New names:
• `` -> `...1`
• `PRETEST` -> `PRETEST...4`
• `POST TEST` -> `POST TEST...5`
• `PRETEST` -> `PRETEST...7`
• `POST TEST` -> `POST TEST...8`
• `PRETEST` -> `PRETEST...10`
• `POST TEST` -> `POST TEST...11`
• `PRETEST` -> `PRETEST...13`
• `POST TEST` -> `POST TEST...14`
# A tibble: 48 × 17
   ...1     Students Type  PRETE…¹ POST …² Rdiff PRETE…³ POST …⁴ InterR1 PRETE…⁵
   <chr>    <chr>    <chr>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.       ABARA, … GBA         2       2     0       3       4       1       4
 2 2.       AMPORIN… GBA         2       4     2       4       4       0       3
 3 3.       ANDAG, … GBA         3       3     0       4       5       1       3
 4 4.       ASPACIO… GBA         3       4     1       4       5       1       3
 5 5.       BAANG, … GBA         3       4     1       4       4       0       2
 6 6.       BACALSO… GBA         2       3     1       3       4       1       3
 7 7.       BALA, J… GBA         3       3     0       3       4       1       2
 8 8.       BALABAG… GBA         2       3     1       4       5       1       3
 9 9.       BALAGAS… GBA         2       2     0       3       4       1       2
10 10.      BILLONE… GBA         2       2     0       3       4       1       4
# … with 38 more rows, 7 more variables: `POST TEST...11` <dbl>, InterR2 <dbl>,
#   PRETEST...13 <dbl>, `POST TEST...14` <dbl>, InterR3 <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, and abbreviated variable names
#   ¹​PRETEST...4, ²​`POST TEST...5`, ³​PRETEST...7, ⁴​`POST TEST...8`,
#   ⁵​PRETEST...10
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
New names:
• `` -> `...1`
• `PRETEST` -> `PRETEST...4`
• `POST TEST` -> `POST TEST...5`
• `PRETEST` -> `PRETEST...7`
• `POST TEST` -> `POST TEST...8`
• `PRETEST` -> `PRETEST...10`
• `POST TEST` -> `POST TEST...11`
• `PRETEST` -> `PRETEST...13`
• `POST TEST` -> `POST TEST...14`
# A tibble: 50 × 17
   ...1     Students Type  PRETE…¹ POST …² Rdiff PRETE…³ POST …⁴ InterR1 PRETE…⁵
   <chr>    <chr>    <chr>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.       ATIENZA… PBA         2       2     0       3       4       1       4
 2 2.       BACONGU… PBA         1       3     2       3       4       1       3
 3 3.       COMAYAS… PBA        NA      NA     0      NA      NA       0      NA
 4 4.       GONZALE… PBA         3       3     0       3       4       1       4
 5 5.       LAGROSA… PBA         3       3     0       4       5       1       5
 6 6.       LAUS, E… PBA         2       2     0       3       4       1       2
 7 7.       LIBERTA… PBA        NA      NA     0      NA      NA       0      NA
 8 8.       LITANG,… PBA         2       2     0       3       4       1       3
 9 9.       LIZARDO… PBA         1       2     1       3       5       2       3
10 10.      LLANITA… PBA         2       2     0       3       4       1       3
# … with 40 more rows, 7 more variables: `POST TEST...11` <dbl>, InterR2 <dbl>,
#   PRETEST...13 <dbl>, `POST TEST...14` <dbl>, InterR3 <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, and abbreviated variable names
#   ¹​PRETEST...4, ²​`POST TEST...5`, ³​PRETEST...7, ⁴​`POST TEST...8`,
#   ⁵​PRETEST...10
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# A tibble: 98 × 17
   ...1     Students Type  PRETE…¹ POST …² Rdiff PRETE…³ POST …⁴ InterR1 PRETE…⁵
   <chr>    <chr>    <chr>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.       ABARA, … GBA         2       2     0       3       4       1       4
 2 2.       AMPORIN… GBA         2       4     2       4       4       0       3
 3 3.       ANDAG, … GBA         3       3     0       4       5       1       3
 4 4.       ASPACIO… GBA         3       4     1       4       5       1       3
 5 5.       BAANG, … GBA         3       4     1       4       4       0       2
 6 6.       BACALSO… GBA         2       3     1       3       4       1       3
 7 7.       BALA, J… GBA         3       3     0       3       4       1       2
 8 8.       BALABAG… GBA         2       3     1       4       5       1       3
 9 9.       BALAGAS… GBA         2       2     0       3       4       1       2
10 10.      BILLONE… GBA         2       2     0       3       4       1       4
# … with 88 more rows, 7 more variables: `POST TEST...11` <dbl>, InterR2 <dbl>,
#   PRETEST...13 <dbl>, `POST TEST...14` <dbl>, InterR3 <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, and abbreviated variable names
#   ¹​PRETEST...4, ²​`POST TEST...5`, ³​PRETEST...7, ⁴​`POST TEST...8`,
#   ⁵​PRETEST...10
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# A tibble: 87 × 17
   ...1     Students Type  PRETE…¹ POST …² Rdiff PRETE…³ POST …⁴ InterR1 PRETE…⁵
   <chr>    <chr>    <chr>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.       ABARA, … GBA         2       2     0       3       4       1       4
 2 2.       AMPORIN… GBA         2       4     2       4       4       0       3
 3 3.       ANDAG, … GBA         3       3     0       4       5       1       3
 4 4.       ASPACIO… GBA         3       4     1       4       5       1       3
 5 5.       BAANG, … GBA         3       4     1       4       4       0       2
 6 6.       BACALSO… GBA         2       3     1       3       4       1       3
 7 7.       BALA, J… GBA         3       3     0       3       4       1       2
 8 8.       BALABAG… GBA         2       3     1       4       5       1       3
 9 9.       BALAGAS… GBA         2       2     0       3       4       1       2
10 10.      BILLONE… GBA         2       2     0       3       4       1       4
# … with 77 more rows, 7 more variables: `POST TEST...11` <dbl>, InterR2 <dbl>,
#   PRETEST...13 <dbl>, `POST TEST...14` <dbl>, InterR3 <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, and abbreviated variable names
#   ¹​PRETEST...4, ²​`POST TEST...5`, ³​PRETEST...7, ⁴​`POST TEST...8`,
#   ⁵​PRETEST...10
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Pretest Average Score


Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
# A tibble: 2 × 4
  Type  count  mean    sd
  <chr> <int> <dbl> <dbl>
1 GBA      46  2.86 0.600
2 PBA      41  2.99 0.541

Posttest Average Score

# A tibble: 2 × 4
  Type  count  mean    sd
  <chr> <int> <dbl> <dbl>
1 GBA      46  3.65 0.490
2 PBA      41  3.74 0.555
# A tibble: 46 × 17
   ...1     Students Type  PRETE…¹ POST …² Rdiff PRETE…³ POST …⁴ InterR1 PRETE…⁵
   <chr>    <chr>    <chr>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.       ABARA, … GBA         2       2     0       3       4       1       4
 2 2.       AMPORIN… GBA         2       4     2       4       4       0       3
 3 3.       ANDAG, … GBA         3       3     0       4       5       1       3
 4 4.       ASPACIO… GBA         3       4     1       4       5       1       3
 5 5.       BAANG, … GBA         3       4     1       4       4       0       2
 6 6.       BACALSO… GBA         2       3     1       3       4       1       3
 7 7.       BALA, J… GBA         3       3     0       3       4       1       2
 8 8.       BALABAG… GBA         2       3     1       4       5       1       3
 9 9.       BALAGAS… GBA         2       2     0       3       4       1       2
10 10.      BILLONE… GBA         2       2     0       3       4       1       4
# … with 36 more rows, 7 more variables: `POST TEST...11` <dbl>, InterR2 <dbl>,
#   PRETEST...13 <dbl>, `POST TEST...14` <dbl>, InterR3 <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, and abbreviated variable names
#   ¹​PRETEST...4, ²​`POST TEST...5`, ³​PRETEST...7, ⁴​`POST TEST...8`,
#   ⁵​PRETEST...10
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.3.6     ✔ purrr   0.3.4
✔ tibble  3.1.8     ✔ stringr 1.4.0
✔ tidyr   1.2.0     ✔ forcats 0.5.2
✔ readr   2.1.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

Attaching package: 'rstatix'


The following object is masked from 'package:stats':

    filter
# A tibble: 184 × 15
   ...1    Stude…¹ Type  PRETE…² POST …³ PRETE…⁴ POST …⁵ PRETE…⁶ POST …⁷ PRETE…⁸
   <chr>   <chr>   <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.    … ABARA,… GBA         2       2       3       4       4       5       2
 2 2.    … AMPORI… GBA         2       4       4       4       3       4       2
 3 3.    … ANDAG,… GBA         3       3       4       5       3       5       3
 4 4.    … ASPACI… GBA         3       4       4       5       3       4       3
 5 5.    … BAANG,… GBA         3       4       4       4       2       5       3
 6 6.    … BACALS… GBA         2       3       3       4       3       5       2
 7 7.    … BALA, … GBA         3       3       3       4       2       4       2
 8 8.    … BALABA… GBA         2       3       4       5       3       5       5
 9 9.    … BALAGA… GBA         2       2       3       4       2       3       3
10 10.     BILLON… GBA         2       2       3       4       4       4       3
# … with 174 more rows, 5 more variables: `POST TEST...14` <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, Rating <fct>, Score <dbl>, and
#   abbreviated variable names ¹​Students, ²​PRETEST...4, ³​`POST TEST...5`,
#   ⁴​PRETEST...7, ⁵​`POST TEST...8`, ⁶​PRETEST...10, ⁷​`POST TEST...11`,
#   ⁸​PRETEST...13
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Average increase of scores using GBA of all raters

