1 Question 8.2:

1.1 Solution:

Given only a one half fraction of the \(2^4\) design could be run, we have following

k=4 and p=1

Fraction: \(2_{iv}^{4-1}\)

No of Runs: 8

Design Generators: D= \(\pm\) ABC

Defining Relation: I=ABCD and I=-ABCD

Set up resolution IV design with 4 Factors:

library(FrF2)
design <- FrF2(nfactors=4,resolution=4,randomize=FALSE)
design
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2

Print aliased relationships:

aliasprint(design)
## $legend
## [1] A=A B=B C=C D=D
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CD AC=BD AD=BC
--> The design shows that no main effect is aliased with any other main effect or with any two-factor interaction, but two-factor interactions are aliased with each other. This feature relates to Resolution IV

Collect data and add response:

response<-c(7.037, 16.867, 13.876, 17.273, 11.846, 4.368, 9.36, 15.653)
design.resp <- add.response(design,response)
summary(design.resp)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] response
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D response
## 1 -1 -1 -1 -1    7.037
## 2  1 -1 -1  1   16.867
## 3 -1  1 -1  1   13.876
## 4  1  1 -1 -1   17.273
## 5 -1 -1  1  1   11.846
## 6  1 -1  1 -1    4.368
## 7 -1  1  1 -1    9.360
## 8  1  1  1  1   15.653
## class=design, type= FrF2

Generate Half Normal Plot:

DanielPlot(design.resp,half=TRUE)

Generate Main Effects Plot:

MEPlot(design.resp,show.alias=TRUE)

--> We can see from above daniel plot that none of the factors are significant therefore none of the factor effects crack length.

2 Question 8.24:

2.1 Solution:

Given only a one half fraction of the \(2^5\) design could be run, we have following

k=5 and p=1

Fraction: \(2_{v}^{5-1}\)

No of Runs: 16

Design Generators: E= \(\pm\) ABCD

Defining Relation: I=ABCDE and I=-ABCDE

Set up resolution V design with 5 Factors:

des.res <- FrF2(nfactors = 5, resolution = 5 ,randomize = FALSE)
des.res
##     A  B  C  D  E
## 1  -1 -1 -1 -1  1
## 2   1 -1 -1 -1 -1
## 3  -1  1 -1 -1 -1
## 4   1  1 -1 -1  1
## 5  -1 -1  1 -1 -1
## 6   1 -1  1 -1  1
## 7  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 10  1 -1 -1  1  1
## 11 -1  1 -1  1  1
## 12  1  1 -1  1 -1
## 13 -1 -1  1  1  1
## 14  1 -1  1  1 -1
## 15 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2

Print aliased relationships:

aliasprint(des.res)
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## [[2]]
## [1] no aliasing among main effects and 2fis
--> The above design indicates no main effect or two factor interaction is aliased with any other main effect or two-factor interaction, but two factor interactions may be aliased with three-factor interactions, hence indicating resolution V design

Summary:

summary(des.res)
## Call:
## FrF2(nfactors = 5, resolution = 5, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] E=ABCD
## 
## 
## Alias structure:
## [[1]]
## [1] no aliasing among main effects and 2fis
## 
## 
## The design itself:
##     A  B  C  D  E
## 1  -1 -1 -1 -1  1
## 2   1 -1 -1 -1 -1
## 3  -1  1 -1 -1 -1
## 4   1  1 -1 -1  1
## 5  -1 -1  1 -1 -1
## 6   1 -1  1 -1  1
## 7  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 10  1 -1 -1  1  1
## 11 -1  1 -1  1  1
## 12  1  1 -1  1 -1
## 13 -1 -1  1  1  1
## 14  1 -1  1  1 -1
## 15 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2

AB factor combinations are confounded with blocks:

AB <- c("+","-","-","+","+","-","-","+","+","-","-","+","+","-","-","+")
Block <- c(1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1)
Data <- data.frame(des.res,AB,Block)
Data
##     A  B  C  D  E AB Block
## 1  -1 -1 -1 -1  1  +     1
## 2   1 -1 -1 -1 -1  -     2
## 3  -1  1 -1 -1 -1  -     2
## 4   1  1 -1 -1  1  +     1
## 5  -1 -1  1 -1 -1  +     1
## 6   1 -1  1 -1  1  -     2
## 7  -1  1  1 -1  1  -     2
## 8   1  1  1 -1 -1  +     1
## 9  -1 -1 -1  1 -1  +     1
## 10  1 -1 -1  1  1  -     2
## 11 -1  1 -1  1  1  -     2
## 12  1  1 -1  1 -1  +     1
## 13 -1 -1  1  1  1  +     1
## 14  1 -1  1  1 -1  -     2
## 15 -1  1  1  1 -1  -     2
## 16  1  1  1  1  1  +     1
--> Main effects confounded in block 1= E, C,D & Main effects confounded in block 2= A,B.

