##generate the synthetic control and make first plot
library(tidysynth)
library(ggplot2)
library(readxl)
base_para_synth <- read_excel("/Users/joseandressumanorodriguez/Desktop/bases clases/base para synth.xlsx")
synthout <- base_para_synth %>%
synthetic_control(outcome = TasaHomicidios,
unit= Alcaldia,
time= Tiempo,
i_unit = "AlvaroObregon",
i_time = 21,
generate_placebos = T) %>%
generate_predictor(time_window = 1:21, Gini =mean(Gini, na.rm=T)) %>%
generate_predictor(time_window=1:21, PoblacionenExtremaPobreza=mean(Poblacionenextremapobreza,na.rm=T))%>%
generate_predictor(time_window = 1:21, Densidad= mean(Densidad, na.rm=T))%>%
generate_predictor(time_window = 1:21, IDH =mean(IDH, na.rm=T))%>%
generate_predictor(time_window = 1:21, Percepciondeinseguridad =mean(Percepciondeinseguridad, na.rm=T))%>%
generate_predictor(time_window = 1:21, ConfianzaenPolicia =mean(ConfianzaenPolicia, na.rm=T))%>%
generate_predictor(time_window = 1:21, Conflictos= mean(Conflictos, na.rm=T))%>%
generate_predictor(time_window = 1:21, Disparos = mean(Disparos, na.rm=T))%>%
generate_predictor(time_window = 1:21, Drogas =mean (Drogas, na.rm=T))%>%
generate_weights(optimization_window = 1:21, margin_ipop = .02, sigf_ipop = 7, bound_ipop = 6) %>% generate_control()
synthout %>% plot_trends()
##generate second plot
synthout %>% plot_differences()
#generate third plot
synthout %>% plot_weights()
#generate fourth plot
synthout %>% plot_placebos()+labs(x="Time", y="Homicide Rate")
#generate fifth plot
synthout %>% plot_mspe_ratio()
#generate sixth visualization
synthout %>% grab_signficance()
## # A tibble: 8 × 8
## unit_name type pre_mspe post_mspe mspe_ratio rank fishe…¹ z_score
## <chr> <chr> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 BenitoJuarez Donor 0.157 0.209 1.33 1 0.125 2.15
## 2 Coyoacán Donor 0.202 0.158 0.783 2 0.25 0.505
## 3 Tlalpan Donor 0.763 0.514 0.673 3 0.375 0.180
## 4 MagdalenaContreras Donor 0.574 0.354 0.617 4 0.5 0.0125
## 5 Cuajimalpa Donor 0.603 0.260 0.431 5 0.625 -0.543
## 6 AlvaroObregon Treated 0.339 0.130 0.385 6 0.75 -0.680
## 7 Azcapotzalco Donor 0.728 0.251 0.345 7 0.875 -0.799
## 8 Cuauhtemoc Donor 2.20 0.738 0.336 8 1 -0.828
## # … with abbreviated variable name ¹fishers_exact_pvalue