# A tibble: 4 × 6
  Type  Rating  variable     n  mean    sd
  <chr> <fct>   <chr>    <dbl> <dbl> <dbl>
1 GBA   InterR1 Score       46 0.804 0.582
2 GBA   InterR2 Score       46 1.04  1.23 
3 GBA   InterR3 Score       46 0.391 0.649
4 GBA   Rdiff   Score       46 0.913 0.812

# Test of Difference among Raters in terms of GBA

Loading required package: carData

Attaching package: 'car'
The following object is masked from 'package:purrr':

    some
The following object is masked from 'package:dplyr':

    recode
             Df Sum Sq Mean Sq F value  Pr(>F)   
Rating        3  10.97   3.658   4.997 0.00237 **
Residuals   180 131.76   0.732                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the above results, it shows that there is a significant difference of rating among raters since the p-value (0.00237) is less than the 0.05 level of significance.

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Score ~ Rating, data = totalGBAdiff)

$Rating
                      diff         lwr         upr     p adj
InterR2-InterR1  0.2391304 -0.22349315  0.70175402 0.5384772
InterR3-InterR1 -0.4130435 -0.87566706  0.04958011 0.0983541
Rdiff-InterR1    0.1086957 -0.35392793  0.57131924 0.9290277
InterR3-InterR2 -0.6521739 -1.11479750 -0.18955033 0.0018954
Rdiff-InterR2   -0.1304348 -0.59305837  0.33218880 0.8844826
Rdiff-InterR3    0.5217391  0.05911555  0.98436271 0.0201601

As shown above, rater 3 contributes the significant difference of rating among the raters.

Withour Rater 3 in GBA

Excluding rater 3, it shows in the result below that p-value = 0.456 which means that the rating now among the remaining raters do not differ statistically.

# A tibble: 138 × 16
   ...1    Stude…¹ Type  PRETE…² POST …³ PRETE…⁴ POST …⁵ PRETE…⁶ POST …⁷ PRETE…⁸
   <chr>   <chr>   <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.    … ABARA,… GBA         2       2       3       4       4       5       2
 2 2.    … AMPORI… GBA         2       4       4       4       3       4       2
 3 3.    … ANDAG,… GBA         3       3       4       5       3       5       3
 4 4.    … ASPACI… GBA         3       4       4       5       3       4       3
 5 5.    … BAANG,… GBA         3       4       4       4       2       5       3
 6 6.    … BACALS… GBA         2       3       3       4       3       5       2
 7 7.    … BALA, … GBA         3       3       3       4       2       4       2
 8 8.    … BALABA… GBA         2       3       4       5       3       5       5
 9 9.    … BALAGA… GBA         2       2       3       4       2       3       3
10 10.     BILLON… GBA         2       2       3       4       4       4       3
# … with 128 more rows, 6 more variables: `POST TEST...14` <dbl>,
#   InterR3 <dbl>, PretestAve <dbl>, PosttestAve <dbl>, Rating <fct>,
#   Score <dbl>, and abbreviated variable names ¹​Students, ²​PRETEST...4,
#   ³​`POST TEST...5`, ⁴​PRETEST...7, ⁵​`POST TEST...8`, ⁶​PRETEST...10,
#   ⁷​`POST TEST...11`, ⁸​PRETEST...13
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Average increase of scores using GBA excluding rater 3

# A tibble: 3 × 6
  Type  Rating  variable     n  mean    sd
  <chr> <fct>   <chr>    <dbl> <dbl> <dbl>
1 GBA   InterR1 Score       46 0.804 0.582
2 GBA   InterR2 Score       46 1.04  1.23 
3 GBA   Rdiff   Score       46 0.913 0.812

# Test of Difference among Raters in terms of GBA

             Df Sum Sq Mean Sq F value Pr(>F)
Rating        2   1.32  0.6594   0.789  0.456
Residuals   135 112.80  0.8356               
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Score ~ Rating, data = totalGBAdiff)

$Rating
                      diff        lwr       upr     p adj
InterR2-InterR1  0.2391304 -0.2125718 0.6908326 0.4233890
Rdiff-InterR1    0.1086957 -0.3430066 0.5603979 0.8361606
Rdiff-InterR2   -0.1304348 -0.5821370 0.3212674 0.7730295

Test of Difference if Using GBA significantly improve students performance


    One Sample t-test

data:  totalGBAdiff$Score
t = 11.845, df = 137, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.7666554 1.0739243
sample estimates:
mean of x 
0.9202899 

In the result above using T-test for paired observations, it shows that using GBA significantly improve students’ performance with a p-value result of 0.00000000000000022.