Apart from Main Effects:

--> AB & CDE factor combinations are confounded with the blocks

3 Question 8.25:

3.1 Solution:

Given Quater fraction of the \(2^7\) design to be run, we have following

k=7 and p=2

Fraction: \(2_{iv}^{7-2}\)

No of Runs: 32

Design Generators: F= \(\pm\) ABCD & G=\(\pm\) ABDE

Defining Relations: I=ABCDF, I= -ABCDF, I=ABDEG, I= -ABDEG, I=CEFG, I= -CEFG

Set up resolution IV design with 7 Factors & 4 Blocks:

design <- FrF2(nruns = 32,nfactors=7,blocks = 4,randomize=TRUE)
summary(design)
## Call:
## FrF2(nruns = 32, nfactors = 7, blocks = 4, randomize = TRUE)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1        27.1.7      1  1  1 -1  1 -1 -1  1
## 2      2        20.1.5      1  1 -1 -1  1  1  1 -1
## 3      3        22.1.6      1  1 -1  1 -1  1 -1  1
## 4      4        10.1.3      1 -1  1 -1 -1  1  1  1
## 5      5         7.1.2      1 -1 -1  1  1 -1  1  1
## 6      6         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 7      7        29.1.8      1  1  1  1 -1 -1  1 -1
## 8      8        16.1.4      1 -1  1  1  1  1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 10     10        15.2.4      2 -1  1  1  1 -1 -1 -1
## 11     11        30.2.8      2  1  1  1 -1  1  1 -1
## 12     12        28.2.7      2  1  1 -1  1  1 -1  1
## 13     13        21.2.6      2  1 -1  1 -1 -1 -1  1
## 14     14        19.2.5      2  1 -1 -1  1 -1  1 -1
## 15     15         8.2.2      2 -1 -1  1  1  1  1  1
## 16     16         9.2.3      2 -1  1 -1 -1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17        18.3.5      3  1 -1 -1 -1  1  1  1
## 18     18        31.3.8      3  1  1  1  1 -1  1  1
## 19     19        14.3.4      3 -1  1  1 -1  1 -1  1
## 20     20         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 21     21        12.3.3      3 -1  1 -1  1  1  1 -1
## 22     22        24.3.6      3  1 -1  1  1  1 -1 -1
## 23     23         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 24     24        25.3.7      3  1  1 -1 -1 -1 -1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25         6.4.2      4 -1 -1  1 -1  1  1 -1
## 26     26        32.4.8      4  1  1  1  1  1  1  1
## 27     27        26.4.7      4  1  1 -1 -1  1 -1 -1
## 28     28        23.4.6      4  1 -1  1  1 -1 -1 -1
## 29     29        13.4.4      4 -1  1  1 -1 -1 -1  1
## 30     30         4.4.1      4 -1 -1 -1  1  1 -1  1
## 31     31        11.4.3      4 -1  1 -1  1 -1  1 -1
## 32     32        17.4.5      4  1 -1 -1 -1 -1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
--> No main effects or two factor interactions are confounded with the blocks.

4 Question 8.28:

  1. What type of design did the experimenters use?

  2. What are the alias relationships in this design?

  3. Do any of the process variables affect average camber?

  4. Do any of the process variables affect the variability in camber measurements?

  5. If it is important to reduce camber as much as possible, what recommendations would you make?

4.1 Solution:

PART A:

Given in the table above, we can infer that that there are 6 Factors and 16 Runs made. From Table 8.14 in Douglas C. Montgomery we can conclude following:

k=6 and p=2

Fraction: \(2_{iv}^{6-2}\)

No of Runs: 16

Design Generators: E= \(\pm\) ABC & F=\(\pm\) BCD

Defining Relations: I=ABCE, I=BCDF, I=ADEF

--> The above design uses 2^(6−2) design with 16 runs at resolution 4

PART B:

des.res <- FrF2(nfactors = 6,resolution = 4 , randomize = TRUE)
aliasprint(des.res)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE
--> Alias relationships are shown above

PART C:

Reading the Data from Question:

A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1)
F1 <- c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)

A <- as.factor(A)
B <- as.factor(B)
C <- as.factor(C)
D <- as.factor(D)
E <- as.factor(E)
F1 <- as.factor(F1)

response<-c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.0110,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.0090,0.0250,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.0040,0.0147,0.0092,0.0226,0.0077,0.0060,0.0028,0.0158,0.0101,0.0126,0.0145,0.0110,0.0185,0.0020,0.0050,0.0030,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)

