Given only a one half fraction of the \(2^4\) design could be run, we have following
k=4 and p=1
Fraction: \(2_{iv}^{4-1}\)
No of Runs: 8
Design Generators: D= \(\pm\) ABC
Defining Relation: I=ABCD and I=-ABCD
Set up resolution IV design with 4 Factors:
library(FrF2)
design <- FrF2(nfactors=4,resolution=4,randomize=FALSE)
design
## A B C D
## 1 -1 -1 -1 -1
## 2 1 -1 -1 1
## 3 -1 1 -1 1
## 4 1 1 -1 -1
## 5 -1 -1 1 1
## 6 1 -1 1 -1
## 7 -1 1 1 -1
## 8 1 1 1 1
## class=design, type= FrF2
Print aliased relationships:
aliasprint(design)
## $legend
## [1] A=A B=B C=C D=D
##
## $main
## character(0)
##
## $fi2
## [1] AB=CD AC=BD AD=BC
--> The design shows that no main effect is aliased with
any other main effect or with any two-factor interaction, but two-factor interactions are aliased with each other. This feature relates to Resolution IV
Collect data and add response:
response<-c(7.037, 16.867, 13.876, 17.273, 11.846, 4.368, 9.36, 15.653)
design.resp <- add.response(design,response)
summary(design.resp)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
##
## Experimental design of type FrF2
## 8 runs
##
## Factor settings (scale ends):
## A B C D
## 1 -1 -1 -1 -1
## 2 1 1 1 1
##
## Responses:
## [1] response
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
##
## $generators
## [1] D=ABC
##
##
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
##
##
## The design itself:
## A B C D response
## 1 -1 -1 -1 -1 7.037
## 2 1 -1 -1 1 16.867
## 3 -1 1 -1 1 13.876
## 4 1 1 -1 -1 17.273
## 5 -1 -1 1 1 11.846
## 6 1 -1 1 -1 4.368
## 7 -1 1 1 -1 9.360
## 8 1 1 1 1 15.653
## class=design, type= FrF2
Generate Half Normal Plot:
DanielPlot(design.resp,half=TRUE)
Generate Main Effects Plot:
MEPlot(design.resp,show.alias=TRUE)
Given only a one half fraction of the \(2^5\) design could be run, we have following
k=5 and p=1
Fraction: \(2_{v}^{5-1}\)
No of Runs: 16
Design Generators: E= \(\pm\) ABCD
Defining Relation: I=ABCDE and I=-ABCDE
Set up resolution V design with 5 Factors:
des.res <- FrF2(nfactors = 5, resolution = 5 ,randomize = FALSE)
des.res
## A B C D E
## 1 -1 -1 -1 -1 1
## 2 1 -1 -1 -1 -1
## 3 -1 1 -1 -1 -1
## 4 1 1 -1 -1 1
## 5 -1 -1 1 -1 -1
## 6 1 -1 1 -1 1
## 7 -1 1 1 -1 1
## 8 1 1 1 -1 -1
## 9 -1 -1 -1 1 -1
## 10 1 -1 -1 1 1
## 11 -1 1 -1 1 1
## 12 1 1 -1 1 -1
## 13 -1 -1 1 1 1
## 14 1 -1 1 1 -1
## 15 -1 1 1 1 -1
## 16 1 1 1 1 1
## class=design, type= FrF2
Print aliased relationships:
aliasprint(des.res)
## $legend
## [1] A=A B=B C=C D=D E=E
##
## [[2]]
## [1] no aliasing among main effects and 2fis
--> The above design indicates no main effect or two factor interaction is aliased with any other main effect or two-factor interaction, but two factor interactions may be aliased with three-factor interactions, hence indicating resolution V design
Summary:
summary(des.res)
## Call:
## FrF2(nfactors = 5, resolution = 5, randomize = FALSE)
##
## Experimental design of type FrF2
## 16 runs
##
## Factor settings (scale ends):
## A B C D E
## 1 -1 -1 -1 -1 -1
## 2 1 1 1 1 1
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
