Load Packages
library(tidyverse)
library(codebookr)
library(summarytools)
library(broom)
library(performance)
library(gt)
library(gtsummary)
library(janitor)
library(forcats)
library(here)
library(margins)
library(ggplot2)
Import Data
load(file = "~/Desktop/R-Code/SDOH_Vax/vax_clean1.rda")
Data cleaning
shingrix1 <- vax_clean1[ which(vax_clean1$age_yrs > 49.999), ]
shingrix1 %>%
mutate(full_shingrix = case_when(total_shingrix>= 2 ~ '1',TRUE ~ "0")) -> shingrix_clean1
shingrix_clean1$full_shingrix = as.numeric(shingrix_clean1$full_shingrix)
Baseline Characteristics
shingrix_clean1 %>%
dplyr::select(ibd_3, age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, act_tob, max_ch, IC, pop_dens,r_pct, total_shingrix, full_shingrix, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4) -> shingrix_baseline
shingrix_baseline %>% tbl_summary(label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Primary Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density", RPL_4 ~ "SVI Quartiles", r_pct ~ "Percent Republican", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", ibd_3 ~ "IBD Type", IC ~ "Immunocompromised", total_shingrix ~ "Total Shingrix Vaccines", full_shingrix ~ "Fully Vaccinated"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 7,465 |
| IBD Type |
|
| Â Â Â Â CD |
3,419 (46%) |
| Â Â Â Â UC |
3,965 (53%) |
| Â Â Â Â Unspecified |
81 (1.1%) |
| Age |
66 (10) |
| Gender |
|
| Â Â Â Â Male |
3,330 (45%) |
| Â Â Â Â Female |
4,135 (55%) |
| Race |
|
| Â Â Â Â White |
6,707 (90%) |
| Â Â Â Â Black |
368 (4.9%) |
| Â Â Â Â Asian |
112 (1.5%) |
| Â Â Â Â Native |
27 (0.4%) |
| Â Â Â Â Other |
251 (3.4%) |
| Ethnicity |
|
| Â Â Â Â NonHispanic |
7,061 (99%) |
| Â Â Â Â UNKNOWN |
0 (0%) |
| Â Â Â Â Hispanic |
95 (1.3%) |
| Â Â Â Â CHOOSE NOT TO DISCLOSE |
0 (0%) |
| Â Â Â Â (Missing) |
309 |
| Primary Language |
|
| Â Â Â Â English |
7,389 (99%) |
| Â Â Â Â Other |
76 (1.0%) |
| Any Religious Affiliation |
|
| Â Â Â Â Yes |
4,759 (68%) |
| Â Â Â Â No |
2,283 (32%) |
| Â Â Â Â UNKNOWN |
0 (0%) |
| Â Â Â Â PATIENT REFUSED |
0 (0%) |
| Â Â Â Â (Missing) |
423 |
| Marital Status |
|
| Â Â Â Â Married |
4,257 (57%) |
| Â Â Â Â Unknown |
1,322 (18%) |
| Â Â Â Â Unmarried |
1,219 (16%) |
| Â Â Â Â DivorcedSeparated |
372 (5.0%) |
| Â Â Â Â Widow |
295 (4.0%) |
| Active Tobacco Use |
|
| Â Â Â Â No |
6,221 (88%) |
| Â Â Â Â Yes |
875 (12%) |
| Â Â Â Â NOT ASKED |
0 (0%) |
| Â Â Â Â (Missing) |
369 |
| Charlson Comorbidity Index |
5.3 (5.7) |
| Â Â Â Â (Missing) |
240 |
| Immunocompromised |
1,544 (49%) |
| Â Â Â Â (Missing) |
4,303 |
| Population Density |
1,921 (2,136) |
| Â Â Â Â (Missing) |
258 |
| Percent Republican |
47 (17) |
| Â Â Â Â (Missing) |
1,142 |
| Total Shingrix Vaccines |
|
| Â Â Â Â 0 |
5,970 (80%) |
| Â Â Â Â 1 |
310 (4.2%) |
| Â Â Â Â 2 |
1,086 (15%) |
| Â Â Â Â 3 |
87 (1.2%) |
| Â Â Â Â 4 |
10 (0.1%) |
| Â Â Â Â 5 |
2 (<0.1%) |
| Fully Vaccinated |
1,185 (16%) |
| Total SVI |
0.37 (0.26) |
| Â Â Â Â (Missing) |
79 |
| SVI Quartiles |
|
| Â Â Â Â First |
2,936 (40%) |
| Â Â Â Â Second |
2,209 (30%) |
| Â Â Â Â Third |
1,542 (21%) |
| Â Â Â Â Fourth |
699 (9.5%) |
| Â Â Â Â (Missing) |
79 |
| Soceioeconomic Status |
0.35 (0.25) |
| Â Â Â Â (Missing) |
104 |
| Household Composition |
