306.48 318.85 317.91 344.08
## 2022 354.01 368.38 390.50 334.96 344.38 348.03 317.45 359.51              
##         Nov    Dec
## 2009 185.82 190.56
## 2010 202.49 205.63
## 2011 226.59 231.09
## 2012 251.28 247.71
## 2013 272.24 270.52
## 2014 282.62 292.03
## 2015 295.47 300.89
## 2016 309.18 312.22
## 2017 322.13 324.80
## 2018 328.79 330.41
## 2019 341.09 341.27
## 2020 296.58 339.78
## 2021 332.46 395.90
## 2022
  autoplot(IVAE_PAN,xlab = "años",ylab = "Indice",main = "IVAE-Panamá total, periodo 2009-2022 (Agosto)")+theme_classic()

Proyección a Seis meses

modelo_PAN<-auto.arima(y = IVAE_PAN)
summary(modelo_PAN)
## Series: IVAE_PAN 
## ARIMA(1,0,2)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1      ma1     ma2     sma1   drift
##       0.8591  -0.0045  0.1297  -0.4593  1.0167
## s.e.  0.0537   0.1011  0.0880   0.1003  0.3442
## 
## sigma^2 = 135.4:  log likelihood = -588.3
## AIC=1188.6   AICc=1189.18   BIC=1206.75
## 
## Training set error measures:
##                      ME    RMSE      MAE         MPE     MAPE      MASE
## Training set 0.07830014 11.0181 5.999723 -0.06832539 2.122395 0.2800424
##                     ACF1
## Training set 0.000449099
pronosticos_PAN<-forecast(modelo_PAN,h = 6)
autoplot(pronosticos_PAN)+xlab("Años")+ylab("indice")+theme_bw()

autoplot(pronosticos_PAN$x,series = "IVAE")+autolayer(pronosticos_HND$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA ")

Serie ampliada

IVAE_PAN_Amp<-ts(as.numeric(rbind(as.matrix(pronosticos_PAN$x),as.matrix(pronosticos_PAN$mean))),start = c(2009,1),frequency = 12)
print(IVAE_PAN_Amp)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 195.7100 189.7100 204.6400 188.0600 193.6500 199.6000 188.2000 190.9600
## 2010 201.0100 200.4200 220.0300 203.1100 202.7300 210.7500 198.3100 206.2200
## 2011 212.3600 218.5000 228.6100 218.9300 227.1200 226.9200 210.4100 225.6900
## 2012 233.2300 237.8800 260.0500 237.8900 248.6400 251.0200 239.8600 246.4700
## 2013 253.2900 254.0400 276.6000 262.6000 268.3800 269.1600 256.2700 265.0800
## 2014 265.0900 267.3100 286.5600 275.5300 274.4500 283.3500 268.3000 278.4300
## 2015 281.4800 276.7500 307.3100 280.8500 281.0600 294.7600 279.8500 290.4000
## 2016 292.5300 289.6700 318.7900 292.1300 296.5600 306.7700 293.7600 303.3400
## 2017 305.8400 307.2700 344.0100 309.6000 316.0600 324.6800 304.9700 318.1900
## 2018 320.5700 323.9100 349.9900 311.6900 317.9400 324.9400 308.9800 323.5400
## 2019 332.3900 332.7300 353.6500 319.1700 325.7200 332.4500 325.1100 336.0600
## 2020 346.0200 341.7800 357.0600 243.2100 222.1700 233.1200 240.6600 242.5600
## 2021 304.5900 322.7700 354.9000 307.2600 314.6700 309.9100 306.4800 318.8500
## 2022 354.0100 368.3800 390.5000 334.9600 344.3800 348.0300 317.4500 359.5100
## 2023 377.5661 387.0177                                                      
##           Sep      Oct      Nov      Dec
## 2009 195.4500 204.8900 185.8200 190.5600
## 2010 205.2000 213.9100 202.4900 205.6300
## 2011 222.9200 233.7400 226.5900 231.0900
## 2012 238.3800 249.6200 251.2800 247.7100
## 2013 259.7200 280.5100 272.2400 270.5200
## 2014 272.5300 296.6600 282.6200 292.0300
## 2015 283.4000 310.5700 295.4700 300.8900
## 2016 296.9600 322.8200 309.1800 312.2200
## 2017 310.1300 335.9400 322.1300 324.8000
## 2018 315.1500 333.2000 328.7900 330.4100
## 2019 332.0100 346.5300 341.0900 341.2700
## 2020 259.8600 298.7200 296.5800 339.7800
## 2021 317.9100 344.0800 332.4600 395.9000
## 2022 353.6559 381.5419 369.4203 411.3908
## 2023

Descomposición de la Serie Temporal

FIT_PAN<-stl(IVAE_PAN_Amp,"periodic")
autoplot(FIT_PAN)+theme_classic()

