knitr::opts_chunk$set(echo = TRUE, comment="")
library(readxl)
Durias<- read_excel("C:/Psychology/Mejorada/data1.xlsx")
Durias
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Durias<-Durias%>%
mutate(RSES1.1=recode(`RSES 1`,
"Strongly Disagree" = "0", "Disagree" ="1", "Agree"="2", "Strongly Agree" = "3"))%>%
mutate(RSES1.3=recode(`RSES 3`,
"Strongly Disagree" = "0", "Disagree" ="1", "Agree"="2", "Strongly Agree" = "3"))%>%
mutate(RSES1.4=recode(`RSES 4`,
"Strongly Disagree" = "0", "Disagree" ="1", "Agree"="2", "Strongly Agree" = "3"))%>%
mutate(RSES1.7=recode(`RSES 7`,
"Strongly Disagree" = "0", "Disagree" ="1", "Agree"="2", "Strongly Agree" = "3"))%>%
mutate(RSES1.10=recode(`RSES 10`,
"Strongly Disagree" = "0", "Disagree" ="1", "Agree"="2", "Strongly Agree" = "3"))%>%
mutate(RSES1.2=recode(`RSES 2`,
"Strongly Disagree" = "3", "Disagree" ="2", "Agree"="1", "Strongly Agree" = "0"))%>%
mutate(RSES1.5=recode(`RSES 5`,
"Strongly Disagree" = "3", "Disagree" ="2", "Agree"="1", "Strongly Agree" = "0"))%>%
mutate(RSES1.6=recode(`RSES 6`,
"Strongly Disagree" = "3", "Disagree" ="2", "Agree"="1", "Strongly Agree" = "0"))%>%
mutate(RSES1.8=recode(`RSES 8`,
"Strongly Disagree" = "3", "Disagree" ="2", "Agree"="1", "Strongly Agree" = "0"))%>%
mutate(RSES1.9=recode(`RSES 9`,
"Strongly Disagree" = "3", "Disagree" ="2", "Agree"="1", "Strongly Agree" = "0"))
Durias
Durias$RSES1.1=as.numeric(Durias$RSES1.1)
Durias$RSES1.2=as.numeric(Durias$RSES1.2)
Durias$RSES1.3=as.numeric(Durias$RSES1.3)
Durias$RSES1.4=as.numeric(Durias$RSES1.4)
Durias$RSES1.5=as.numeric(Durias$RSES1.5)
Durias$RSES1.6=as.numeric(Durias$RSES1.6)
Durias$RSES1.7=as.numeric(Durias$RSES1.7)
Durias$RSES1.8=as.numeric(Durias$RSES1.8)
Durias$RSES1.9=as.numeric(Durias$RSES1.9)
Durias$RSES1.10=as.numeric(Durias$RSES1.10)
Durias$SumSelfEsteem<-Durias$RSES1.1+Durias$RSES1.2+Durias$RSES1.3+Durias$RSES1.4+Durias$RSES1.5+ Durias$RSES1.6+Durias$RSES1.7+Durias$RSES1.8+Durias$RSES1.9+Durias$RSES1.10
Durias<-Durias%>%
mutate(`Self-esteem Scale` = ifelse(SumSelfEsteem<=14,"Low self-esteem",
ifelse(SumSelfEsteem>=25, "High self-esteem", "Normal")))%>%
mutate(`Age Group` = ifelse(Age<=18, "at most 18 years old", "19 years old and above"))
summary(Durias$Age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
16.00 18.00 18.00 18.22 18.00 22.00
#Type of Family
library(dplyr)
Durias%>%
group_by(`Type of Family`, `Self-esteem Scale`) %>%
summarise(count=n())%>%
mutate(Percentage =count/sum(count))
`summarise()` has grouped output by 'Type of Family'. You can override using
the `.groups` argument.
#Age
#Summary statistics
Durias%>%
group_by(`Age Group`, `Self-esteem Scale`) %>%
summarise(count=n())%>%
mutate(Percentage =count/sum(count))
`summarise()` has grouped output by 'Age Group'. You can override using the
`.groups` argument.
Durias<-Durias%>%
mutate(`Summary Scale` = ifelse(`Self-esteem Scale`== "Normal", "Normal", "Non-normal"))
#Summary statistics
Durias%>%
group_by(Sex, `Self-esteem Scale`) %>%
summarise(count=n())%>%
mutate(Percentage =count/sum(count))
`summarise()` has grouped output by 'Sex'. You can override using the `.groups`
argument.
#Summary statistics
Durias%>%
group_by(`Type of Family`, `Self-esteem Scale`) %>%
summarise(count=n())%>%
mutate(Percentage =count/sum(count))
`summarise()` has grouped output by 'Type of Family'. You can override using
the `.groups` argument.