##
## $generators
## [1] E=ABCD
##
##
## Alias structure:
## [[1]]
## [1] no aliasing among main effects and 2fis
##
##
## The design itself:
## A B C D E
## 1 -1 -1 -1 -1 1
## 2 1 -1 -1 -1 -1
## 3 -1 1 -1 -1 -1
## 4 1 1 -1 -1 1
## 5 -1 -1 1 -1 -1
## 6 1 -1 1 -1 1
## 7 -1 1 1 -1 1
## 8 1 1 1 -1 -1
## 9 -1 -1 -1 1 -1
## 10 1 -1 -1 1 1
## 11 -1 1 -1 1 1
## 12 1 1 -1 1 -1
## 13 -1 -1 1 1 1
## 14 1 -1 1 1 -1
## 15 -1 1 1 1 -1
## 16 1 1 1 1 1
## class=design, type= FrF2
AB factor combinations are confounded with blocks:
AB <- c("+","-","-","+","+","-","-","+","+","-","-","+","+","-","-","+")
Block <- c(1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1)
Data <- data.frame(des.res,AB,Block)
Data
## A B C D E AB Block
## 1 -1 -1 -1 -1 1 + 1
## 2 1 -1 -1 -1 -1 - 2
## 3 -1 1 -1 -1 -1 - 2
## 4 1 1 -1 -1 1 + 1
## 5 -1 -1 1 -1 -1 + 1
## 6 1 -1 1 -1 1 - 2
## 7 -1 1 1 -1 1 - 2
## 8 1 1 1 -1 -1 + 1
## 9 -1 -1 -1 1 -1 + 1
## 10 1 -1 -1 1 1 - 2
## 11 -1 1 -1 1 1 - 2
## 12 1 1 -1 1 -1 + 1
## 13 -1 -1 1 1 1 + 1
## 14 1 -1 1 1 -1 - 2
## 15 -1 1 1 1 -1 - 2
## 16 1 1 1 1 1 + 1
--> Main effects confounded in block 1= E, C,D
&
Main effects confounded in block 2= A,B.
Apart from Main Effects:
--> AB & CDE factor combinations are confounded with the blocksGiven Quater fraction of the \(2^7\) design to be run, we have following
k=7 and p=2
Fraction: \(2_{iv}^{7-2}\)
No of Runs: 32
Design Generators: F= \(\pm\) ABCD & G=\(\pm\) ABDE
Defining Relations: I=ABCDF, I= -ABCDF, I=ABDEG, I= -ABDEG, I=CEFG, I= -CEFG
Set up resolution IV design with 7 Factors & 4 Blocks:
design <- FrF2(nruns = 32,nfactors=7,blocks = 4,randomize=TRUE)
summary(design)
## Call:
## FrF2(nruns = 32, nfactors = 7, blocks = 4, randomize = TRUE)
##
## Experimental design of type FrF2.blocked
## 32 runs
## blocked design with 4 blocks of size 8
##
## Factor settings (scale ends):
## A B C D E F G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2 1 1 1 1 1 1 1
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
##
## $`generators for design itself`
## [1] F=ABC G=ABD
##
## $`block generators`
## [1] ACD ABE
##
##
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF AD=BG AF=BC AG=BD CD=FG CG=DF
##
## Aliased with block main effects:
## [1] none
##
## The design itself:
## run.no run.no.std.rp Blocks A B C D E F G
## 1 1 27.1.7 1 1 1 -1 1 -1 -1 1
## 2 2 20.1.5 1 1 -1 -1 1 1 1 -1
## 3 3 22.1.6 1 1 -1 1 -1 1 -1 1
## 4 4 10.1.3 1 -1 1 -1 -1 1 1 1
## 5 5 7.1.2 1 -1 -1 1 1 -1 1 1
## 6 6 1.1.1 1 -1 -1 -1 -1 -1 -1 -1
## 7 7 29.1.8 1 1 1 1 -1 -1 1 -1
## 8 8 16.1.4 1 -1 1 1 1 1 -1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 9 9 2.2.1 2 -1 -1 -1 -1 1 -1 -1
## 10 10 15.2.4 2 -1 1 1 1 -1 -1 -1
## 11 11 30.2.8 2 1 1 1 -1 1 1 -1
## 12 12 28.2.7 2 1 1 -1 1 1 -1 1
## 13 13 21.2.6 2 1 -1 1 -1 -1 -1 1
## 14 14 19.2.5 2 1 -1 -1 1 -1 1 -1
## 15 15 8.2.2 2 -1 -1 1 1 1 1 1
## 16 16 9.2.3 2 -1 1 -1 -1 -1 1 1
## run.no run.no.std.rp Blocks A B C D E F G
## 17 17 18.3.5 3 1 -1 -1 -1 1 1 1
## 18 18 31.3.8 3 1 1 1 1 -1 1 1
## 19 19 14.3.4 3 -1 1 1 -1 1 -1 1
## 20 20 3.3.1 3 -1 -1 -1 1 -1 -1 1
## 21 21 12.3.3 3 -1 1 -1 1 1 1 -1
## 22 22 24.3.6 3 1 -1 1 1 1 -1 -1
## 23 23 5.3.2 3 -1 -1 1 -1 -1 1 -1
## 24 24 25.3.7 3 1 1 -1 -1 -1 -1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 25 25 6.4.2 4 -1 -1 1 -1 1 1 -1
## 26 26 32.4.8 4 1 1 1 1 1 1 1
## 27 27 26.4.7 4 1 1 -1 -1 1 -1 -1
## 28 28 23.4.6 4 1 -1 1 1 -1 -1 -1
## 29 29 13.4.4 4 -1 1 1 -1 -1 -1 1
## 30 30 4.4.1 4 -1 -1 -1 1 1 -1 1
## 31 31 11.4.3 4 -1 1 -1 1 -1 1 -1
## 32 32 17.4.5 4 1 -1 -1 -1 -1 1 1
## class=design, type= FrF2.blocked
## NOTE: columns run.no and run.no.std.rp are annotation,
## not part of the data frame
--> No main effects or two factor interactions are confounded with the blocks.
