# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062317481 -0.0029353117  0.0366062715  0.052133096  4.992313e-02
## 2013-02-28  0.0058919724 -0.0231051562 -0.0129695485  0.016175806  1.267793e-02
## 2013-03-28  0.0009844246 -0.0102352068  0.0129695485  0.040257813  3.726793e-02
## 2013-04-30  0.0096395940  0.0120845659  0.0489678048  0.001222503  1.903028e-02
## 2013-05-31 -0.0202143572 -0.0494834467 -0.0306555355  0.041976347  2.333528e-02
## 2013-06-28 -0.0157781851 -0.0547281186 -0.0271445454 -0.001403072 -1.343443e-02
## 2013-07-31  0.0026877270  0.0131596382  0.0518602626  0.063541522  5.038597e-02
## 2013-08-30 -0.0082980435 -0.0257054798 -0.0197463914 -0.034743702 -3.045107e-02
## 2013-09-30  0.0111441657  0.0695889464  0.0753385931  0.063873993  3.115548e-02
## 2013-10-31  0.0082919500  0.0408609243  0.0320817229  0.034234048  4.526722e-02
## 2013-11-29 -0.0025098074 -0.0025942676  0.0054496584  0.041661230  2.920662e-02
## 2013-12-31 -0.0055835171 -0.0040739625  0.0215281769  0.012891747  2.559625e-02
## 2014-01-31  0.0152916618 -0.0903226525 -0.0534134158 -0.035775233 -3.588469e-02
## 2014-02-28  0.0037573704  0.0332205687  0.0595049802  0.045257351  4.451030e-02
## 2014-03-31 -0.0014817611  0.0380216234 -0.0046024812  0.013315486  8.261468e-03
## 2014-04-30  0.0081827965  0.0077727669  0.0165294377 -0.023184514  6.927407e-03
## 2014-05-30  0.0117223129  0.0290912263  0.0158284730  0.006205631  2.294137e-02
## 2014-06-30 -0.0005766253  0.0237338269  0.0091653683  0.037718687  2.043479e-02
## 2014-07-31 -0.0025116445  0.0135555176 -0.0263799557 -0.052009470 -1.352895e-02
## 2014-08-29  0.0114307342  0.0279048311  0.0018005836  0.043657712  3.870449e-02
## 2014-09-30 -0.0061676929 -0.0808569096 -0.0395985557 -0.061260298 -1.389221e-02
## 2014-10-31  0.0105848519  0.0140966491 -0.0026549646  0.068874691  2.327781e-02
## 2014-11-28  0.0065491660 -0.0155413696  0.0006254644  0.004773732  2.710170e-02
## 2014-12-31  0.0014747702 -0.0404420590 -0.0407466846  0.025295688 -2.540074e-03
## 2015-01-30  0.0203147070 -0.0068956998  0.0062265075 -0.054627803 -3.007720e-02
## 2015-02-27 -0.0089876911  0.0431359174  0.0614503702  0.056914729  5.468202e-02
## 2015-03-31  0.0037404665 -0.0150859301 -0.0143885558  0.010156328 -1.583011e-02
## 2015-04-30 -0.0032333807  0.0662809713  0.0358165339 -0.018417791  9.785723e-03
## 2015-05-29 -0.0043832542 -0.0419107223  0.0019525622  0.007509842  1.277457e-02
## 2015-06-30 -0.0108255115 -0.0297468109 -0.0316786351  0.004171342 -2.052132e-02
## 2015-07-31  0.0085839727 -0.0651782181  0.0201144040 -0.027375329  2.233752e-02
## 2015-08-31 -0.0033630899 -0.0925121487 -0.0771524288 -0.047268363 -6.288659e-02
## 2015-09-30  0.0080810990 -0.0318251567 -0.0451950749 -0.038464693 -2.584691e-02
## 2015-10-30  0.0006855327  0.0618081847  0.0640259369  0.063589825  8.163494e-02
## 2015-11-30 -0.0038984085 -0.0255602201 -0.0075558439  0.024415321  3.648303e-03
## 2015-12-31 -0.0019188212 -0.0389470313 -0.0235948734 -0.052157345 -1.743354e-02
## 2016-01-29  0.0123299555 -0.0516367138 -0.0567578461 -0.060306769 -5.106862e-02
## 2016-02-29  0.0088315655 -0.0082114294 -0.0339140802  0.020605008 -8.265715e-04
## 2016-03-31  0.0087084234  0.1218788527  0.0637459679  0.089910513  6.510044e-02
## 2016-04-29  0.0025469774  0.0040791679  0.0219748716  0.021044330  3.933291e-03
## 2016-05-31  0.0001352008 -0.0376285173 -0.0008559818  0.004396888  1.686887e-02
## 2016-06-30  0.0191665929  0.0445824481 -0.0244915330  0.008292427  3.469755e-03
## 2016-07-29  0.0054295987  0.0524422088  0.0390001700  0.049348519  3.582179e-02
## 2016-08-31 -0.0021561463  0.0087987130  0.0053269498  0.011260927  1.196846e-03
## 2016-09-30  0.0005163924  0.0248725440  0.0132790819  0.008614751  5.796025e-05
## 2016-10-31 -0.0082056997 -0.0083121454 -0.0224036234 -0.038134850 -1.748893e-02
## 2016-11-30 -0.0259894990 -0.0451618371 -0.0179745854  0.125246347  3.617599e-02
## 2016-12-30  0.0025379616 -0.0025299426  0.0267028708  0.031491849  2.006905e-02
## 2017-01-31  0.0021263574  0.0644314586  0.0323820023 -0.012143764  1.773659e-02
## 2017-02-28  0.0064378723  0.0172580506  0.0118363664  0.013428814  3.853930e-02
## 2017-03-31 -0.0005530611  0.0361888080  0.0318056821 -0.006533046  1.249170e-03
## 2017-04-28  0.0090292601  0.0168662675  0.0239523044  0.005107703  9.877156e-03
## 2017-05-31  0.0068474595  0.0280600796  0.0348101417 -0.022862411  1.401413e-02
## 2017-06-30 -0.0001826990  0.0092236754  0.0029559913  0.029151569  6.354788e-03
## 2017-07-31  0.0033340894  0.0565945569  0.0261877148  0.007481461  2.034591e-02
## 2017-08-31  0.0093693950  0.0232437207 -0.0004480896 -0.027564908  2.913265e-03
## 2017-09-29 -0.0057319975 -0.0004460229  0.0233426525  0.082321936  1.994922e-02
## 2017-10-31  0.0009781223  0.0322783665  0.0166537763  0.005915878  2.329079e-02
## 2017-11-30 -0.0014838504 -0.0038970086  0.0068698270  0.036913503  3.010781e-02
## 2017-12-29  0.0047399433  0.0369253525  0.0133985820 -0.003731344  1.205502e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398399e-05 0.0001042098 4.178262e-05 -7.811863e-05 -9.032054e-06
## EEM  1.042098e-04 0.0017547071 1.039017e-03  6.437749e-04  6.795426e-04
## EFA  4.178262e-05 0.0010390169 1.064238e-03  6.490305e-04  6.975411e-04
## IJS -7.811863e-05 0.0006437749 6.490305e-04  1.565451e-03  8.290251e-04
## SPY -9.032054e-06 0.0006795426 6.975411e-04  8.290251e-04  7.408294e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##              AGG         EEM         EFA         IJS         SPY
## [1,] 0.000387414 0.009257136 0.005815636 0.005684477 0.002330249
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062317481 -0.0029353117  0.0366062715  0.052133096  4.992313e-02
## 2013-02-28  0.0058919724 -0.0231051562 -0.0129695485  0.016175806  1.267793e-02
## 2013-03-28  0.0009844246 -0.0102352068  0.0129695485  0.040257813  3.726793e-02
## 2013-04-30  0.0096395940  0.0120845659  0.0489678048  0.001222503  1.903028e-02
## 2013-05-31 -0.0202143572 -0.0494834467 -0.0306555355  0.041976347  2.333528e-02
## 2013-06-28 -0.0157781851 -0.0547281186 -0.0271445454 -0.001403072 -1.343443e-02
## 2013-07-31  0.0026877270  0.0131596382  0.0518602626  0.063541522  5.038597e-02
## 2013-08-30 -0.0082980435 -0.0257054798 -0.0197463914 -0.034743702 -3.045107e-02
## 2013-09-30  0.0111441657  0.0695889464  0.0753385931  0.063873993  3.115548e-02
## 2013-10-31  0.0082919500  0.0408609243  0.0320817229  0.034234048  4.526722e-02
## 2013-11-29 -0.0025098074 -0.0025942676  0.0054496584  0.041661230  2.920662e-02
## 2013-12-31 -0.0055835171 -0.0040739625  0.0215281769  0.012891747  2.559625e-02
## 2014-01-31  0.0152916618 -0.0903226525 -0.0534134158 -0.035775233 -3.588469e-02
## 2014-02-28  0.0037573704  0.0332205687  0.0595049802  0.045257351  4.451030e-02
## 2014-03-31 -0.0014817611  0.0380216234 -0.0046024812  0.013315486  8.261468e-03
## 2014-04-30  0.0081827965  0.0077727669  0.0165294377 -0.023184514  6.927407e-03
## 2014-05-30  0.0117223129  0.0290912263  0.0158284730  0.006205631  2.294137e-02
## 2014-06-30 -0.0005766253  0.0237338269  0.0091653683  0.037718687  2.043479e-02
## 2014-07-31 -0.0025116445  0.0135555176 -0.0263799557 -0.052009470 -1.352895e-02
## 2014-08-29  0.0114307342  0.0279048311  0.0018005836  0.043657712  3.870449e-02
## 2014-09-30 -0.0061676929 -0.0808569096 -0.0395985557 -0.061260298 -1.389221e-02
## 2014-10-31  0.0105848519  0.0140966491 -0.0026549646  0.068874691  2.327781e-02
## 2014-11-28  0.0065491660 -0.0155413696  0.0006254644  0.004773732  2.710170e-02
## 2014-12-31  0.0014747702 -0.0404420590 -0.0407466846  0.025295688 -2.540074e-03
## 2015-01-30  0.0203147070 -0.0068956998  0.0062265075 -0.054627803 -3.007720e-02
## 2015-02-27 -0.0089876911  0.0431359174  0.0614503702  0.056914729  5.468202e-02
## 2015-03-31  0.0037404665 -0.0150859301 -0.0143885558  0.010156328 -1.583011e-02
## 2015-04-30 -0.0032333807  0.0662809713  0.0358165339 -0.018417791  9.785723e-03
## 2015-05-29 -0.0043832542 -0.0419107223  0.0019525622  0.007509842  1.277457e-02
## 2015-06-30 -0.0108255115 -0.0297468109 -0.0316786351  0.004171342 -2.052132e-02
## 2015-07-31  0.0085839727 -0.0651782181  0.0201144040 -0.027375329  2.233752e-02
## 2015-08-31 -0.0033630899 -0.0925121487 -0.0771524288 -0.047268363 -6.288659e-02
## 2015-09-30  0.0080810990 -0.0318251567 -0.0451950749 -0.038464693 -2.584691e-02
## 2015-10-30  0.0006855327  0.0618081847  0.0640259369  0.063589825  8.163494e-02
## 2015-11-30 -0.0038984085 -0.0255602201 -0.0075558439  0.024415321  3.648303e-03
## 2015-12-31 -0.0019188212 -0.0389470313 -0.0235948734 -0.052157345 -1.743354e-02
## 2016-01-29  0.0123299555 -0.0516367138 -0.0567578461 -0.060306769 -5.106862e-02
## 2016-02-29  0.0088315655 -0.0082114294 -0.0339140802  0.020605008 -8.265715e-04
## 2016-03-31  0.0087084234  0.1218788527  0.0637459679  0.089910513  6.510044e-02
## 2016-04-29  0.0025469774  0.0040791679  0.0219748716  0.021044330  3.933291e-03
## 2016-05-31  0.0001352008 -0.0376285173 -0.0008559818  0.004396888  1.686887e-02
## 2016-06-30  0.0191665929  0.0445824481 -0.0244915330  0.008292427  3.469755e-03
## 2016-07-29  0.0054295987  0.0524422088  0.0390001700  0.049348519  3.582179e-02
## 2016-08-31 -0.0021561463  0.0087987130  0.0053269498  0.011260927  1.196846e-03
## 2016-09-30  0.0005163924  0.0248725440  0.0132790819  0.008614751  5.796025e-05
## 2016-10-31 -0.0082056997 -0.0083121454 -0.0224036234 -0.038134850 -1.748893e-02
## 2016-11-30 -0.0259894990 -0.0451618371 -0.0179745854  0.125246347  3.617599e-02
## 2016-12-30  0.0025379616 -0.0025299426  0.0267028708  0.031491849  2.006905e-02
## 2017-01-31  0.0021263574  0.0644314586  0.0323820023 -0.012143764  1.773659e-02
## 2017-02-28  0.0064378723  0.0172580506  0.0118363664  0.013428814  3.853930e-02
## 2017-03-31 -0.0005530611  0.0361888080  0.0318056821 -0.006533046  1.249170e-03
## 2017-04-28  0.0090292601  0.0168662675  0.0239523044  0.005107703  9.877156e-03
## 2017-05-31  0.0068474595  0.0280600796  0.0348101417 -0.022862411  1.401413e-02
## 2017-06-30 -0.0001826990  0.0092236754  0.0029559913  0.029151569  6.354788e-03
## 2017-07-31  0.0033340894  0.0565945569  0.0261877148  0.007481461  2.034591e-02
## 2017-08-31  0.0093693950  0.0232437207 -0.0004480896 -0.027564908  2.913265e-03
## 2017-09-29 -0.0057319975 -0.0004460229  0.0233426525  0.082321936  1.994922e-02
## 2017-10-31  0.0009781223  0.0322783665  0.0166537763  0.005915878  2.329079e-02
## 2017-11-30 -0.0014838504 -0.0038970086  0.0068698270  0.036913503  3.010781e-02
## 2017-12-29  0.0047399433  0.0369253525  0.0133985820 -0.003731344  1.205502e-02
calculate_component_contribution <- function(.data, w) {
    
        # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
        
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>% 
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")
    
plot_data %>% 
    
    ggplot(aes(x = Asset, y = Contribution)) + 
    geom_col(fill = "cornflowerblue") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data_with_weight <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>% 
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>% 
    
    # Add Weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%  
    
    # Transform Data
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
    
plot_data_with_weight %>% 
    
    ggplot(aes(x = Asset, y = value, fill = type)) + 
    geom_col(position = "dodge") + 
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq() + 
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent", x = NULL)

6 Rolling Component Contribution