Medidas Repetidas: no paramétrico nparLD{style”color:red}
library(readxl)
Palma =read_excel("C:/Users/Cesar/Downloads/Palma.xlsx")
Palma
## # A tibble: 20 × 7
## trt AD10 AD20 AD30 AD40 AD50 AD60
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ctrl 1.09 1.20 2.53 4.27 5.47 10.7
## 2 ctrl 0.956 1.05 2.22 3.75 4.80 8.66
## 3 ctrl 0.727 0.800 1.69 2.85 3.65 5.70
## 4 ctrl 1.12 1.23 2.60 4.39 5.62 11.1
## 5 ctrl 0.901 0.992 2.09 3.53 4.53 7.91
## 6 ctrl 0.765 0.842 1.78 3.00 3.84 6.15
## 7 ctrl 0.875 0.963 2.03 3.43 4.39 7.55
## 8 ctrl 1.14 1.25 2.64 4.46 5.71 11.4
## 9 ctrl 0.721 0.794 1.67 2.83 3.62 5.63
## 10 ctrl 1.02 1.12 2.37 4.00 5.13 9.62
## 11 quim 0.151 0.159 0.311 2.07 2.23 2.16
## 12 quim 0.196 0.206 0.405 1.94 2.14 2.10
## 13 quim 0.660 0.693 1.36 1.69 2.38 3.54
## 14 quim 0.502 0.527 1.04 2.09 2.62 3.17
## 15 quim 0.437 0.459 0.901 1.88 2.34 2.69
## 16 quim 0.767 0.805 1.58 1.73 2.54 4.23
## 17 quim 0.297 0.311 0.611 1.85 2.16 2.23
## 18 quim 0.301 0.316 0.621 2.11 2.43 2.50
## 19 quim 0.555 0.583 1.14 1.68 2.26 2.99
## 20 quim 0.614 0.644 1.26 2.00 2.65 3.60
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.2.2
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df=melt(Palma,id.vars = "trt")
colnames(df)=c("trt","tiempo","AD")
df |>
group_by(tiempo,trt) |>
summarise(AD=mean(AD)) |>
ggplot(aes(x=tiempo,y=AD,group=trt,color=trt))+
geom_point(size=3)+
geom_line(size=1)
## `summarise()` has grouped output by 'tiempo'. You can override using the
## `.groups` argument.
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.2.2
dates<-c(14,21,28) # days
# example 1: evaluation - vector
evaluation<-c(40,80,90)
audps(evaluation,dates)
## evaluation
## 1470
audps(evaluation,dates,"relative")
## evaluation
## 0.7
x<-seq(10.5,31.5,7)
y<-c(40,80,90,90)
plot(x,y,"s",ylim=c(0,100),xlim=c(10,32),axes=FALSE,col="red" ,ylab="",xlab="")
title(cex.main=0.8,main="Absolute or Relative AUDPS\nTotal area=(31.5-10.5)*100=2100",
ylab="evaluation",xlab="dates" )
points(x,y,type="h")
z<-c(14,21,28)
points(z,y[-3],col="blue",lty=2,pch=19)
points(z,y[-3],col="blue",lty=2,pch=19)
axis(1,x,pos=0)
axis(2,c(0,40,80,90,100),las=2)
text(dates,evaluation+5,dates,col="blue")
text(14,20,"A = (17.5-10.5)*40",cex=0.8)
text(21,40,"B = (24.5-17.5)*80",cex=0.8)
text(28,60,"C = (31.5-24.5)*90",cex=0.8)
text(14,95,"audps = A+B+C = 1470")
text(14,90,"relative = audps/area = 0.7")
# It calculates audpc absolute
absolute<-audps(evaluation,dates,type="absolute")
print(absolute)
## evaluation
## 1470
rm(evaluation, dates, absolute)