What type of design did the experimenters use?
What are the alias relationships in this design?
Do any of the process variables affect average camber?
Do any of the process variables affect the variability in camber measurements?
If it is important to reduce camber as much as possible, what recommendations would you make?
PART A:
Given in the table above, we can infer that that there are 6 Factors and 16 Runs made. From Table 8.14 in Douglas C. Montgomery we can conclude following:
k=6 and p=2
Fraction: \(2_{iv}^{6-2}\)
No of Runs: 16
Design Generators: E= \(\pm\) ABC & F=\(\pm\) BCD
Defining Relations: I=ABCE, I=BCDF, I=ADEF
--> The above design uses 2^(6−2) design with 16 runs at resolution 4PART B:
des.res <- FrF2(nfactors = 6,resolution = 4 , randomize = TRUE)
aliasprint(des.res)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
##
## $main
## character(0)
##
## $fi2
## [1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE
--> Alias relationships are shown above
PART C:
Reading the Data from Question:
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1)
F1 <- c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)
A <- as.factor(A)
B <- as.factor(B)
C <- as.factor(C)
D <- as.factor(D)
E <- as.factor(E)
F1 <- as.factor(F1)
response<-c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.0110,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.0090,0.0250,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.0040,0.0147,0.0092,0.0226,0.0077,0.0060,0.0028,0.0158,0.0101,0.0126,0.0145,0.0110,0.0185,0.0020,0.0050,0.0030,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
Data <- data.frame(A,B,C,D,E,F1,response)
Running AOV model to check significant Factors:
Model <- aov(response~A*B*C*D*E*F1,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.0002422 0.0002422 27.793 3.17e-06 ***
## B 1 0.0000053 0.0000053 0.614 0.43725
## C 1 0.0005023 0.0005023 57.644 9.14e-10 ***
## D 1 0.0000323 0.0000323 3.712 0.05995 .
## E 1 0.0001901 0.0001901 21.815 2.45e-05 ***
## F1 1 0.0009602 0.0009602 110.192 5.05e-14 ***
## A:B 1 0.0000587 0.0000587 6.738 0.01249 *
## A:C 1 0.0000803 0.0000803 9.218 0.00387 **
## B:C 1 0.0000527 0.0000527 6.053 0.01754 *
## A:D 1 0.0000239 0.0000239 2.741 0.10431
## B:D 1 0.0000849 0.0000849 9.739 0.00305 **
## C:D 1 0.0000622 0.0000622 7.139 0.01027 *
## D:E 1 0.0000088 0.0000088 1.007 0.32062
## A:B:D 1 0.0000000 0.0000000 0.005 0.94291
## B:C:D 1 0.0000481 0.0000481 5.523 0.02293 *
## Residuals 48 0.0004183 0.0000087
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> From above ANOVA analysis we say that Factors A(Lamination Temp),C(Lamination Pressure),E(Firing CycleTime) & F(Firing DewPoint) would significantly affect average camber.