0.41 (0.26) |
| Â Â Â Â (Missing) |
79 |
| Minority Status and Language |
0.46 (0.28) |
| Â Â Â Â (Missing) |
77 |
| Housing and Transportation |
0.43 (0.28) |
| Â Â Â Â (Missing) |
92 |
Baseline characteristics by SVI Quartile
shingrix_baseline %>%
tbl_summary(by = RPL_4,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Primary Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density", RPL_4 ~ "SVI Quartiles", r_pct ~ "Percent Republican", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", ibd_3 ~ "IBD Type", IC ~ "Immunocompromised", total_shingrix ~ "Total Shingrix Vaccines", full_shingrix ~ "Fully Vaccinated"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)") %>% add_p()
79 observations missing `RPL_4` have been removed. To include these observations, use `forcats::fct_explicit_na()` on `RPL_4` column before passing to `tbl_summary()`.
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, 2L, 1L, 1L, 2L, 1L, : FEXACT error 6. LDKEY=578 is too small for this problem,
(ii := key2[itp=103] = 8900078, ldstp=17340)
Try increasing the size of the workspace and possibly 'mult'
There was an error in 'add_p()/add_difference()' for variable 'act_tob', p-value omitted:
Error in stats::fisher.test(structure(c(2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, : FEXACT error 7(location). LDSTP=17340 is too small for this problem,
(pastp=896.636, ipn_0:=ipoin[itp=253]=20, stp[ipn_0]=864.174).
Increase workspace or consider using 'simulate.p.value=TRUE'
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(c(0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 2, 3, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
| Characteristic |
First, N = 2,936 |
Second, N = 2,209 |
Third, N = 1,542 |
Fourth, N = 699 |
p-value |
| IBD Type |
|
|
|
|
<0.001 |
| Â Â Â Â CD |
1,248 (43%) |
986 (45%) |
768 (50%) |
386 (55%) |
|
| Â Â Â Â UC |
1,662 (57%) |
1,199 (54%) |
757 (49%) |
301 (43%) |
|
| Â Â Â Â Unspecified |
26 (0.9%) |
24 (1.1%) |
17 (1.1%) |
12 (1.7%) |
|
| Age |
66 (10) |
66 (10) |
66 (11) |
65 (10) |
0.2 |
| Gender |
|
|
|
|
0.004 |
| Â Â Â Â Male |
1,379 (47%) |
961 (44%) |
643 (42%) |
307 (44%) |
|
| Â Â Â Â Female |
1,557 (53%) |
1,248 (56%) |
899 (58%) |
392 (56%) |
|
| Race |
|
|
|
|
|
| Â Â Â Â White |
2,719 (93%) |
2,012 (91%) |
1,375 (89%) |
532 (76%) |
|
| Â Â Â Â Black |
62 (2.1%) |
84 (3.8%) |
85 (5.5%) |
129 (18%) |
|
| Â Â Â Â Asian |
51 (1.7%) |
34 (1.5%) |
25 (1.6%) |
2 (0.3%) |
|
| Â Â Â Â Native |
8 (0.3%) |
10 (0.5%) |
6 (0.4%) |
2 (0.3%) |
|
| Â Â Â Â Other |
96 (3.3%) |
69 (3.1%) |
51 (3.3%) |
34 (4.9%) |
|
| Ethnicity |
|
|
|
|
0.057 |
| Â Â Â Â NonHispanic |
2,771 (99%) |
2,099 (99%) |
1,458 (99%) |
658 (97%) |
|
| Â Â Â Â UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â Hispanic |
33 (1.2%) |
24 (1.1%) |
21 (1.4%) |
17 (2.5%) |
|
| Â Â Â Â CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â (Missing) |
132 |
86 |
63 |
24 |
|
| Primary Language |
|
|
|
|
<0.001 |
| Â Â Â Â English |
2,921 (99%) |
2,188 (99%) |
1,521 (99%) |
681 (97%) |
|
| Â Â Â Â Other |
15 (0.5%) |
21 (1.0%) |
21 (1.4%) |
18 (2.6%) |
|
| Any Religious Affiliation |
|
|
|
|
|
| Â Â Â Â Yes |
1,898 (68%) |
1,401 (67%) |
992 (68%) |
430 (67%) |
|
| Â Â Â Â No |
