Repaso Pruebas de hipótesis para un promedio
x = seq(-4,4,0.1)
y = dt(x,df = 2)
plot(x,y,type = "l",
main="t distribution \n with 2 df")
Prueba para pH
pH = rnorm(50,5.6,0.2)
mean(pH) # Media de pH
## [1] 5.599352
sd(pH) # Desviacion estandar de pH
## [1] 0.1850624
plot(density(pH))
Simulación
set.seed(2022)
sim1= replicate(n = 200,
expr = rnorm(50,5.6,0.2))
mean(sim1[,1]) # Media de columna 1
## [1] 5.574225
medias = colMeans(sim1)
hist(medias,nclass = 70,xlim=c(5.5,5.82))
abline(v=mean(sim1[,1]),
col="red",lwd=2,lty=2)
abline(v=5.8,col="blue")
T-test
pr1 =t.test(x = pH,mu = 5.8,
alternative = "l")
ifelse(pr1$p.value<0.05,
"Rechazo Ho","No Rechazo Ho")
## [1] "Rechazo Ho"
Prueba de hipotesis para una prevalencia
set.seed(2022)
fumagina =round(runif(n = 80 ,
min = 0.35,
max = 1),0)
table(fumagina)[1]/sum(table(fumagina))*100
## 0
## 22.5
pr2 = prop.test(x = table(fumagina)[1],
n = 80,
p = 0.05,alternative = "g")
## Warning in prop.test(x = table(fumagina)[1], n = 80, p = 0.05, alternative =
## "g"): Chi-squared approximation may be incorrect
ifelse(pr2$p.value<0.05,
"Rechazo Ho",
"No rechazo Ho")
## [1] "Rechazo Ho"