Factors
In-class activity 10
Factors form the basis for many of R’s powerful operations, including
many of those performed on tabular data. The motivation for factors
comes from the notion of nominal, or categorical, variables in
statistics. These values are nonnumerical in nature, corresponding to
categories such as Democrat, Republican, and Unaffiliated, although they
may be coded using numbers.
Factors and Levels
An R factor might be viewed simply as a vector with a bit more
information added (though, as seen below, it’s different from this
internally). That extra information consists of a record of the distinct
values in that vector, called levels. Here’s an example:
Creating vector of your numbers assigning xf as factor of numeric
vector -> realize that 12 is only listed once (as level)
x <- c(5,12,13,12)
xf <- factor(x)
xf
[1] 5 12 13 12
Levels: 5 12 13
The distinct values in xf—5, 12, and 13—are the levels here. Let’s
take a look inside:
str(xf)
Factor w/ 3 levels "5","12","13": 1 2 3 2
-> factor’s structure shows three levels
unclass(xf)
[1] 1 2 3 2
attr(,"levels")
[1] "5" "12" "13"
-> the unclass function allows us see the attributes (levels) and
the different levels
length(xf)
[1] 4
Even though there are three levels, the duplicates still make length
‘4’
We can anticipate future new levels, as seen here:
x <- c(5,12,13,12)
xff <- factor(x,levels=c(5,12,13,88))
xff
[1] 5 12 13 12
Levels: 5 12 13 88
-> the level 88 is added even though it is not yet in the x
vector
xff[2] <- 88
xff
[1] 5 88 13 12
Levels: 5 12 13 88
Originally, xff did not contain the value 88, but in defining it, we
allowed for that future possibility. Later, we did indeed add the
value.
Common Functions Used with Factors
With factors, we have yet another member of the family of apply
functions, tapply. We’ll look at that function, as well as two other
functions commonly used with factors: split() and by().
The operation performed by tapply() is to (temporarily) split x into
groups, each group corresponding to a level of the factor (or a
combination of levels of the factors in the case of multiple factors),
and then apply g() to the resulting subvectors of x. Here’s a little
example:
ages <- c(25,26,55,37,21,42)
affils <- c("R","D","D","R","U","D")
tapply(ages,affils,mean)
-> the tapply function let’s us see the mean of ages associated
with each affils.
Let’s look at what happened. The function tapply() treated the vector
(“R”,“D”,“D”,“R”,“U”,“D”) as a factor with levels “D”, “R”, and “U”. It
noted that “D” occurred in indices 2, 3 and 6; “R” occurred in indices 1
and 4; and “U” occurred in index 5. For convenience, let’s refer to the
three index vectors (2,3,6), (1,4), and (5) as x, y, and z,
respectively. Then tapply() computed mean(u[x]), mean(u[y]), and
mean(u[z]) and returned those means in a three-element vector. And that
vector’s element names are “D”, “R”, and “U”, reflecting the factor
levels that were used by tapply().
What if we have two or more factors? Then each factor yields a set of
groups, as in the preceding example, and the groups are ANDed together.
As an example, suppose that we have an economic data set that includes
variables for gender, age, and income. Here, the call tapply(x,f,g)
might have x as income and f as a pair of factors: one for gender and
the other coding whether the person is older or younger than 25. We may
be interested in finding mean income, broken down by gender and age. If
we set g() to be mean(), tapply() will return the mean incomes in each
of four subgroups:
• Male and under 25 years old • Female and under 25 years old • Male
and over 25 years old • Female and over 25 years old
assigning gender, age, and income vectors to a dataframe d
d <- data.frame(list(gender=c("M","M","F","M","F","F"),age=c(47,59,21,32,33,24),income=c(55000,88000,32450,76500,123000,45650)))
d
-> gender, age, and income are columns with shown values in
dataframe d
new column over25 is added to d: if age is over 25 then 1 else then
0
d$over25 <- ifelse(d$age > 25,1,0)
d
confirm that assignment worked
applying tapply:
tapply(d$income,list(d$gender,d$over25),mean)
0 1
F 39050 123000.00
M NA 73166.67
mean of income is shown for each gender grouped by over 25 or not
-> na for m under 25 as there is no data in dataframe that
matches
We specified two factors, gender and indicator variable for age over
or under 25. Since each of these factors has two levels, tapply()
partitioned the income data into four groups, one for each combination
of gender and age, and then applied to mean() function to each
group.