887 (32%) |
676 (33%) |
467 (32%) |
214 (33%) |
|
| Â Â Â Â UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â PATIENT REFUSED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â (Missing) |
151 |
132 |
83 |
55 |
|
| Marital Status |
|
|
|
|
<0.001 |
| Â Â Â Â Married |
1,924 (66%) |
1,255 (57%) |
759 (49%) |
277 (40%) |
|
| Â Â Â Â Unknown |
461 (16%) |
385 (17%) |
307 (20%) |
158 (23%) |
|
| Â Â Â Â Unmarried |
342 (12%) |
343 (16%) |
314 (20%) |
199 (28%) |
|
| Â Â Â Â DivorcedSeparated |
101 (3.4%) |
127 (5.7%) |
92 (6.0%) |
49 (7.0%) |
|
| Â Â Â Â Widow |
108 (3.7%) |
99 (4.5%) |
70 (4.5%) |
16 (2.3%) |
|
| Active Tobacco Use |
|
|
|
|
|
| Â Â Â Â No |
2,587 (91%) |
1,837 (88%) |
1,226 (84%) |
510 (79%) |
|
| Â Â Â Â Yes |
242 (8.6%) |
259 (12%) |
230 (16%) |
135 (21%) |
|
| Â Â Â Â NOT ASKED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â (Missing) |
107 |
113 |
86 |
54 |
|
| Charlson Comorbidity Index |
5.2 (5.7) |
5.6 (5.9) |
5.2 (5.6) |
5.1 (5.6) |
0.2 |
| Â Â Â Â (Missing) |
78 |
66 |
61 |
33 |
|
| Immunocompromised |
612 (45%) |
485 (50%) |
307 (52%) |
140 (55%) |
0.003 |
| Â Â Â Â (Missing) |
1,588 |
1,236 |
954 |
446 |
|
| Population Density |
1,760 (1,933) |
1,793 (2,117) |
2,053 (2,235) |
2,743 (2,567) |
<0.001 |
| Â Â Â Â (Missing) |
35 |
48 |
63 |
35 |
|
| Percent Republican |
47 (16) |
48 (17) |
48 (17) |
39 (21) |
<0.001 |
| Â Â Â Â (Missing) |
338 |
408 |
282 |
110 |
|
| Total Shingrix Vaccines |
|
|
|
|
|
| Â Â Â Â 0 |
2,182 (74%) |
1,779 (81%) |
1,311 (85%) |
633 (91%) |
|
| Â Â Â Â 1 |
146 (5.0%) |
75 (3.4%) |
67 (4.3%) |
19 (2.7%) |
|
| Â Â Â Â 2 |
557 (19%) |
327 (15%) |
153 (9.9%) |
39 (5.6%) |
|
| Â Â Â Â 3 |
47 (1.6%) |
24 (1.1%) |
9 (0.6%) |
6 (0.9%) |
|
| Â Â Â Â 4 |
4 (0.1%) |
4 (0.2%) |
1 (<0.1%) |
1 (0.1%) |
|
| Â Â Â Â 5 |
0 (0%) |
0 (0%) |
1 (<0.1%) |
1 (0.1%) |
|
| Fully Vaccinated |
608 (21%) |
355 (16%) |
164 (11%) |
47 (6.7%) |
<0.001 |
| Total SVI |
0.12 (0.07) |
0.37 (0.07) |
0.61 (0.07) |
0.86 (0.07) |
<0.001 |
| Soceioeconomic Status |
0.13 (0.11) |
0.34 (0.16) |
0.56 (0.15) |
0.77 (0.11) |
<0.001 |
| Â Â Â Â (Missing) |
25 |
0 |
0 |
0 |
|
| Household Composition |
0.22 (0.14) |
0.40 (0.21) |
0.60 (0.23) |
0.77 (0.19) |
<0.001 |
| Minority Status and Language |
0.40 (0.27) |
0.45 (0.28) |
0.50 (0.28) |
0.63 (0.25) |
<0.001 |
| Housing and Transportation |
0.19 (0.15) |
0.48 (0.20) |
0.64 (0.21) |
0.83 (0.16) |
<0.001 |
| Â Â Â Â (Missing) |
13 |
0 |
0 |
0 |
|
Shingrix Count (negative binomial models)
SVI Continuous
shingrix_nb <- glm.nb(total_shingrix ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEMES,
data = shingrix_clean1)
summary(shingrix_nb)
Call:
glm.nb(formula = total_shingrix ~ ibd_3 + age_yrs + gender +
race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob +
max_ch + IC + pop_dens + r_pct + RPL_THEMES, data = shingrix_clean1,
init.theta = 0.76526448, link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3407 -0.9215 -0.7885 0.4675 2.1666
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.098e-01 3.123e-01 -2.273 0.023046 *
ibd_3UC 1.119e-01 7.557e-02 1.481 0.138637
ibd_3Unspecified -1.547e-01 5.774e-01 -0.268 0.788818
age_yrs 1.341e-02 3.822e-03 3.510 0.000448 ***
genderFemale 1.413e-01 7.243e-02 1.951 0.051106 .