Note: Half Normal plot in Part C is unable to generate with error code “Error in halfnormal.lm(Model) : partially aliased main effect”
PART D:
Reading the Variability Data:
SD <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
var <- SD^2
Data2 <- data.frame(A,B,C,D,E,F1,var)
Generating Half Normal Plot:
Model2 <- lm(SD~A*B*C*D*E*F1,data = Data2)
DanielPlot(Model2)
Running the Model:
Model3 <- aov(SD~A+B,data = Data2)
summary(Model3)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 1012 1012 8.505 0.01202 *
## B 1 1099 1099 9.241 0.00948 **
## Residuals 13 1546 119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> Also from above model we conclude that process variables A(Temperature) & B(Time) affect the variability in camber measurements.
PART E:
Model2 <- lm(response~A*B*C*D*E*F1,data = Data)
coef(Model2)
## (Intercept) A1 B1 C1
## 0.015725000 0.001009375 -0.007137500 0.001784375
## D1 E1 F11 A1:B1
## -0.002953125 -0.004187500 -0.007746875 0.003725000
## A1:C1 B1:C1 A1:D1 B1:D1
## 0.004481250 0.007100000 -0.002550000 0.007968750
## C1:D1 A1:E1 B1:E1 C1:E1
## -0.000475000 NA NA NA
## D1:E1 A1:F11 B1:F11 C1:F11
## 0.001481250 NA NA NA
## D1:F11 E1:F11 A1:B1:C1 A1:B1:D1
## NA NA NA 0.000212500
## A1:C1:D1 B1:C1:D1 A1:B1:E1 A1:C1:E1
## NA -0.006937500 NA NA
## B1:C1:E1 A1:D1:E1 B1:D1:E1 C1:D1:E1
## NA NA NA NA
## A1:B1:F11 A1:C1:F11 B1:C1:F11 A1:D1:F11
## NA NA NA NA
## B1:D1:F11 C1:D1:F11 A1:E1:F11 B1:E1:F11
## NA NA NA NA
## C1:E1:F11 D1:E1:F11 A1:B1:C1:D1 A1:B1:C1:E1
## NA NA NA NA
## A1:B1:D1:E1 A1:C1:D1:E1 B1:C1:D1:E1 A1:B1:C1:F11
## NA NA NA NA
## A1:B1:D1:F11 A1:C1:D1:F11 B1:C1:D1:F11 A1:B1:E1:F11
## NA NA NA NA
## A1:C1:E1:F11 B1:C1:E1:F11 A1:D1:E1:F11 B1:D1:E1:F11
## NA NA NA NA
## C1:D1:E1:F11 A1:B1:C1:D1:E1 A1:B1:C1:D1:F11 A1:B1:C1:E1:F11
## NA NA NA NA
## A1:B1:D1:E1:F11 A1:C1:D1:E1:F11 B1:C1:D1:E1:F11 A1:B1:C1:D1:E1:F11
## NA NA NA NA
summary(Model2)
##
## Call:
## lm.default(formula = response ~ A * B * C * D * E * F1, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.008300 -0.001350 -0.000350 0.001744 0.007275