The split() Function
In contrast to tapply(), which splits a vector into groups and then
applies a specified function on each group, split() stops at that first
stage, just forming the groups. The basic form, without bells and
whistles, is split(x,f), with x and f playing roles similar to those in
the call tapply(x,f,g); that is, x being a vector or data frame and f
being a factor or a list of factors. The action is to split x into
groups, which are returned in a list. (Note that x is allowed to be a
data frame with split() but not with tapply().
Let’s try it out with our earlier example.
applying split function:
split(d$income,list(d$gender,d$over25))
$F.0
[1] 32450 45650
$M.0
numeric(0)
$F.1
[1] 123000
$M.1
[1] 55000 88000 76500
-> the dataframe is split into genders and over 25 or not:
therefore, the is two groups per gender
The output of split() is a list, and recall that list components are
denoted by dollar signs. So the last vector, for example, was named
“M.1” to indicate that it was the result of combining “M” in the first
factor and 1 in the second.
As another illustration, consider our abalone example from previous
in class activitities (2.9.2). We wanted to determine the indices of the
vector elements corresponding to male, female, and infant. The data in
that little example consisted of the seven-observation vector
(“M”,“F”,“F”,“I”,“M”,“M”,“F”), assigned to g. We can do this in a flash
with split().
g <- c("M","F","F","I","M","M","F")
split(1:7,g)
$F
[1] 2 3 7
$I
[1] 4
$M
[1] 1 5 6
-> m and f is assigned to vector -> the split is applied and
the split groups show the position in the original vector.
Let’s dissect this step-by-step. The vector g, taken as a factor, has
three levels: “M”, “F”, and “I”. The indices corresponding to the first
level are 1, 5, and 6, which means that g[1], g[5], and g[6] all have
the value “M”. So, R sets the M component of the output to elements 1,
5, and 6 of 1:7, which is the vector (1,5,6).
Working with Tables
To begin exploring R tables, consider this example:
u <- c(22,8,33,6,8,29,-2)
fl <- list(c(5,12,13,12,13,5,13),c("a","bc","a","a","bc","a","a"))
tapply(u,fl,length)
a bc
5 2 NA
12 1 1
13 2 1
applying tapply to vector u and a list of two vectors fl -> the
length of each group (a or bc) per vector is shown
Here, tapply() again temporarily breaks u into subvectors, as you saw
earlier,and then applies the length() function to each subvector. (Note
that this is independent of what’s in u. Our focus now is purely on the
factors.) Those subvector lengths are the counts of the occurrences of
each of the 3 × 2 = 6 combinations of the two factors. For instance, 5
occurred twice with “a” and not at all with “bc”; hence the entries 2
and NA in the first row of the output.In statistics, this is called a
contingency table.
There is one problem in this example: the NA value. It really should
be 0, meaning that in no cases did the first factor have level 5 and the
second have level “bc”. The table() function creates contingency tables
correctly.
creating table with fl:
table(fl)
fl.2
fl.1 a bc
5 2 0
12 1 1
13 2 1
there is one header fl.2 with three subheaders fl.1, a, and bc
The first argument in a call to table() is either a factor or a list
of factors. The two factors here were (5,12,13,12,13,5,13) and
(“a”,“bc”,“a”,“a”,“bc”,“a”,“a”). In this case, an object that is
interpretable as a factor is counted as one.