TC_PAN<-FIT_PAN$time.series[,2]
print(TC_PAN)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 192.5034 193.0118 193.5203 193.9132 194.3061 194.6900 195.0739 195.5994
## 2010 199.1110 200.4670 201.8231 203.2822 204.7414 205.9343 207.1272 207.8752
## 2011 213.2980 215.1717 217.0455 219.1430 221.2405 223.1781 225.1157 226.6507
## 2012 235.3317 237.5384 239.7452 241.7110 243.6768 245.2283 246.7798 247.8806
## 2013 254.6459 256.7700 258.8942 261.1832 263.4723 265.1834 266.8945 267.6906
## 2014 271.1301 272.4223 273.7144 275.2501 276.7857 278.3031 279.8204 280.8491
## 2015 284.3681 285.4116 286.4550 287.7133 288.9715 290.1608 291.3500 292.2442
## 2016 296.4131 297.5917 298.7703 300.1445 301.5187 302.8779 304.2371 305.5342
## 2017 312.0120 313.3711 314.7301 316.1266 317.5231 318.7218 319.9204 320.6350
## 2018 322.1079 322.4591 322.8103 323.2576 323.7049 324.2519 324.7989 325.3460
## 2019 328.5264 329.7135 330.9007 332.1880 333.4753 334.5676 335.6599 335.6851
## 2020 313.0948 304.9626 296.8305 290.7894 284.7484 281.6624 278.5763 279.4113
## 2021 303.7174 308.8374 313.9574 317.6293 321.3012 324.7792 328.2573 332.0488
## 2022 348.3066 350.6275 352.9484 354.9738 356.9993 359.6712 362.3430 364.9106
## 2023 379.0465 382.2866                                                      
##           Sep      Oct      Nov      Dec
## 2009 196.1249 196.7355 197.3461 198.2286
## 2010 208.6231 209.5807 210.5384 211.9182
## 2011 228.1857 229.7888 231.3920 233.3618
## 2012 248.9814 250.1836 251.3857 253.0158
## 2013 268.4868 268.9704 269.4540 270.2921
## 2014 281.8779 282.4382 282.9985 283.6833
## 2015 293.1385 293.8552 294.5720 295.4925
## 2016 306.8314 308.0977 309.3641 310.6881
## 2017 321.3495 321.5466 321.7437 321.9258
## 2018 325.8932 326.4139 326.9346 327.7305
## 2019 335.7102 331.8942 328.0782 320.5865
## 2020 280.2463 285.3590 290.4716 297.0945
## 2021 335.8404 339.2806 342.7208 345.5137
## 2022 367.4782 370.2250 372.9719 376.0092
## 2023

Calculo de las Tasa

TC_PAN %>% as.numeric() %>% as.data.frame()->TC_PAN_df
names(TC_PAN_df)<-c("TC_PAN")
TC_PAN_df %>% mutate(T_1_1=(TC_PAN/dplyr::lag(TC_PAN,n=1)-1)*100,
                     T_1_12=(TC_PAN/dplyr::lag(TC_PAN, n=12)-1)*100,
                    T_12_12=(rollapply(TC_PAN,12,mean,align="right",
                              fill=NA)/rollapply(dplyr::lag(TC_PAN, n=12), 12,mean,align="right", fill=NA)-1)*100) %>%
  mutate(T_1_12C=dplyr::lead(T_1_12, n=6),
         T_12_12C=dplyr::lead(T_12_12, n=12)) %>% 
  ts(start = c(2009,1), frequency = 12)->Coyun_PAN


print(tail(Coyun_PAN, n=12))
##            TC_PAN     T_1_1    T_1_12   T_12_12  T_1_12C T_12_12C
## Mar 2022 352.9484 0.6619302 12.419185 15.576603 9.420485       NA
## Apr 2022 354.9738 0.5738609 11.757267 15.756172 9.120609       NA
## May 2022 356.9993 0.5705865 11.110477 15.570294 8.826752       NA
## Jun 2022 359.6712 0.7484281 10.743272 15.155499 8.826136       NA
## Jul 2022 362.3430 0.7428683 10.383848 14.522132 8.825529       NA
## Aug 2022 364.9106 0.7086040  9.896666 13.781796 9.029259       NA
## Sep 2022 367.4782 0.7036182  9.420485 12.940730       NA       NA
## Oct 2022 370.2250 0.7474859  9.120609 12.155172       NA       NA
## Nov 2022 372.9719 0.7419400  8.826752 11.421780       NA       NA
## Dec 2022 376.0092 0.8143509  8.826136 10.822528       NA       NA
## Jan 2023 379.0465 0.8077728  8.825529 10.350756       NA       NA
## Feb 2023 382.2866 0.8547957  9.029259  9.989364       NA       NA

Gráfico de las Tasas (Centradas)

Coyun_PAN %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->Graficos_PAN
autoplot(Graficos_PAN)+theme_bw()

Coyun_PAN %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

GRAFICO CONJUNTO DE CENTROAMÉRICA Y PANAMÁ

CRC<-Coyun_CRC %>% as.data.frame() %>% select(T_1_12C)
ESA<-Coyun_ESA %>% as.data.frame() %>% select(T_1_12C)
HND<-Coyun_HND %>% as.data.frame() %>% select(T_1_12C)
GTM<-Coyun_GTM %>% as.data.frame() %>% select(T_1_12C)
NIC<-Coyun_NIC %>% as.data.frame() %>% select(T_1_12C)
PAN<-Coyun_PAN %>% as.data.frame() %>% select(T_1_12C)

colnames(CRC)<-c("T_1_12C_CRC")
colnames(ESA)<-c("T_1_12C_ESA")
colnames(HND)<-c("T_1_12C_HND")
colnames(GTM)<-c("T_1_12C_GTM")
colnames(NIC)<-c("T_1_12C_NIC")
colnames(PAN)<-c("T_1_12C_PAN")
CA_Y_PAN<-as.data.frame(c(CRC,ESA,HND,GTM,NIC,PAN))

CA_Y_PAN %>% as.data.frame() %>% ts(start = c(2009,1), frequency = 12) %>% autoplot()