race_5Black -4.150e-01 1.779e-01 -2.333 0.019641 *
race_5Asian 1.995e-01 2.313e-01 0.863 0.388373
race_5Native -6.365e-02 5.178e-01 -0.123 0.902181
race_5Other -2.757e-02 2.355e-01 -0.117 0.906816
ethnic_3Hispanic 2.661e-01 2.665e-01 0.999 0.317974
lang_3Other -5.905e-01 3.739e-01 -1.579 0.114254
relig_affilNo -6.319e-03 7.822e-02 -0.081 0.935610
mstat_5Unknown -7.357e-02 9.848e-02 -0.747 0.455021
mstat_5Unmarried -1.654e-01 1.057e-01 -1.564 0.117798
mstat_5DivorcedSeparated -2.080e-01 1.828e-01 -1.138 0.255274
mstat_5Widow -5.358e-01 1.993e-01 -2.689 0.007177 **
act_tobYes -4.134e-01 1.342e-01 -3.082 0.002059 **
max_ch 6.984e-03 6.069e-03 1.151 0.249801
IC 2.262e-01 7.508e-02 3.013 0.002584 **
pop_dens -1.183e-05 1.950e-05 -0.606 0.544209
r_pct -1.531e-02 2.532e-03 -6.047 1.47e-09 ***
RPL_THEMES -7.466e-01 1.545e-01 -4.832 1.35e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.7653) family taken to be 1)
Null deviance: 2258.8 on 2609 degrees of freedom
Residual deviance: 2127.3 on 2588 degrees of freedom
(4855 observations deleted due to missingness)
AIC: 5213.7
Number of Fisher Scoring iterations: 1
Theta: 0.7653
Std. Err.: 0.0788
2 x log-likelihood: -5167.6870
broom::glance(shingrix_nb)
broom::tidy(shingrix_nb, exponentiate = TRUE)
model_performance(shingrix_nb)
# Indices of model performance
AIC | BIC | Nagelkerke's R2 | RMSE | Sigma | Score_log | Score_spherical
-----------------------------------------------------------------------------------
5213.687 | 5348.630 | 0.085 | 0.874 | 0.907 | -1.003 | 0.017
tbl_regression(shingrix_nb, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEMES ~ "Total SVI", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
IRR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.12 |
0.96, 1.30 |
0.14 |
| Â Â Â Â Unspecified |
0.86 |
0.26, 2.51 |
0.8 |
| Age |
1.01 |
1.01, 1.02 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.15 |
1.00, 1.33 |
0.051 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.66 |
0.46, 0.93 |
0.020 |
| Â Â Â Â Asian |
1.22 |
0.77, 1.93 |
0.4 |
| Â Â Â Â Native |
0.94 |
0.33, 2.58 |
>0.9 |
| Â Â Â Â Other |
0.97 |
0.61, 1.55 |
>0.9 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.30 |
0.77, 2.21 |
0.3 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.55 |
0.25, 1.14 |
0.11 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.99 |
0.85, 1.16 |
>0.9 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.93 |
0.76, 1.13 |
0.5 |
| Â Â Â Â Unmarried |
0.85 |
0.69, 1.04 |
0.12 |
| Â Â Â Â DivorcedSeparated |
0.81 |
0.57, 1.15 |
0.3 |
| Â Â Â Â Widow |
0.59 |
0.39, 0.86 |
0.007 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.66 |
0.51, 0.86 |
0.002 |
| Charlson Comorbidity Index |
1.01 |
1.0, 1.02 |
0.2 |
| Immunocompromised |
1.25 |
1.08, 1.45 |
0.003 |
| Population Density |
1.00 |
1.00, 1.00 |
0.5 |
| Percent Republican |