##
## Coefficients: (48 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0157250 0.0014760 10.654 3.06e-14 ***
## A1 0.0010094 0.0016502 0.612 0.543644
## B1 -0.0071375 0.0018077 -3.948 0.000257 ***
## C1 0.0017844 0.0016502 1.081 0.284963
## D1 -0.0029531 0.0019525 -1.512 0.136976
## E1 -0.0041875 0.0010437 -4.012 0.000210 ***
## F11 -0.0077469 0.0007380 -10.497 5.05e-14 ***
## A1:B1 0.0037250 0.0020874 1.785 0.080655 .
## A1:C1 0.0044812 0.0014760 3.036 0.003866 **
## B1:C1 0.0071000 0.0020874 3.401 0.001359 **
## A1:D1 -0.0025500 0.0020874 -1.222 0.227809
## B1:D1 0.0079688 0.0025565 3.117 0.003083 **
## C1:D1 -0.0004750 0.0020874 -0.228 0.820954
## A1:E1 NA NA NA NA
## B1:E1 NA NA NA NA
## C1:E1 NA NA NA NA
## D1:E1 0.0014813 0.0014760 1.004 0.320619
## A1:F11 NA NA NA NA
## B1:F11 NA NA NA NA
## C1:F11 NA NA NA NA
## D1:F11 NA NA NA NA
## E1:F11 NA NA NA NA
## A1:B1:C1 NA NA NA NA
## A1:B1:D1 0.0002125 0.0029520 0.072 0.942912
## A1:C1:D1 NA NA NA NA
## B1:C1:D1 -0.0069375 0.0029520 -2.350 0.022926 *
## A1:B1:E1 NA NA NA NA
## A1:C1:E1 NA NA NA NA
## B1:C1:E1 NA NA NA NA
## A1:D1:E1 NA NA NA NA
## B1:D1:E1 NA NA NA NA
## C1:D1:E1 NA NA NA NA
## A1:B1:F11 NA NA NA NA
## A1:C1:F11 NA NA NA NA
## B1:C1:F11 NA NA NA NA
## A1:D1:F11 NA NA NA NA
## B1:D1:F11 NA NA NA NA
## C1:D1:F11 NA NA NA NA
## A1:E1:F11 NA NA NA NA
## B1:E1:F11 NA NA NA NA
## C1:E1:F11 NA NA NA NA
## D1:E1:F11 NA NA NA NA
## A1:B1:C1:D1 NA NA NA NA
## A1:B1:C1:E1 NA NA NA NA
## A1:B1:D1:E1 NA NA NA NA
## A1:C1:D1:E1 NA NA NA NA
## B1:C1:D1:E1 NA NA NA NA
## A1:B1:C1:F11 NA NA NA NA
## A1:B1:D1:F11 NA NA NA NA
## A1:C1:D1:F11 NA NA NA NA
## B1:C1:D1:F11 NA NA NA NA
## A1:B1:E1:F11 NA NA NA NA
## A1:C1:E1:F11 NA NA NA NA
## B1:C1:E1:F11 NA NA NA NA
## A1:D1:E1:F11 NA NA NA NA
## B1:D1:E1:F11 NA NA NA NA
## C1:D1:E1:F11 NA NA NA NA
## A1:B1:C1:D1:E1 NA NA NA NA
## A1:B1:C1:D1:F11 NA NA NA NA
## A1:B1:C1:E1:F11 NA NA NA NA
## A1:B1:D1:E1:F11 NA NA NA NA
## A1:C1:D1:E1:F11 NA NA NA NA
## B1:C1:D1:E1:F11 NA NA NA NA
## A1:B1:C1:D1:E1:F11 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.002952 on 48 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.8018
## F-statistic: 18 on 15 and 48 DF, p-value: 9.012e-15
The equation for this experiment in terms of coded variables is as under
--> Yi,j,k,l = 0.0157250 + 0.0010094(A) + 0.0017844(C) - 0.0041875(E) - 0.0077469(F)Therefore,
-->It would be best to keep A and C at low level and E and F at high level to reduce camber as much as possiblePART A:
--> The Experiment investigated “Four” FactorsPART B:
--> Resolution of the design employed in this experiment is “Four”PART C:
Effects are as follows:
One <- c(8)
AD <- c(10)
BD <- c(12)
AB <- c(7)
CD <- c(13)
AC <- c(6)
BC <- c(5)
ABCD <- c(11)
Effect A:
EffectA <- (2*(AD+AB+AC+ABCD-One-BD-CD-BC))/(8)
EffectA
## [1] -1
Effect B:
EffectB <- (2*(BD+AB+BC+ABCD-One-AD-CD-AC))/(8)
EffectB
## [1] -0.5
Effect C:
EffectC <- (2*(CD+AC+BC+ABCD-One-AD-BD-AB))/(8)
EffectC
## [1] -0.5
Effect D:
EffectD <- (2*(AD+BD+CD+ABCD-One-AB-AC-BC))/(8)
EffectD
## [1] 5
PART D:
--> Defining relation for this design is I = ABCDWhat is the generator for column D?