Durias%>%
group_by(`Type of Family`)%>%
summarise(Frequency=n(), Mean = mean(SumSelfEsteem), `Standard Deviation` = sd(SumSelfEsteem))
res.ftest <- var.test(Durias$SumSelfEsteem ~ Durias$`Type of Family`)
res.ftest
F test to compare two variances
data: Durias$SumSelfEsteem by Durias$`Type of Family`
F = 0.98022, num df = 29, denom df = 29, p-value = 0.9575
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4665496 2.0594353
sample estimates:
ratio of variances
0.9802187
t.test(Durias$SumSelfEsteem~Durias$`Type of Family`, var.equal = TRUE)
Two Sample t-test
data: Durias$SumSelfEsteem by Durias$`Type of Family`
t = -1.6432, df = 58, p-value = 0.1057
alternative hypothesis: true difference in means between group Broken Family and group Intact Family is not equal to 0
95 percent confidence interval:
-3.4751380 0.3418047
sample estimates:
mean in group Broken Family mean in group Intact Family
15.86667 17.43333
The result shows that the self-esteem between intact and broken family does not statistically differ since the p-value=0.2901 exceeds the 0.05 level of significance.
Durias<-Durias%>%
mutate(`Summary Scale` = ifelse(`Self-esteem Scale`== "Normal", "Normal", "Non-normal"))
library(gmodels)
Crosstabdata<-CrossTable(Durias$Sex, Durias$`Summary Scale`)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 60
| Durias$`Summary Scale`
Durias$Sex | Non-normal | Normal | Row Total |
-------------|------------|------------|------------|
Female | 12 | 23 | 35 |
| 0.438 | 0.173 | |
| 0.343 | 0.657 | 0.583 |
| 0.706 | 0.535 | |
| 0.200 | 0.383 | |
-------------|------------|------------|------------|
Male | 5 | 20 | 25 |
| 0.613 | 0.242 | |
| 0.200 | 0.800 | 0.417 |
| 0.294 | 0.465 | |
| 0.083 | 0.333 | |
-------------|------------|------------|------------|
Column Total | 17 | 43 | 60 |
| 0.283 | 0.717 | |
-------------|------------|------------|------------|
Crosstabdata
$t
y
x Non-normal Normal
Female 12 23
Male 5 20
$prop.row
y
x Non-normal Normal
Female 0.3428571 0.6571429
Male 0.2000000 0.8000000
$prop.col
y
x Non-normal Normal
Female 0.7058824 0.5348837
Male 0.2941176 0.4651163
$prop.tbl
y
x Non-normal Normal
Female 0.20000000 0.38333333
Male 0.08333333 0.33333333
table2=matrix(c(23,20, 12, 5) ,ncol=2)
colnames(table2)=c("Normal", "Non-normal")
rownames(table2)=c("Female", "Male")
table2
Normal Non-normal
Female 23 12
Male 20 5
chisq.test(table2)
Pearson's Chi-squared test with Yates' continuity correction
data: table2
X-squared = 0.84659, df = 1, p-value = 0.3575
There is no significant relationship between sex and self-esteem level.
library(gmodels)
Crosstabdata<-CrossTable(Durias$`Age Group`, Durias$`Summary Scale`)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 60
| Durias$`Summary Scale`
Durias$`Age Group` | Non-normal | Normal | Row Total |
-----------------------|------------|------------|------------|
19 years old and above | 4 | 10 | 14 |
| 0.000 | 0.000 | |
| 0.286 | 0.714 | 0.233 |
| 0.235 | 0.233 | |
| 0.067 | 0.167 | |
-----------------------|------------|------------|------------|
at most 18 years old | 13 | 33 | 46 |
| 0.000 | 0.000 | |
| 0.283 | 0.717 | 0.767 |
| 0.765 | 0.767 | |
| 0.217 | 0.550 | |
-----------------------|------------|------------|------------|
Column Total | 17 | 43 | 60 |
| 0.283 | 0.717 | |
-----------------------|------------|------------|------------|
Crosstabdata
$t
y
x Non-normal Normal
19 years old and above 4 10
at most 18 years old 13 33
$prop.row
y
x Non-normal Normal
19 years old and above 0.2857143 0.7142857
at most 18 years old 0.2826087 0.7173913
$prop.col
y
x Non-normal Normal
19 years old and above 0.2352941 0.2325581
at most 18 years old 0.7647059 0.7674419
$prop.tbl
y
x Non-normal Normal
19 years old and above 0.06666667 0.16666667
at most 18 years old 0.21666667 0.55000000
table2=matrix(c(33,10, 13, 4) ,ncol=2)
colnames(table2)=c("Normal", "Non-normal")
rownames(table2)=c("at most 18 years old", "at least 19 years old")
table2
Normal Non-normal
at most 18 years old 33 13
at least 19 years old 10 4
chisq.test(table2)
Warning in chisq.test(table2): Chi-squared approximation may be incorrect
Pearson's Chi-squared test with Yates' continuity correction
data: table2
X-squared = 1.3521e-30, df = 1, p-value = 1
There is no significant relationship between age and self-esteem level.