This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
# time series
library(astsa)
## Warning: package 'astsa' was built under R version 3.1.2
data(jj)
str(jj)
## Time-Series [1:84] from 1960 to 1981: 0.71 0.63 0.85 0.44 0.61 0.69 0.92 0.55 0.72 0.77 ...
summary(jj)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.440 1.248 3.510 4.800 7.132 16.200
class(jj)
## [1] "ts"
# ts data is a vector in R
options(digits=2)
(zardoz =ts(rnorm(48), start=c(2293, 6), frequency=12))
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2293 0.303 -1.113 -1.670 -1.214 0.012
## 2294 0.804 1.851 0.507 0.957 0.865 -1.653 -0.907 0.616 -0.116 2.340
## 2295 1.531 -0.993 -0.065 0.708 -1.070 0.656 -0.370 -0.700 -0.459 -0.729
## 2296 -0.904 0.118 -0.767 -0.487 -0.503 0.689 0.735 0.426 -1.492 -0.333
## 2297 -0.374 1.348 -1.644 -0.625 0.482
## Nov Dec
## 2293 1.121 -0.354
## 2294 1.328 -0.064
## 2295 -0.088 -1.466
## 2296 0.126 -0.817
## 2297
window(zardoz, start=c(2293,2), end=(2295))
## Warning in window.default(x, ...): 'start' value not changed
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2293 0.303 -1.113 -1.670 -1.214 0.012
## 2294 0.804 1.851 0.507 0.957 0.865 -1.653 -0.907 0.616 -0.116 2.340
## 2295 1.531
## Nov Dec
## 2293 1.121 -0.354
## 2294 1.328 -0.064
## 2295
plot.ts(jj)
#filtering/smoothing 2 sided moving average
plot(jj2 <- stl(log(jj), "per"))
acf(jj2$time.series[,3])
plot(jj2 <- stl(log(jj), s.win=4))
#Seasonal Decomposition of Time Series by Loess
plot(jj2 <- stl(log(jj), s.win=4))
jj2$time.series[,3]
## Qtr1 Qtr2 Qtr3 Qtr4
## 1960 0.09023 -0.03109 0.01801 -0.09997
## 1961 -0.08730 0.01163 0.04238 0.02432
## 1962 -0.00455 0.01545 -0.02233 -0.03669
## 1963 0.02878 -0.03501 -0.01875 0.01097
## 1964 -0.02677 -0.01017 0.00869 0.00018
## 1965 0.02947 0.05070 -0.02886 -0.00078
## 1966 -0.03298 -0.02902 0.06564 0.00618
## 1967 0.05242 -0.02753 -0.05649 0.01193
## 1968 -0.08621 0.03071 0.01993 0.05012
## 1969 0.02735 -0.03847 -0.02338 -0.11510
## 1970 0.01429 0.03030 0.02882 0.08078
## 1971 -0.03778 0.00465 -0.01064 0.00492
## 1972 0.04814 0.00329 -0.03018 -0.03116
## 1973 0.01164 0.00992 0.05121 0.01926
## 1974 -0.02051 -0.02902 -0.01568 0.01639
## 1975 0.00678 0.01186 0.01534 -0.01767
## 1976 -0.02141 0.01060 -0.00978 -0.02663
## 1977 0.00521 -0.00448 -0.03373 0.05578
## 1978 0.00340 0.01741 0.00627 -0.03123
## 1979 0.01236 -0.02389 0.05200 -0.02845
## 1980 0.02360 -0.01892 -0.00204 0.00406
#The function acf computes (and by default plots) estimates of the autocovariance or autocorrelation function. Function pacf is the function used for the partial autocorrelations. Function ccf computes the cross-correlation or cross-covariance of two univariate series