# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibble)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062311300 -0.0029357532 0.0366064556 0.052133422 4.992270e-02
## 2013-02-28 0.0058906613 -0.0231050509 -0.0129697075 0.016175186 1.267860e-02
## 2013-03-28 0.0009852082 -0.0102349807 0.0129697075 0.040258312 3.726781e-02
## 2013-04-30 0.0096395915 0.0120844530 0.0489676284 0.001222118 1.903027e-02
## 2013-05-31 -0.0202147878 -0.0494829782 -0.0306556269 0.041976526 2.333572e-02
## 2013-06-28 -0.0157777450 -0.0547287247 -0.0271443680 -0.001402974 -1.343477e-02
## 2013-07-31 0.0026875520 0.0131600122 0.0518602626 0.063541331 5.038628e-02
## 2013-08-30 -0.0082979607 -0.0257057936 -0.0197463914 -0.034743514 -3.045172e-02
## 2013-09-30 0.0111436307 0.0695891366 0.0753385931 0.063873628 3.115591e-02
## 2013-10-31 0.0082923092 0.0408609243 0.0320815049 0.034234317 4.526669e-02
## 2013-11-29 -0.0025098074 -0.0025940684 0.0054499553 0.041660918 2.920673e-02
## 2013-12-31 -0.0055833433 -0.0040740475 0.0215280208 0.012891977 2.559616e-02
## 2014-01-31 0.0152915793 -0.0903227043 -0.0534133386 -0.035775491 -3.588450e-02
## 2014-02-28 0.0037572791 0.0332202943 0.0595049227 0.045257935 4.451019e-02
## 2014-03-31 -0.0014819319 0.0380218352 -0.0046026549 0.013315242 8.261281e-03
## 2014-04-30 0.0081831366 0.0077726513 0.0165294605 -0.023184349 6.927695e-03
## 2014-05-30 0.0117222328 0.0290912296 0.0158286069 0.006205324 2.294109e-02
## 2014-06-30 -0.0005766364 0.0237340214 0.0091653136 0.037718830 2.043497e-02
## 2014-07-31 -0.0025114652 0.0135554353 -0.0263799022 -0.052009636 -1.352876e-02
## 2014-08-29 0.0114305653 0.0279046207 0.0018005837 0.043658175 3.870484e-02
## 2014-09-30 -0.0061673583 -0.0808565852 -0.0395984799 -0.061260680 -1.389256e-02
## 2014-10-31 0.0105847703 0.0140964225 -0.0026549646 0.068874854 2.327825e-02
## 2014-11-28 0.0065484085 -0.0155411715 0.0006253065 0.004773712 2.710127e-02
## 2014-12-31 0.0014748582 -0.0404421446 -0.0407464444 0.025295629 -2.540074e-03
## 2015-01-30 0.0203156882 -0.0068956998 0.0062262822 -0.054627642 -3.007702e-02
## 2015-02-27 -0.0089886794 0.0431362328 0.0614507247 0.056914282 5.468176e-02
## 2015-03-31 0.0037405539 -0.0150864493 -0.0143888258 0.010156613 -1.583020e-02
## 2015-04-30 -0.0032328847 0.0662812840 0.0358165171 -0.018417945 9.785982e-03
## 2015-05-29 -0.0043840885 -0.0419109449 0.0019528440 0.007509996 1.277423e-02
## 2015-06-30 -0.0108250025 -0.0297465802 -0.0316789191 0.004171493 -2.052149e-02
## 2015-07-31 0.0085847997 -0.0651782102 0.0201143296 -0.027375403 2.233819e-02
## 2015-08-31 -0.0033640037 -0.0925124450 -0.0771524204 -0.047268523 -6.288692e-02
## 2015-09-30 0.0080812627 -0.0318248438 -0.0451948454 -0.038464462 -2.584718e-02
## 2015-10-30 0.0006858571 0.0618082427 0.0640260121 0.063589596 8.163513e-02
## 2015-11-30 -0.0038983204 -0.0255604196 -0.0075559238 0.024415031 3.648303e-03
## 2015-12-31 -0.0019192337 -0.0389471022 -0.0235951208 -0.052156750 -1.743355e-02
## 2016-01-29 0.0123298803 -0.0516367923 -0.0567578339 -0.060306994 -5.106853e-02
## 2016-02-29 0.0088318857 -0.0082114306 -0.0339138580 0.020605179 -8.263032e-04
## 2016-03-31 0.0087084952 0.1218790034 0.0637457289 0.089910186 6.510018e-02
## 2016-04-29 0.0025460183 0.0040794667 0.0219750423 0.021044486 3.933372e-03
## 2016-05-31 0.0001357589 -0.0376286093 -0.0008560654 0.004397249 1.686862e-02
## 2016-06-30 0.0191669147 0.0445823401 -0.0244913638 0.008292010 3.469756e-03
## 2016-07-29 0.0054294330 0.0524418596 0.0390001461 0.049348504 3.582203e-02
## 2016-08-31 -0.0021560638 0.0087987151 0.0053268880 0.011261265 1.196846e-03
## 2016-09-30 0.0005160013 0.0248727921 0.0132790819 0.008614415 5.780605e-05
## 2016-10-31 -0.0082051518 -0.0083121454 -0.0224036234 -0.038134925 -1.748878e-02
## 2016-11-30 -0.0259894056 -0.0451617733 -0.0179745854 0.125246799 3.617599e-02
## 2016-12-30 0.0025374826 -0.0025300704 0.0267028708 0.031491652 2.006898e-02
## 2017-01-31 0.0021264317 0.0644314025 0.0323820023 -0.012143984 1.773666e-02
## 2017-02-28 0.0064381145 0.0172579347 0.0118365036 0.013428565 3.853909e-02
## 2017-03-31 -0.0005532190 0.0361890439 0.0318055449 -0.006533033 1.249245e-03
## 2017-04-28 0.0090291758 0.0168663793 0.0239523044 0.005107689 9.877226e-03
## 2017-05-31 0.0068479365 0.0280597502 0.0348102134 -0.022862228 1.401420e-02
## 2017-06-30 -0.0001831760 0.0092238929 0.0029558483 0.029151745 6.354788e-03
## 2017-07-31 0.0033342548 0.0565945569 0.0261878558 0.007481461 2.034598e-02
## 2017-08-31 0.0093693832 0.0232437207 -0.0004482288 -0.027564497 2.913260e-03
## 2017-09-29 -0.0057321511 -0.0004461971 0.0233427221 0.082321407 1.994902e-02
## 2017-10-31 0.0009781223 0.0322784443 0.0166538934 0.005916111 2.329066e-02
## 2017-11-30 -0.0014842420 -0.0038969123 0.0068699092 0.036913499 3.010800e-02
## 2017-12-29 0.0047404887 0.0369254224 0.0133983336 -0.003731133 1.205502e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398466e-05 0.0001042104 4.178251e-05 -7.812259e-05 -9.031685e-06
## EEM 1.042104e-04 0.0017547100 1.039017e-03 6.437741e-04 6.795445e-04
## EFA 4.178251e-05 0.0010390171 1.064237e-03 6.490303e-04 6.975423e-04
## IJS -7.812259e-05 0.0006437741 6.490303e-04 1.565451e-03 8.290258e-04
## SPY -9.031685e-06 0.0006795445 6.975423e-04 8.290258e-04 7.408307e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003874091 0.009257147 0.005815636 0.005684466 0.002330253
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062311300 -0.0029357532 0.0366064556 0.052133422 4.992270e-02
## 2013-02-28 0.0058906613 -0.0231050509 -0.0129697075 0.016175186 1.267860e-02
## 2013-03-28 0.0009852082 -0.0102349807 0.0129697075 0.040258312 3.726781e-02
## 2013-04-30 0.0096395915 0.0120844530 0.0489676284 0.001222118 1.903027e-02
## 2013-05-31 -0.0202147878 -0.0494829782 -0.0306556269 0.041976526 2.333572e-02
## 2013-06-28 -0.0157777450 -0.0547287247 -0.0271443680 -0.001402974 -1.343477e-02
## 2013-07-31 0.0026875520 0.0131600122 0.0518602626 0.063541331 5.038628e-02
## 2013-08-30 -0.0082979607 -0.0257057936 -0.0197463914 -0.034743514 -3.045172e-02
## 2013-09-30 0.0111436307 0.0695891366 0.0753385931 0.063873628 3.115591e-02
## 2013-10-31 0.0082923092 0.0408609243 0.0320815049 0.034234317 4.526669e-02
## 2013-11-29 -0.0025098074 -0.0025940684 0.0054499553 0.041660918 2.920673e-02
## 2013-12-31 -0.0055833433 -0.0040740475 0.0215280208 0.012891977 2.559616e-02
## 2014-01-31 0.0152915793 -0.0903227043 -0.0534133386 -0.035775491 -3.588450e-02
## 2014-02-28 0.0037572791 0.0332202943 0.0595049227 0.045257935 4.451019e-02
## 2014-03-31 -0.0014819319 0.0380218352 -0.0046026549 0.013315242 8.261281e-03
## 2014-04-30 0.0081831366 0.0077726513 0.0165294605 -0.023184349 6.927695e-03
## 2014-05-30 0.0117222328 0.0290912296 0.0158286069 0.006205324 2.294109e-02
## 2014-06-30 -0.0005766364 0.0237340214 0.0091653136 0.037718830 2.043497e-02
## 2014-07-31 -0.0025114652 0.0135554353 -0.0263799022 -0.052009636 -1.352876e-02
## 2014-08-29 0.0114305653 0.0279046207 0.0018005837 0.043658175 3.870484e-02
## 2014-09-30 -0.0061673583 -0.0808565852 -0.0395984799 -0.061260680 -1.389256e-02
## 2014-10-31 0.0105847703 0.0140964225 -0.0026549646 0.068874854 2.327825e-02
## 2014-11-28 0.0065484085 -0.0155411715 0.0006253065 0.004773712 2.710127e-02
## 2014-12-31 0.0014748582 -0.0404421446 -0.0407464444 0.025295629 -2.540074e-03
## 2015-01-30 0.0203156882 -0.0068956998 0.0062262822 -0.054627642 -3.007702e-02
## 2015-02-27 -0.0089886794 0.0431362328 0.0614507247 0.056914282 5.468176e-02
## 2015-03-31 0.0037405539 -0.0150864493 -0.0143888258 0.010156613 -1.583020e-02
## 2015-04-30 -0.0032328847 0.0662812840 0.0358165171 -0.018417945 9.785982e-03
## 2015-05-29 -0.0043840885 -0.0419109449 0.0019528440 0.007509996 1.277423e-02
## 2015-06-30 -0.0108250025 -0.0297465802 -0.0316789191 0.004171493 -2.052149e-02
## 2015-07-31 0.0085847997 -0.0651782102 0.0201143296 -0.027375403 2.233819e-02
## 2015-08-31 -0.0033640037 -0.0925124450 -0.0771524204 -0.047268523 -6.288692e-02
## 2015-09-30 0.0080812627 -0.0318248438 -0.0451948454 -0.038464462 -2.584718e-02
## 2015-10-30 0.0006858571 0.0618082427 0.0640260121 0.063589596 8.163513e-02
## 2015-11-30 -0.0038983204 -0.0255604196 -0.0075559238 0.024415031 3.648303e-03
## 2015-12-31 -0.0019192337 -0.0389471022 -0.0235951208 -0.052156750 -1.743355e-02
## 2016-01-29 0.0123298803 -0.0516367923 -0.0567578339 -0.060306994 -5.106853e-02
## 2016-02-29 0.0088318857 -0.0082114306 -0.0339138580 0.020605179 -8.263032e-04
## 2016-03-31 0.0087084952 0.1218790034 0.0637457289 0.089910186 6.510018e-02
## 2016-04-29 0.0025460183 0.0040794667 0.0219750423 0.021044486 3.933372e-03
## 2016-05-31 0.0001357589 -0.0376286093 -0.0008560654 0.004397249 1.686862e-02
## 2016-06-30 0.0191669147 0.0445823401 -0.0244913638 0.008292010 3.469756e-03
## 2016-07-29 0.0054294330 0.0524418596 0.0390001461 0.049348504 3.582203e-02
## 2016-08-31 -0.0021560638 0.0087987151 0.0053268880 0.011261265 1.196846e-03
## 2016-09-30 0.0005160013 0.0248727921 0.0132790819 0.008614415 5.780605e-05
## 2016-10-31 -0.0082051518 -0.0083121454 -0.0224036234 -0.038134925 -1.748878e-02
## 2016-11-30 -0.0259894056 -0.0451617733 -0.0179745854 0.125246799 3.617599e-02
## 2016-12-30 0.0025374826 -0.0025300704 0.0267028708 0.031491652 2.006898e-02
## 2017-01-31 0.0021264317 0.0644314025 0.0323820023 -0.012143984 1.773666e-02
## 2017-02-28 0.0064381145 0.0172579347 0.0118365036 0.013428565 3.853909e-02
## 2017-03-31 -0.0005532190 0.0361890439 0.0318055449 -0.006533033 1.249245e-03
## 2017-04-28 0.0090291758 0.0168663793 0.0239523044 0.005107689 9.877226e-03
## 2017-05-31 0.0068479365 0.0280597502 0.0348102134 -0.022862228 1.401420e-02
## 2017-06-30 -0.0001831760 0.0092238929 0.0029558483 0.029151745 6.354788e-03
## 2017-07-31 0.0033342548 0.0565945569 0.0261878558 0.007481461 2.034598e-02
## 2017-08-31 0.0093693832 0.0232437207 -0.0004482288 -0.027564497 2.913260e-03
## 2017-09-29 -0.0057321511 -0.0004461971 0.0233427221 0.082321407 1.994902e-02
## 2017-10-31 0.0009781223 0.0322784443 0.0166538934 0.005916111 2.329066e-02
## 2017-11-30 -0.0014842420 -0.0038969123 0.0068699092 0.036913499 3.010800e-02
## 2017-12-29 0.0047404887 0.0369254224 0.0133983336 -0.003731133 1.205502e-02
calculate_component_contribution <- function(.data, w) {
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
Column Chart of Component Contribution
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
#Transform to long form
pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution")
plot_data %>%
ggplot(aes(x = Asset, y = Contribution)) +
geom_col(fill = "cornflowerblue")+
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
Column Chart of Component Contribution and Weight
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
#Transform to long form
pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
#add weights
add_column(weight = c(.25, .25, .2, .2, .1)) %>%
#Transform to long
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data %>%
ggplot(aes(x = Asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq()+
labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent",
X = NULL)