Diseño factorial completo completamente al azar
Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants
library(collapsibleTree)
set.seed(2022)
riego=gl(2,60,120,c("Sequia","Normal"))
hormona=gl(5,12,120,c("0","1","2","4","8"))
gs=c(rnorm(60,60,5),rnorm(60,250,6)) #Conductancia estomatica
df=data.frame(riego,hormona,gs)
Arbol colapsable
collapsibleTree(df,hierarchy = c("riego","hormona","gs"))
Gráfica
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df %>%
ggplot(aes(x=hormona,y=gs,fill=hormona))+
facet_wrap(~riego)+
geom_boxplot(color="black")
Separación por tratamiento segun el tipo de riego
df %>%
ggplot(aes(x=riego,y=gs,fill=riego))+
facet_wrap(~hormona)+
geom_boxplot(color="black")
Linealización del comportamiento de cada tratamiento
df %>%
group_by(hormona,riego) %>%
summarise(mean=mean(gs)) %>%
ggplot(aes(x=hormona,y=mean,group=riego,color=riego))+
geom_point(size=3)+
geom_line(size=1)
## `summarise()` has grouped output by 'hormona'. You can override using the
## `.groups` argument.
Buscando interacción entre ambos
df1=df
df1$gs=c(sort(rnorm(60,140,5)),sort(rnorm(60,150,9),decreasing = T))
df1 %>%
group_by(hormona,riego) %>%
summarise(mean=mean(gs)) %>%
ggplot(aes(x=hormona,y=mean,group=riego,color=riego))+
geom_point(size=4)+
geom_line(size=1)
## `summarise()` has grouped output by 'hormona'. You can override using the
## `.groups` argument.
Análisis de Varianza \[y_{ijk} =
\mu+\tau_i+\theta_j+\tau\theta_{ij}+\epsilon_{ijk} \\ i: 1,2~
\text{Niveles del riego} \\ j: 1\cdots5 ~ \text{Niveles de la
hormona}\\k: 1\cdots 12 ~ \text{Repeticiones} \] \[H_{01}: \mu_{riego} = \mu_{sequia}\] \[H_{02}: \mu_{0} = \mu_{1} = \mu_{2} =\mu_{4}
=\mu_{8}\] \[H_{03}: \text{No hay
interacción}\] Analisis de varianza sin interacción
mod1=aov(gs~riego*hormona,data = df)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## riego 1 1097105 1097105 35485.757 <2e-16 ***
## hormona 4 164 41 1.329 0.264
## riego:hormona 4 197 49 1.595 0.181
## Residuals 110 3401 31
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod2=aov(gs~riego*hormona,data = df1)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## riego 1 3853 3853 1031.7 < 2e-16 ***
## hormona 4 220 55 14.7 1.19e-09 ***
## riego:hormona 4 5179 1295 346.7 < 2e-16 ***
## Residuals 110 411 4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Supuestos Normalidad de residuales
shapiro.test(mod1$residuals)
##
## Shapiro-Wilk normality test
##
## data: mod1$residuals
## W = 0.98808, p-value = 0.3794
# Se cumplio el supuesto de normalidad
Homoceasticidad de varianza
plot(mod1$residuals)
# Heteroceasticidad
Ejercicio!
Variable respuesta: Aceite en semilla de uva
set.seed(2022)
asu=c(rnorm(24,5,0.8),rnorm(24,6,0.8),rnorm(24,8,0.9))
variedad=gl(3,24,72,c("v1","v2","v3"))
metodo = gl(3,8,72,c("m1","m2","m3"))
dfu= data.frame(variedad,metodo,asu)
Intente correr el análisis de varianza
collapsibleTree(dfu,hierarchy = c("variedad","metodo","asu"))
collapsibleTree(dfu,hierarchy = c("metodo","variedad","asu"))