Data <- data.frame(A,B,C,D,E,F1,response)

Running AOV model to check significant Factors:

Model <- aov(response~A*B*C*D*E*F1,data = Data)
summary(Model)
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## A            1 0.0002422 0.0002422  27.793 3.17e-06 ***
## B            1 0.0000053 0.0000053   0.614  0.43725    
## C            1 0.0005023 0.0005023  57.644 9.14e-10 ***
## D            1 0.0000323 0.0000323   3.712  0.05995 .  
## E            1 0.0001901 0.0001901  21.815 2.45e-05 ***
## F1           1 0.0009602 0.0009602 110.192 5.05e-14 ***
## A:B          1 0.0000587 0.0000587   6.738  0.01249 *  
## A:C          1 0.0000803 0.0000803   9.218  0.00387 ** 
## B:C          1 0.0000527 0.0000527   6.053  0.01754 *  
## A:D          1 0.0000239 0.0000239   2.741  0.10431    
## B:D          1 0.0000849 0.0000849   9.739  0.00305 ** 
## C:D          1 0.0000622 0.0000622   7.139  0.01027 *  
## D:E          1 0.0000088 0.0000088   1.007  0.32062    
## A:B:D        1 0.0000000 0.0000000   0.005  0.94291    
## B:C:D        1 0.0000481 0.0000481   5.523  0.02293 *  
## Residuals   48 0.0004183 0.0000087                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> From above ANOVA analysis we say that Factors A(Lamination Temp),C(Lamination Pressure),E(Firing CycleTime) & F(Firing DewPoint) would significantly affect average camber.

Note: Half Normal plot in Part C is unable to generate with error code “Error in halfnormal.lm(Model) : partially aliased main effect”

PART D:

Reading the Variability Data:

SD <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
var <- SD^2
Data2 <- data.frame(A,B,C,D,E,F1,var)

Generating Half Normal Plot:

Model2 <- lm(SD~A*B*C*D*E*F1,data = Data2)
DanielPlot(Model2)

--> Based on the Daniel’s plot we infer that Laminating temperature and Laminating time are factors that are significantly affecting the standard deviation.

Running the Model:

Model3 <- aov(SD~A+B,data = Data2)
summary(Model3)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## A            1   1012    1012   8.505 0.01202 * 
## B            1   1099    1099   9.241 0.00948 **
## Residuals   13   1546     119                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> Also from above model we conclude that process variables A(Temperature) & B(Time) affect the variability in camber measurements.

PART E:

Model2 <- lm(response~A*B*C*D*E*F1,data = Data)
coef(Model2)
##        (Intercept)                 A1                 B1                 C1 
##        0.015725000        0.001009375       -0.007137500        0.001784375 
##                 D1                 E1                F11              A1:B1 
##       -0.002953125       -0.004187500       -0.007746875        0.003725000 
##              A1:C1              B1:C1              A1:D1              B1:D1 
##        0.004481250        0.007100000       -0.002550000        0.007968750 
##              C1:D1              A1:E1              B1:E1              C1:E1 
##       -0.000475000                 NA                 NA                 NA 
##              D1:E1             A1:F11             B1:F11             C1:F11 
##        0.001481250                 NA                 NA                 NA 
##             D1:F11             E1:F11           A1:B1:C1           A1:B1:D1 
##                 NA                 NA                 NA        0.000212500 
##           A1:C1:D1           B1:C1:D1           A1:B1:E1           A1:C1:E1 
##                 NA       -0.006937500                 NA                 NA 
##           B1:C1:E1           A1:D1:E1           B1:D1:E1           C1:D1:E1 
##                 NA                 NA                 NA                 NA 
##          A1:B1:F11          A1:C1:F11          B1:C1:F11          A1:D1:F11 
##                 NA                 NA                 NA                 NA 
##          B1:D1:F11          C1:D1:F11          A1:E1:F11          B1:E1:F11 
##                 NA                 NA                 NA                 NA 
##          C1:E1:F11          D1:E1:F11        A1:B1:C1:D1        A1:B1:C1:E1 
##                 NA                 NA                 NA                 NA 
##        A1:B1:D1:E1        A1:C1:D1:E1        B1:C1:D1:E1       A1:B1:C1:F11 
##                 NA                 NA                 NA                 NA 
##       A1:B1:D1:F11       A1:C1:D1:F11       B1:C1:D1:F11       A1:B1:E1:F11 
##                 NA                 NA                 NA                 NA 
##       A1:C1:E1:F11       B1:C1:E1:F11       A1:D1:E1:F11       B1:D1:E1:F11 
##                 NA                 NA                 NA                 NA 
##       C1:D1:E1:F11     A1:B1:C1:D1:E1    A1:B1:C1:D1:F11    A1:B1:C1:E1:F11 
##                 NA                 NA                 NA                 NA 
##    A1:B1:D1:E1:F11    A1:C1:D1:E1:F11    B1:C1:D1:E1:F11 A1:B1:C1:D1:E1:F11 
##                 NA                 NA                 NA                 NA
summary(Model2)
## 
## Call:
## lm.default(formula = response ~ A * B * C * D * E * F1, data = Data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.008300 -0.001350 -0.000350  0.001744  0.007275 
## 
## Coefficients: (48 not defined because of singularities)
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.0157250  0.0014760  10.654 3.06e-14 ***
## A1                  0.0010094  0.0016502   0.612 0.543644    
## B1                 -0.0071375  0.0018077  -3.948 0.000257 ***
## C1                  0.0017844  0.0016502   1.081 0.284963    
## D1                 -0.0029531  0.0019525  -1.512 0.136976    
## E1                 -0.0041875  0.0010437  -4.012 0.000210 ***
## F11                -0.0077469  0.0007380 -10.497 5.05e-14 ***
## A1:B1               0.0037250  0.0020874   1.785 0.080655 .  
## A1:C1               0.0044812  0.0014760   3.036 0.003866 ** 
## B1:C1               0.0071000  0.0020874   3.401 0.001359 ** 
## A1:D1              -0.0025500  0.0020874  -1.222 0.227809    
## B1:D1               0.0079688  0.0025565   3.117 0.003083 ** 
## C1:D1              -0.0004750  0.0020874  -0.228 0.820954    
## A1:E1                      NA         NA      NA       NA    
## B1:E1                      NA         NA      NA       NA    
## C1:E1                      NA         NA      NA       NA    
## D1:E1               0.0014813  0.0014760   1.004 0.320619    
## A1:F11                     NA         NA      NA       NA    
## B1:F11                     NA         NA      NA       NA    
## C1:F11                     NA         NA      NA       NA    
## D1:F11                     NA         NA      NA       NA    
## E1:F11                     NA         NA      NA       NA    
## A1:B1:C1                   NA         NA      NA       NA    
## A1:B1:D1            0.0002125  0.0029520   0.072 0.942912    
## A1:C1:D1                   NA         NA      NA       NA    
## B1:C1:D1           -0.0069375  0.0029520  -2.350 0.022926 *  
## A1:B1:E1                   NA         NA      NA       NA    
## A1:C1:E1                   NA         NA      NA       NA    
## B1:C1:E1                   NA         NA      NA       NA    
## A1:D1:E1                   NA         NA      NA       NA    
## B1:D1:E1                   NA         NA      NA       NA    
## C1:D1:E1                   NA         NA      NA       NA    
## A1:B1:F11                  NA         NA      NA       NA    
## A1:C1:F11                  NA         NA      NA       NA    
## B1:C1:F11                  NA         NA      NA       NA    
## A1:D1:F11                  NA         NA      NA       NA    
## B1:D1:F11                  NA         NA      NA       NA    
## C1:D1:F11                  NA         NA      NA       NA    
## A1:E1:F11                  NA         NA      NA       NA    
## B1:E1:F11                  NA         NA      NA       NA    
## C1:E1:F11                  NA         NA      NA       NA    
## D1:E1:F11                  NA         NA      NA       NA    
## A1:B1:C1:D1                NA         NA      NA       NA    
## A1:B1:C1:E1                NA         NA      NA       NA    
## A1:B1:D1:E1                NA         NA      NA       NA    
## A1:C1:D1:E1                NA         NA      NA       NA    
## B1:C1:D1:E1                NA         NA      NA       NA    
## A1:B1:C1:F11               NA         NA      NA       NA    
## A1:B1:D1:F11               NA         NA      NA       NA    
## A1:C1:D1:F11               NA         NA      NA       NA    
## B1:C1:D1:F11               NA         NA      NA       NA    
## A1:B1:E1:F11               NA         NA      NA       NA    
## A1:C1:E1:F11               NA         NA      NA       NA    
## B1:C1:E1:F11               NA         NA      NA       NA    
## A1:D1:E1:F11               NA         NA      NA       NA    
## B1:D1:E1:F11               NA         NA      NA       NA    
## C1:D1:E1:F11               NA         NA      NA       NA    
## A1:B1:C1:D1:E1             NA         NA      NA       NA    
## A1:B1:C1:D1:F11            NA         NA      NA       NA    
## A1:B1:C1:E1:F11            NA         NA      NA       NA    
## A1:B1:D1:E1:F11            NA         NA      NA       NA    
## A1:C1:D1:E1:F11            NA         NA      NA       NA    
## B1:C1:D1:E1:F11            NA         NA      NA       NA    
## A1:B1:C1:D1:E1:F11         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.002952 on 48 degrees of freedom
## Multiple R-squared:  0.849,  Adjusted R-squared:  0.8018 
## F-statistic:    18 on 15 and 48 DF,  p-value: 9.012e-15