What is the generator for column E?
If this design were folded over, what is the resolution of the combined design?
design<- FrF2(nfactors = 5,nruns = 8,generators = c("-ABC","BC"), randomize = FALSE)
summary(design)
## Call:
## FrF2(nfactors = 5, nruns = 8, generators = c("-ABC", "BC"), randomize = FALSE)
##
## Experimental design of type FrF2.generators
## 8 runs
##
## Factor settings (scale ends):
## A B C D E
## 1 -1 -1 -1 -1 -1
## 2 1 1 1 1 1
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
##
## $generators
## [1] D=-ABC E=BC
##
##
## Alias structure:
## $main
## [1] A=-DE B=CE C=BE D=-AE E=-AD=BC
##
## $fi2
## [1] AB=-CD AC=-BD
##
##
## The design itself:
## A B C D E
## 1 -1 -1 -1 1 1
## 2 1 -1 -1 -1 1
## 3 -1 1 -1 -1 -1
## 4 1 1 -1 1 -1
## 5 -1 -1 1 -1 -1
## 6 1 -1 1 1 -1
## 7 -1 1 1 1 1
## 8 1 1 1 -1 1
## class=design, type= FrF2.generators
PART A:
--> The design generator for column D is -ABC.PART B:
--> The design generator for column E is BC..PART C:
--> From table 8.14 from Douglas Montgomery Resolution of folded over design for such scenrio is “Four”.library(FrF2)
design <- FrF2(nfactors=7,resolution=3,randomize=FALSE)
design
## A B C D E F G
## 1 -1 -1 -1 1 1 1 -1
## 2 1 -1 -1 -1 -1 1 1
## 3 -1 1 -1 -1 1 -1 1
## 4 1 1 -1 1 -1 -1 -1
## 5 -1 -1 1 1 -1 -1 1
## 6 1 -1 1 -1 1 -1 -1
## 7 -1 1 1 -1 -1 1 -1
## 8 1 1 1 1 1 1 1
## class=design, type= FrF2
design2 <- fold.design(design,column=1)
design2
## A B C fold D E F G
## 1 -1 -1 -1 original 1 1 1 -1
## 2 1 -1 -1 original -1 -1 1 1
## 3 -1 1 -1 original -1 1 -1 1
## 4 1 1 -1 original 1 -1 -1 -1
## 5 -1 -1 1 original 1 -1 -1 1
## 6 1 -1 1 original -1 1 -1 -1
## 7 -1 1 1 original -1 -1 1 -1
## 8 1 1 1 original 1 1 1 1
## 9 1 -1 -1 mirror 1 1 1 -1
## 10 -1 -1 -1 mirror -1 -1 1 1
## 11 1 1 -1 mirror -1 1 -1 1
## 12 -1 1 -1 mirror 1 -1 -1 -1
## 13 1 -1 1 mirror 1 -1 -1 1
## 14 -1 -1 1 mirror -1 1 -1 -1
## 15 1 1 1 mirror -1 -1 1 -1
## 16 -1 1 1 mirror 1 1 1 1
## class=design, type= FrF2.folded
design3 <- design2[-c(1,3,5,7,10,12,14,16),]
design3
## A B C fold D E F G
## 2 1 -1 -1 original -1 -1 1 1
## 4 1 1 -1 original 1 -1 -1 -1
## 6 1 -1 1 original -1 1 -1 -1
## 8 1 1 1 original 1 1 1 1
## 9 1 -1 -1 mirror 1 1 1 -1
## 11 1 1 -1 mirror -1 1 -1 1
## 13 1 -1 1 mirror 1 -1 -1 1
## 15 1 1 1 mirror -1 -1 1 -1
aliasprint(design2)
## $legend
## [1] A=A B=B C=C D=fold E=D F=E G=F H=G
##
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
##
## $fi2
## [1] AB=-DE AC=-DF AD=-BE=-CF=-GH AE=-BD AF=-CD
## [6] AG=-DH AH=-DG
--> The relations are presented above