\[\int f(x)g'(x)\;dx=f(x)g(x)-\int
g(x)f'(x)\;dx\]
\[\int u\;dv=uv-\int v\;du\]
\[\int e^x\sin x\;dx=-e^x\cos x+\int
e^x\cos x\;dx\]
\[\int e^x\cos x\;dx=e^x\sin x-\int
e^x\sin x\;dx\]
\[\int_{a}^{b} f(x)g'(x)\;dx=\left.
f(x)g(x)\right]_{a}^{b}-\int_{a}^{b} g(x)f'(x)\;dx\]
\[\int \sin^n x\;dx=-\frac{1}{n}\cos
x\;\sin^{n-1} x+\frac{n-1}{n}\int \sin^{n-2}x\;dx\]
\[\int \sin^m x\;\cos^n x\;dx\]
\[\int \sin^m x\;\cos^{2k+1} x\;dx=\int \sin^m x\;(\cos^2 x)^k\;\cos x\;dx=\int \sin^m x\;(1-\sin^2 x)^k\;\cos x\;dx\]
\[\int \sin^{2k+1} x\;\cos^n x\;dx=\int (\sin^2 x)^k\;\cos^n x\;\sin x\;dx=\int (1-\cos^2 x)^k\;\cos^n x\;\sin x\;dx\]
\[\int \tan^m x\;\sec^n x\;dx\]
\[\int \tan^m x\;\sec^{2k} x\;dx=\int \tan^m x\;(\sec^2 x)^{k-1}\;\sec^2 x\;dx=\int \tan^m x\;(1+\tan^2 x)^{k-1}\;\sec^2 x\;dx\]
\[\int \tan^{2k+1} x\;\sec^n x\;dx=\int
(\tan^2 x)^k\;\sec^{n-1} x\;\sec x\;\tan x\;dx=\int (\sec^2
x-1)^k\;\sec^{n-1} x\;\sec x\;\tan x\;dx\]
\[\int \sec x\;dx=\ln |\sec x+\tan
x|\]
| 運算式 | 代換式 | 恆等式 |
|---|---|---|
| \(\sqrt{a^2-x^2}\) | \(x=a\sin\theta,\quad-\frac{\pi}{2}\le\theta\le\frac{\pi}{2}\) | \(1-\sin^2\theta = \cos^2\theta\) |
| \(\sqrt{a^2+x^2}\) | \(x=a\tan\theta,\quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}\) | \(1+\tan^2\theta = \sec^2\theta\) |
| \(\sqrt{x^2-a^2}\) | \(x=a\sec\theta,\quad0\le\theta<\frac{\pi}{2}\,or\,\pi\le\theta\le\frac{3\pi}{2}\) | \(\sec^2\theta-1 = \tan^2\theta\) |
\[f(x)=\frac{P(x)}{Q(x)}=S(x)+
\frac{R(x)}{Q(x)}\]
\[\frac{R(x)}{Q(x)}=\frac{A_1}{a_1x+b_1}+\frac{A_2}{a_2x+b_2}+
\cdots+\frac{A_k}{a_kx+b_k}\]
\[\frac{A_1}{a_1x+b_1}+\frac{A_2}{(a_1x+b_1)^2}+\cdots+\frac{A_r}{(a_1x+b_1)^r}\]
\[\frac{Ax+B}{ax^2+bx+c}\]
\[\frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+\cdots+\frac{A_rx+B_r}{(ax^2+bx+c)^r}\]
The LibreTexts libraries Mathematics https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_(OpenStax)/09%3A_Systems_of_Equations_and_Inequalities/9.04%3A_Partial_Fractions
Essential Calculus, metric edition 2e, (2022) James Stewart, Daniel
K. Clegg, Saleem Watson, Cengage Learning.
Paul’s Online Notes
The LibreTexts libraries Methmatics
Calculus Early Transcendentals:Differential & Multi-Variable
Calculus for Social Sciences (2017). Petra Menz, Nicola Mulberry from
Lyryx’ textbook