LS0tDQp0aXRsZTogIlIgRmFjdG9ycyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQojIEZhY3RvcnMNCiMjIEluLWNsYXNzIGFjdGl2aXR5IDEwDQoNCkZhY3RvcnMgZm9ybSB0aGUgYmFzaXMgZm9yIG1hbnkgb2YgUuKAmXMgcG93ZXJmdWwgb3BlcmF0aW9ucywgaW5jbHVkaW5nIG1hbnkgb2YgdGhvc2UgcGVyZm9ybWVkIG9uIHRhYnVsYXIgZGF0YS4gVGhlIG1vdGl2YXRpb24gZm9yIGZhY3RvcnMgY29tZXMgZnJvbSB0aGUgbm90aW9uIG9mIG5vbWluYWwsIG9yIGNhdGVnb3JpY2FsLCB2YXJpYWJsZXMgaW4gc3RhdGlzdGljcy4gVGhlc2UgdmFsdWVzIGFyZSBub25udW1lcmljYWwgaW4gbmF0dXJlLCBjb3JyZXNwb25kaW5nIHRvIGNhdGVnb3JpZXMgc3VjaCBhcyBEZW1vY3JhdCwgUmVwdWJsaWNhbiwgYW5kIFVuYWZmaWxpYXRlZCwgYWx0aG91Z2ggdGhleSBtYXkgYmUgY29kZWQgdXNpbmcgbnVtYmVycy4NCg0KDQojIyBGYWN0b3JzIGFuZCBMZXZlbHMNCkFuIFIgZmFjdG9yIG1pZ2h0IGJlIHZpZXdlZCBzaW1wbHkgYXMgYSB2ZWN0b3Igd2l0aCBhIGJpdCBtb3JlIGluZm9ybWF0aW9uIGFkZGVkICh0aG91Z2gsIGFzIHNlZW4gYmVsb3csIGl04oCZcyBkaWZmZXJlbnQgZnJvbSB0aGlzIGludGVybmFsbHkpLiBUaGF0IGV4dHJhIGluZm9ybWF0aW9uIGNvbnNpc3RzIG9mIGEgcmVjb3JkIG9mIHRoZSBkaXN0aW5jdCB2YWx1ZXMgaW4gdGhhdCB2ZWN0b3IsIGNhbGxlZCBsZXZlbHMuIEhlcmXigJlzIGFuIGV4YW1wbGU6DQoNCkNyZWF0aW5nIHZlY3RvciBvZiB5b3VyIG51bWJlcnMNCmFzc2lnbmluZyB4ZiBhcyBmYWN0b3Igb2YgbnVtZXJpYyB2ZWN0b3INCi0+IHJlYWxpemUgdGhhdCAxMiBpcyBvbmx5IGxpc3RlZCBvbmNlIChhcyBsZXZlbCkNCmBgYHtyfQ0KeCA8LSBjKDUsMTIsMTMsMTIpDQp4ZiA8LSBmYWN0b3IoeCkNCnhmDQpgYGANClRoZSBkaXN0aW5jdCB2YWx1ZXMgaW4geGbigJQ1LCAxMiwgYW5kIDEz4oCUYXJlIHRoZSBsZXZlbHMgaGVyZS4gTGV04oCZcyB0YWtlIGEgbG9vayBpbnNpZGU6DQoNCmBgYHtyfQ0Kc3RyKHhmKQ0KYGBgDQotPiBmYWN0b3IncyBzdHJ1Y3R1cmUgc2hvd3MgdGhyZWUgbGV2ZWxzIA0KDQoNCmBgYHtyfQ0KdW5jbGFzcyh4ZikNCmBgYA0KLT4gdGhlIHVuY2xhc3MgZnVuY3Rpb24gYWxsb3dzIHVzIHNlZSB0aGUgYXR0cmlidXRlcyAobGV2ZWxzKSBhbmQgdGhlIGRpZmZlcmVudCBsZXZlbHMgDQoNCg0KYGBge3J9DQpsZW5ndGgoeGYpDQpgYGANCkV2ZW4gdGhvdWdoIHRoZXJlIGFyZSB0aHJlZSBsZXZlbHMsIHRoZSBkdXBsaWNhdGVzIHN0aWxsIG1ha2UgbGVuZ3RoICc0Jw0KDQoNCldlIGNhbiBhbnRpY2lwYXRlIGZ1dHVyZSBuZXcgbGV2ZWxzLCBhcyBzZWVuIGhlcmU6DQoNCmBgYHtyfQ0KeCA8LSBjKDUsMTIsMTMsMTIpDQp4ZmYgPC0gZmFjdG9yKHgsbGV2ZWxzPWMoNSwxMiwxMyw4OCkpDQp4ZmYNCmBgYA0KLT4gdGhlIGxldmVsIDg4IGlzIGFkZGVkIGV2ZW4gdGhvdWdoIGl0IGlzIG5vdCB5ZXQgaW4gdGhlIHggdmVjdG9yDQoNCg0KYGBge3J9DQp4ZmZbMl0gPC0gODgNCnhmZg0KYGBgDQpPcmlnaW5hbGx5LCB4ZmYgZGlkIG5vdCBjb250YWluIHRoZSB2YWx1ZSA4OCwgYnV0IGluIGRlZmluaW5nIGl0LCB3ZSBhbGxvd2VkIGZvciB0aGF0IGZ1dHVyZSBwb3NzaWJpbGl0eS4gTGF0ZXIsIHdlIGRpZCBpbmRlZWQgYWRkIHRoZSB2YWx1ZS4NCg0KIyMgQ29tbW9uIEZ1bmN0aW9ucyBVc2VkIHdpdGggRmFjdG9ycyANCg0KV2l0aCBmYWN0b3JzLCB3ZSBoYXZlIHlldCBhbm90aGVyIG1lbWJlciBvZiB0aGUgZmFtaWx5IG9mIGFwcGx5IGZ1bmN0aW9ucywgdGFwcGx5LiBXZeKAmWxsIGxvb2sgYXQgdGhhdCBmdW5jdGlvbiwgYXMgd2VsbCBhcyB0d28gb3RoZXIgZnVuY3Rpb25zIGNvbW1vbmx5IHVzZWQgd2l0aCBmYWN0b3JzOiBzcGxpdCgpIGFuZCBieSgpLg0KDQpUaGUgb3BlcmF0aW9uIHBlcmZvcm1lZCBieSB0YXBwbHkoKSBpcyB0byAodGVtcG9yYXJpbHkpIHNwbGl0IHggaW50byBncm91cHMsIGVhY2ggZ3JvdXAgY29ycmVzcG9uZGluZyB0byBhIGxldmVsIG9mIHRoZSBmYWN0b3IgKG9yIGEgY29tYmluYXRpb24gb2YgbGV2ZWxzIG9mIHRoZSBmYWN0b3JzIGluIHRoZSBjYXNlIG9mIG11bHRpcGxlIGZhY3RvcnMpLCBhbmQgdGhlbiBhcHBseSBnKCkgdG8gdGhlIHJlc3VsdGluZyBzdWJ2ZWN0b3JzIG9mIHguIEhlcmXigJlzIGEgbGl0dGxlIGV4YW1wbGU6DQoNCmBgYHtyfQ0KYWdlcyA8LSBjKDI1LDI2LDU1LDM3LDIxLDQyKQ0KYWZmaWxzIDwtIGMoIlIiLCJEIiwiRCIsIlIiLCJVIiwiRCIpDQp0YXBwbHkoYWdlcyxhZmZpbHMsbWVhbikNCmBgYA0KLT4gdGhlIHRhcHBseSBmdW5jdGlvbiBsZXQncyB1cyBzZWUgdGhlIG1lYW4gb2YgYWdlcyBhc3NvY2lhdGVkIHdpdGggZWFjaCBhZmZpbHMuIA0KDQpMZXTigJlzIGxvb2sgYXQgd2hhdCBoYXBwZW5lZC4gVGhlIGZ1bmN0aW9uIHRhcHBseSgpIHRyZWF0ZWQgdGhlIHZlY3RvciAoIlIiLCJEIiwiRCIsIlIiLCJVIiwiRCIpIGFzIGEgZmFjdG9yIHdpdGggbGV2ZWxzICJEIiwgIlIiLCBhbmQgIlUiLiBJdCBub3RlZCB0aGF0ICJEIiBvY2N1cnJlZCBpbiBpbmRpY2VzIDIsIDMgYW5kIDY7ICJSIiBvY2N1cnJlZCBpbiBpbmRpY2VzIDEgYW5kIDQ7IGFuZCAiVSIgb2NjdXJyZWQgaW4gaW5kZXggNS4gRm9yIGNvbnZlbmllbmNlLCBsZXTigJlzIHJlZmVyIHRvIHRoZSB0aHJlZSBpbmRleCB2ZWN0b3JzICgyLDMsNiksICgxLDQpLCBhbmQgKDUpIGFzIHgsIHksIGFuZCB6LCByZXNwZWN0aXZlbHkuIFRoZW4gdGFwcGx5KCkgY29tcHV0ZWQgbWVhbih1W3hdKSwgbWVhbih1W3ldKSwgYW5kIG1lYW4odVt6XSkgYW5kIHJldHVybmVkIHRob3NlIG1lYW5zIGluIGEgdGhyZWUtZWxlbWVudCB2ZWN0b3IuIEFuZCB0aGF0IHZlY3RvcuKAmXMgZWxlbWVudCBuYW1lcyBhcmUgIkQiLCAiUiIsIGFuZCAiVSIsIHJlZmxlY3RpbmcgdGhlIGZhY3RvciBsZXZlbHMgdGhhdCB3ZXJlIHVzZWQgYnkgdGFwcGx5KCkuDQoNCldoYXQgaWYgd2UgaGF2ZSB0d28gb3IgbW9yZSBmYWN0b3JzPyBUaGVuIGVhY2ggZmFjdG9yIHlpZWxkcyBhIHNldCBvZiBncm91cHMsIGFzIGluIHRoZSBwcmVjZWRpbmcgZXhhbXBsZSwgYW5kIHRoZSBncm91cHMgYXJlIEFORGVkIHRvZ2V0aGVyLiBBcyBhbiBleGFtcGxlLCBzdXBwb3NlIHRoYXQgd2UgaGF2ZSBhbiBlY29ub21pYyBkYXRhIHNldCB0aGF0IGluY2x1ZGVzIHZhcmlhYmxlcyBmb3IgZ2VuZGVyLCBhZ2UsIGFuZCBpbmNvbWUuIEhlcmUsIHRoZSBjYWxsIHRhcHBseSh4LGYsZykgbWlnaHQgaGF2ZSB4IGFzIGluY29tZSBhbmQgZiBhcyBhIHBhaXIgb2YgZmFjdG9yczogb25lIGZvciBnZW5kZXIgYW5kIHRoZSBvdGhlciBjb2Rpbmcgd2hldGhlciB0aGUgcGVyc29uIGlzIG9sZGVyIG9yIHlvdW5nZXIgdGhhbiAyNS4gV2UgbWF5IGJlIGludGVyZXN0ZWQgaW4gZmluZGluZyBtZWFuIGluY29tZSwgYnJva2VuIGRvd24gYnkgZ2VuZGVyIGFuZCBhZ2UuIElmIHdlIHNldCBnKCkgdG8gYmUgbWVhbigpLCB0YXBwbHkoKSB3aWxsIHJldHVybiB0aGUgbWVhbiBpbmNvbWVzIGluIGVhY2ggb2YgZm91ciBzdWJncm91cHM6DQoNCuKAoiBNYWxlIGFuZCB1bmRlciAyNSB5ZWFycyBvbGQNCuKAoiBGZW1hbGUgYW5kIHVuZGVyIDI1IHllYXJzIG9sZA0K4oCiIE1hbGUgYW5kIG92ZXIgMjUgeWVhcnMgb2xkDQrigKIgRmVtYWxlIGFuZCBvdmVyIDI1IHllYXJzIG9sZA0KDQoNCmFzc2lnbmluZyBnZW5kZXIsIGFnZSwgYW5kIGluY29tZSB2ZWN0b3JzIHRvIGEgZGF0YWZyYW1lIGQNCmBgYHtyfQ0KZCA8LSBkYXRhLmZyYW1lKGxpc3QoZ2VuZGVyPWMoIk0iLCJNIiwiRiIsIk0iLCJGIiwiRiIpLGFnZT1jKDQ3LDU5LDIxLDMyLDMzLDI0KSxpbmNvbWU9Yyg1NTAwMCw4ODAwMCwzMjQ1MCw3NjUwMCwxMjMwMDAsNDU2NTApKSkNCmBgYA0KDQoNCmBgYHtyfQ0KZA0KYGBgDQotPiBnZW5kZXIsIGFnZSwgYW5kIGluY29tZSBhcmUgY29sdW1ucyB3aXRoIHNob3duIHZhbHVlcyBpbiBkYXRhZnJhbWUgZA0KDQoNCm5ldyBjb2x1bW4gb3ZlcjI1IGlzIGFkZGVkIHRvIGQ6DQppZiBhZ2UgaXMgb3ZlciAyNSB0aGVuIDEgZWxzZSB0aGVuIDANCmBgYHtyfQ0KZCRvdmVyMjUgPC0gaWZlbHNlKGQkYWdlID4gMjUsMSwwKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCmQNCmBgYA0KY29uZmlybSB0aGF0IGFzc2lnbm1lbnQgd29ya2VkDQoNCmFwcGx5aW5nIHRhcHBseToNCmBgYHtyfQ0KdGFwcGx5KGQkaW5jb21lLGxpc3QoZCRnZW5kZXIsZCRvdmVyMjUpLG1lYW4pDQpgYGANCm1lYW4gb2YgaW5jb21lIGlzIHNob3duIGZvciBlYWNoIGdlbmRlciBncm91cGVkIGJ5IG92ZXIgMjUgb3Igbm90DQotPiBuYSBmb3IgbSB1bmRlciAyNSBhcyB0aGVyZSBpcyBubyBkYXRhIGluIGRhdGFmcmFtZSB0aGF0IG1hdGNoZXMNCg0KDQpXZSBzcGVjaWZpZWQgdHdvIGZhY3RvcnMsIGdlbmRlciBhbmQgaW5kaWNhdG9yIHZhcmlhYmxlIGZvciBhZ2Ugb3ZlciBvciB1bmRlciAyNS4gU2luY2UgZWFjaCBvZiB0aGVzZSBmYWN0b3JzIGhhcyB0d28gbGV2ZWxzLCB0YXBwbHkoKSBwYXJ0aXRpb25lZCB0aGUgaW5jb21lIGRhdGEgaW50byBmb3VyIGdyb3Vwcywgb25lIGZvciBlYWNoIGNvbWJpbmF0aW9uIG9mIGdlbmRlciBhbmQgYWdlLCBhbmQgdGhlbiBhcHBsaWVkIHRvIG1lYW4oKSBmdW5jdGlvbiB0byBlYWNoIGdyb3VwLg0KDQoNCiMjIFRoZSBzcGxpdCgpIEZ1bmN0aW9uDQoNCkluIGNvbnRyYXN0IHRvIHRhcHBseSgpLCB3aGljaCBzcGxpdHMgYSB2ZWN0b3IgaW50byBncm91cHMgYW5kIHRoZW4gYXBwbGllcyBhIHNwZWNpZmllZCBmdW5jdGlvbiBvbiBlYWNoIGdyb3VwLCBzcGxpdCgpIHN0b3BzIGF0IHRoYXQgZmlyc3Qgc3RhZ2UsIGp1c3QgZm9ybWluZyB0aGUgZ3JvdXBzLiBUaGUgYmFzaWMgZm9ybSwgd2l0aG91dCBiZWxscyBhbmQgd2hpc3RsZXMsIGlzIHNwbGl0KHgsZiksIHdpdGggeCBhbmQgZiBwbGF5aW5nIHJvbGVzIHNpbWlsYXIgdG8gdGhvc2UgaW4gdGhlIGNhbGwgdGFwcGx5KHgsZixnKTsgdGhhdCBpcywgeCBiZWluZyBhIHZlY3RvciBvciBkYXRhIGZyYW1lIGFuZCBmIGJlaW5nIGEgZmFjdG9yIG9yIGEgbGlzdCBvZiBmYWN0b3JzLiBUaGUgYWN0aW9uIGlzIHRvIHNwbGl0IHggaW50byBncm91cHMsIHdoaWNoIGFyZSByZXR1cm5lZCBpbiBhIGxpc3QuIChOb3RlIHRoYXQgeCBpcyBhbGxvd2VkIHRvIGJlIGEgZGF0YSBmcmFtZSB3aXRoIHNwbGl0KCkgYnV0IG5vdCB3aXRoIHRhcHBseSgpLg0KDQpMZXTigJlzIHRyeSBpdCBvdXQgd2l0aCBvdXIgZWFybGllciBleGFtcGxlLg0KDQphcHBseWluZyBzcGxpdCBmdW5jdGlvbjoNCmBgYHtyfQ0Kc3BsaXQoZCRpbmNvbWUsbGlzdChkJGdlbmRlcixkJG92ZXIyNSkpDQpgYGANCi0+IHRoZSBkYXRhZnJhbWUgaXMgc3BsaXQgaW50byBnZW5kZXJzIGFuZCBvdmVyIDI1IG9yIG5vdDogdGhlcmVmb3JlLCB0aGUgaXMgdHdvIGdyb3VwcyBwZXIgZ2VuZGVyDQoNCg0KVGhlIG91dHB1dCBvZiBzcGxpdCgpIGlzIGEgbGlzdCwgYW5kIHJlY2FsbCB0aGF0IGxpc3QgY29tcG9uZW50cyBhcmUgZGVub3RlZCBieSBkb2xsYXIgc2lnbnMuIFNvIHRoZSBsYXN0IHZlY3RvciwgZm9yIGV4YW1wbGUsIHdhcyBuYW1lZCAiTS4xIiB0byBpbmRpY2F0ZSB0aGF0IGl0IHdhcyB0aGUgcmVzdWx0IG9mIGNvbWJpbmluZyAiTSIgaW4gdGhlIGZpcnN0IGZhY3RvciBhbmQgMSBpbiB0aGUgc2Vjb25kLiANCg0KQXMgYW5vdGhlciBpbGx1c3RyYXRpb24sIGNvbnNpZGVyIG91ciBhYmFsb25lIGV4YW1wbGUgZnJvbSBwcmV2aW91cyBpbiBjbGFzcyBhY3Rpdml0aXRpZXMgKDIuOS4yKS4gIFdlIHdhbnRlZCB0byBkZXRlcm1pbmUgdGhlIGluZGljZXMgb2YgdGhlIHZlY3RvciBlbGVtZW50cyBjb3JyZXNwb25kaW5nIHRvIG1hbGUsIGZlbWFsZSwgYW5kIGluZmFudC4gVGhlIGRhdGEgaW4gdGhhdCBsaXR0bGUgZXhhbXBsZSBjb25zaXN0ZWQgb2YgdGhlIHNldmVuLW9ic2VydmF0aW9uIHZlY3RvciAoIk0iLCJGIiwiRiIsIkkiLCJNIiwiTSIsIkYiKSwgYXNzaWduZWQgdG8gZy4gV2UgY2FuIGRvIHRoaXMgaW4gYSBmbGFzaCB3aXRoIHNwbGl0KCkuDQoNCg0KYGBge3J9DQpnIDwtIGMoIk0iLCJGIiwiRiIsIkkiLCJNIiwiTSIsIkYiKQ0Kc3BsaXQoMTo3LGcpDQpgYGANCi0+IG0gYW5kIGYgaXMgYXNzaWduZWQgdG8gdmVjdG9yIC0+IHRoZSBzcGxpdCBpcyBhcHBsaWVkIGFuZCB0aGUgc3BsaXQgZ3JvdXBzIHNob3cgdGhlIHBvc2l0aW9uIGluIHRoZSBvcmlnaW5hbCB2ZWN0b3IuDQoNCkxldOKAmXMgZGlzc2VjdCB0aGlzIHN0ZXAtYnktc3RlcC4gVGhlIHZlY3RvciBnLCB0YWtlbiBhcyBhIGZhY3RvciwgaGFzIHRocmVlIGxldmVsczogIk0iLCAiRiIsIGFuZCAiSSIuIFRoZSBpbmRpY2VzIGNvcnJlc3BvbmRpbmcgdG8gdGhlIGZpcnN0IGxldmVsIGFyZSAxLCA1LCBhbmQgNiwgd2hpY2ggbWVhbnMgdGhhdCBnWzFdLCBnWzVdLCBhbmQgZ1s2XSBhbGwgaGF2ZSB0aGUgdmFsdWUgIk0iLiBTbywgUiBzZXRzDQp0aGUgTSBjb21wb25lbnQgb2YgdGhlIG91dHB1dCB0byBlbGVtZW50cyAxLCA1LCBhbmQgNiBvZiAxOjcsIHdoaWNoIGlzIHRoZSB2ZWN0b3IgKDEsNSw2KS4NCg0KIyMgV29ya2luZyB3aXRoIFRhYmxlcw0KDQpUbyBiZWdpbiBleHBsb3JpbmcgUiB0YWJsZXMsIGNvbnNpZGVyIHRoaXMgZXhhbXBsZToNCg0KDQpgYGB7cn0NCnUgPC0gYygyMiw4LDMzLDYsOCwyOSwtMikNCmZsIDwtIGxpc3QoYyg1LDEyLDEzLDEyLDEzLDUsMTMpLGMoImEiLCJiYyIsImEiLCJhIiwiYmMiLCJhIiwiYSIpKQ0KdGFwcGx5KHUsZmwsbGVuZ3RoKQ0KYGBgDQphcHBseWluZyB0YXBwbHkgdG8gdmVjdG9yIHUgYW5kIGEgbGlzdCBvZiB0d28gdmVjdG9ycyBmbA0KLT4gdGhlIGxlbmd0aCBvZiBlYWNoIGdyb3VwIChhIG9yIGJjKSBwZXIgdmVjdG9yIGlzIHNob3duDQoNCg0KSGVyZSwgdGFwcGx5KCkgYWdhaW4gdGVtcG9yYXJpbHkgYnJlYWtzIHUgaW50byBzdWJ2ZWN0b3JzLCBhcyB5b3Ugc2F3IGVhcmxpZXIsYW5kIHRoZW4gYXBwbGllcyB0aGUgbGVuZ3RoKCkgZnVuY3Rpb24gdG8gZWFjaCBzdWJ2ZWN0b3IuIChOb3RlIHRoYXQgdGhpcyBpcyBpbmRlcGVuZGVudCBvZiB3aGF04oCZcyBpbiB1LiBPdXIgZm9jdXMgbm93IGlzIHB1cmVseSBvbiB0aGUgZmFjdG9ycy4pIFRob3NlIHN1YnZlY3RvciBsZW5ndGhzIGFyZSB0aGUgY291bnRzIG9mIHRoZSBvY2N1cnJlbmNlcyBvZiBlYWNoIG9mIHRoZSAzIMOXIDIgPSA2IGNvbWJpbmF0aW9ucyBvZiB0aGUgdHdvIGZhY3RvcnMuIEZvciBpbnN0YW5jZSwgNSBvY2N1cnJlZCB0d2ljZSB3aXRoICJhIiBhbmQgbm90IGF0IGFsbCB3aXRoICJiYyI7IGhlbmNlIHRoZSBlbnRyaWVzIDIgYW5kIE5BIGluIHRoZSBmaXJzdCByb3cgb2YgdGhlIG91dHB1dC5JbiBzdGF0aXN0aWNzLCB0aGlzIGlzIGNhbGxlZCBhIGNvbnRpbmdlbmN5IHRhYmxlLg0KDQpUaGVyZSBpcyBvbmUgcHJvYmxlbSBpbiB0aGlzIGV4YW1wbGU6IHRoZSBOQSB2YWx1ZS4gSXQgcmVhbGx5IHNob3VsZCBiZSAwLCBtZWFuaW5nIHRoYXQgaW4gbm8gY2FzZXMgZGlkIHRoZSBmaXJzdCBmYWN0b3IgaGF2ZSBsZXZlbCA1IGFuZCB0aGUgc2Vjb25kIGhhdmUgbGV2ZWwgImJjIi4gVGhlIHRhYmxlKCkgZnVuY3Rpb24gY3JlYXRlcyBjb250aW5nZW5jeSB0YWJsZXMgY29ycmVjdGx5Lg0KDQpjcmVhdGluZyB0YWJsZSB3aXRoIGZsOg0KYGBge3J9DQp0YWJsZShmbCkNCmBgYA0KdGhlcmUgaXMgb25lIGhlYWRlciBmbC4yIHdpdGggdGhyZWUgc3ViaGVhZGVycyBmbC4xLCBhLCBhbmQgYmMNCg0KVGhlIGZpcnN0IGFyZ3VtZW50IGluIGEgY2FsbCB0byB0YWJsZSgpIGlzIGVpdGhlciBhIGZhY3RvciBvciBhIGxpc3Qgb2YgZmFjdG9ycy4gVGhlIHR3byBmYWN0b3JzIGhlcmUgd2VyZSAoNSwxMiwxMywxMiwxMyw1LDEzKSBhbmQgKCJhIiwiYmMiLCJhIiwiYSIsImJjIiwiYSIsImEiKS4gSW4gdGhpcyBjYXNlLCBhbiBvYmplY3QgdGhhdCBpcyBpbnRlcnByZXRhYmxlIGFzIGEgZmFjdG9yIGlzIGNvdW50ZWQgYXMgb25lLg0KDQoNCg==