For PBA

# A tibble: 41 × 17
   ...1     Students Type  PRETE…¹ POST …² Rdiff PRETE…³ POST …⁴ InterR1 PRETE…⁵
   <chr>    <chr>    <chr>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.       ATIENZA… PBA         2       2     0       3       4       1       4
 2 2.       BACONGU… PBA         1       3     2       3       4       1       3
 3 4.       GONZALE… PBA         3       3     0       3       4       1       4
 4 5.       LAGROSA… PBA         3       3     0       4       5       1       5
 5 6.       LAUS, E… PBA         2       2     0       3       4       1       2
 6 8.       LITANG,… PBA         2       2     0       3       4       1       3
 7 9.       LIZARDO… PBA         1       2     1       3       5       2       3
 8 10.      LLANITA… PBA         2       2     0       3       4       1       3
 9 11.      LUMAPAC… PBA         2       2     0       3       5       2       3
10 12.      LUZANA,… PBA         2       2     0       3       3       0       4
# … with 31 more rows, 7 more variables: `POST TEST...11` <dbl>, InterR2 <dbl>,
#   PRETEST...13 <dbl>, `POST TEST...14` <dbl>, InterR3 <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, and abbreviated variable names
#   ¹​PRETEST...4, ²​`POST TEST...5`, ³​PRETEST...7, ⁴​`POST TEST...8`,
#   ⁵​PRETEST...10
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# A tibble: 164 × 15
   ...1    Stude…¹ Type  PRETE…² POST …³ PRETE…⁴ POST …⁵ PRETE…⁶ POST …⁷ PRETE…⁸
   <chr>   <chr>   <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
 1 1.    … ATIENZ… PBA         2       2       3       4       4       4       3
 2 2.    … BACONG… PBA         1       3       3       4       3       5       3
 3 4.    … GONZAL… PBA         3       3       3       4       4       5       5
 4 5.    … LAGROS… PBA         3       3       4       5       5       4       4
 5 6.    … LAUS, … PBA         2       2       3       4       2       3       3
 6 8.    … LITANG… PBA         2       2       3       4       3       3       3
 7 9.    … LIZARD… PBA         1       2       3       5       3       3       3
 8 10.     LLANIT… PBA         2       2       3       4       3       3       3
 9 11.     LUMAPA… PBA         2       2       3       5       3       5       3
10 12.     LUZANA… PBA         2       2       3       3       4       4       3
# … with 154 more rows, 5 more variables: `POST TEST...14` <dbl>,
#   PretestAve <dbl>, PosttestAve <dbl>, Rating <fct>, Score <dbl>, and
#   abbreviated variable names ¹​Students, ²​PRETEST...4, ³​`POST TEST...5`,
#   ⁴​PRETEST...7, ⁵​`POST TEST...8`, ⁶​PRETEST...10, ⁷​`POST TEST...11`,
#   ⁸​PRETEST...13
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# A tibble: 4 × 6
  Type  Rating  variable     n  mean    sd
  <chr> <fct>   <chr>    <dbl> <dbl> <dbl>
1 PBA   InterR1 Score       41 0.78  0.822
2 PBA   InterR2 Score       41 0.78  1.15 
3 PBA   InterR3 Score       41 0.707 0.955
4 PBA   Rdiff   Score       41 0.732 0.708

# Test of Difference among Raters in terms of GBA

             Df Sum Sq Mean Sq F value Pr(>F)
Rating        3   0.16  0.0549   0.064  0.979
Residuals   160 136.59  0.8537               

It shows that the rating among the four (4) raters do not differ significantly with a p-value result of 0.979.

Test of Difference if Using PBA significantly improve students performance


    One Sample t-test

data:  totalGBAdiff$Score
t = 10.486, df = 163, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.6087682 0.8912318
sample estimates:
mean of x 
     0.75 

In the result above using T-test for paired observations, it shows that using PBA significantly improve students’ performance with a p-value result of 0.00000000000000022.