The equation for this experiment in terms of coded variables is as under

--> Yi,j,k,l = 0.0157250 + 0.0010094(A) + 0.0017844(C) - 0.0041875(E) - 0.0077469(F)

Therefore,

-->It would be best to keep A and C at low level and E and F at high level to reduce camber as much as possible

5 Question 8.40:

5.1 Solution:

PART A:

--> The Experiment investigated “Four” Factors

PART B:

--> Resolution of the design employed in this experiment is “Four”

PART C:

Effects are as follows:

One <- c(8)
AD <- c(10)
BD <- c(12)
AB <- c(7)
CD <- c(13)
AC <- c(6)
BC <- c(5)
ABCD <- c(11)

Effect A:

EffectA <- (2*(AD+AB+AC+ABCD-One-BD-CD-BC))/(8)
EffectA
## [1] -1

Effect B:

EffectB <- (2*(BD+AB+BC+ABCD-One-AD-CD-AC))/(8)
EffectB
## [1] -0.5

Effect C:

EffectC <- (2*(CD+AC+BC+ABCD-One-AD-BD-AB))/(8)
EffectC
## [1] -0.5

Effect D:

EffectD <- (2*(AD+BD+CD+ABCD-One-AB-AC-BC))/(8)
EffectD
## [1] 5

PART D:

--> Defining relation for this design is I = ABCD

6 Question 8.48:

  1. What is the generator for column D?

  2. What is the generator for column E?

  3. If this design were folded over, what is the resolution of the combined design?

6.1 Solution:

design<- FrF2(nfactors = 5,nruns = 8,generators = c("-ABC","BC"), randomize = FALSE)
summary(design)
## Call:
## FrF2(nfactors = 5, nruns = 8, generators = c("-ABC", "BC"), randomize = FALSE)
## 
## Experimental design of type  FrF2.generators 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] D=-ABC E=BC  
## 
## 
## Alias structure:
## $main
## [1] A=-DE    B=CE     C=BE     D=-AE    E=-AD=BC
## 
## $fi2
## [1] AB=-CD AC=-BD
## 
## 
## The design itself:
##    A  B  C  D  E
## 1 -1 -1 -1  1  1
## 2  1 -1 -1 -1  1
## 3 -1  1 -1 -1 -1
## 4  1  1 -1  1 -1
## 5 -1 -1  1 -1 -1
## 6  1 -1  1  1 -1
## 7 -1  1  1  1  1
## 8  1  1  1 -1  1
## class=design, type= FrF2.generators

PART A:

--> The design generator for column D is -ABC.

PART B:

--> The design generator for column E is BC..

PART C:

--> From table 8.14 from Douglas Montgomery Resolution of folded over design for such scenrio is “Four”.

7 Question 8.60:

7.1 Solution:

library(FrF2)
design <- FrF2(nfactors=7,resolution=3,randomize=FALSE)
design
##    A  B  C  D  E  F  G
## 1 -1 -1 -1  1  1  1 -1
## 2  1 -1 -1 -1 -1  1  1
## 3 -1  1 -1 -1  1 -1  1
## 4  1  1 -1  1 -1 -1 -1
## 5 -1 -1  1  1 -1 -1  1
## 6  1 -1  1 -1  1 -1 -1
## 7 -1  1  1 -1 -1  1 -1
## 8  1  1  1  1  1  1  1
## class=design, type= FrF2
design2 <- fold.design(design,column=1)
design2
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded
design3 <- design2[-c(1,3,5,7,10,12,14,16),]
design3
##    A  B  C     fold  D  E  F  G
## 2  1 -1 -1 original -1 -1  1  1
## 4  1  1 -1 original  1 -1 -1 -1
## 6  1 -1  1 original -1  1 -1 -1
## 8  1  1  1 original  1  1  1  1
## 9  1 -1 -1   mirror  1  1  1 -1
## 11 1  1 -1   mirror -1  1 -1  1
## 13 1 -1  1   mirror  1 -1 -1  1
## 15 1  1  1   mirror -1 -1  1 -1
aliasprint(design2)
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG

--> The relations are presented above