0.98 |
0.98, 0.99 |
<0.001 |
| Total SVI |
0.47 |
0.35, 0.64 |
<0.001 |
# NB Residual Plot
shingrix_nb_res <- resid(shingrix_nb)
plot(fitted(shingrix_nb), shingrix_nb_res, col='steelblue', pch=16,
xlab='Predicted Vaccines', ylab='Standardized Residuals', main='Negative Binomial')
abline(0,0)

# NB regression more appropriate because residuals of the model are smaller
# Likelihood ratio test
pchisq(2 * (logLik(shingrix_nb) - logLik(shingrix_nb)), df = 1, lower.tail = FALSE)
'log Lik.' 1 (df=23)
# p-value of loglik is < 0.05 so NB regression is the more appropriate model
performance::check_model(shingrix_nb, panel = TRUE)

SVI Quartiles
shingrix_nb2 <- glm.nb(total_shingrix ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_4,
data = shingrix_clean1)
summary(shingrix_nb2)
Call:
glm.nb(formula = total_shingrix ~ ibd_3 + age_yrs + gender +
race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob +
max_ch + IC + pop_dens + r_pct + RPL_4, data = shingrix_clean1,
init.theta = 0.7567736182, link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3208 -0.9197 -0.7949 0.4628 2.1532
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.861e-01 3.120e-01 -2.520 0.011740 *
ibd_3UC 1.175e-01 7.570e-02 1.552 0.120778
ibd_3Unspecified -1.906e-01 5.785e-01 -0.329 0.741837
age_yrs 1.336e-02 3.828e-03 3.491 0.000481 ***
genderFemale 1.475e-01 7.260e-02 2.032 0.042192 *
race_5Black -4.487e-01 1.788e-01 -2.510 0.012076 *
race_5Asian 2.093e-01 2.321e-01 0.902 0.367198
race_5Native -9.039e-02 5.198e-01 -0.174 0.861956
race_5Other -4.401e-02 2.362e-01 -0.186 0.852227
ethnic_3Hispanic 2.650e-01 2.676e-01 0.990 0.321965
lang_3Other -6.077e-01 3.748e-01 -1.622 0.104880
relig_affilNo -7.549e-03 7.836e-02 -0.096 0.923248
mstat_5Unknown -8.281e-02 9.872e-02 -0.839 0.401554
mstat_5Unmarried -1.716e-01 1.058e-01 -1.622 0.104754
mstat_5DivorcedSeparated -2.126e-01 1.828e-01 -1.163 0.244983
mstat_5Widow -5.388e-01 1.996e-01 -2.699 0.006951 **
act_tobYes -4.195e-01 1.342e-01 -3.127 0.001766 **
max_ch 6.852e-03 6.082e-03 1.127 0.259902
IC 2.233e-01 7.523e-02 2.968 0.002998 **
pop_dens -1.485e-05 1.956e-05 -0.759 0.447700
r_pct -1.538e-02 2.545e-03 -6.041 1.54e-09 ***
RPL_4Second -2.023e-01 8.337e-02 -2.426 0.015265 *
RPL_4Third -3.230e-01 1.029e-01 -3.138 0.001700 **
RPL_4Fourth -5.008e-01 1.570e-01 -3.190 0.001424 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.7568) family taken to be 1)
Null deviance: 2250.6 on 2609 degrees of freedom
Residual deviance: 2125.3 on 2586 degrees of freedom
(4855 observations deleted due to missingness)
AIC: 5223.3
Number of Fisher Scoring iterations: 1
Theta: 0.7568
Std. Err.: 0.0775
2 x log-likelihood: -5173.2960
broom::glance(shingrix_nb2)
broom::tidy(shingrix_nb2, exponentiate = TRUE)
model_performance(shingrix_nb2)
# Indices of model performance
AIC | BIC | Nagelkerke's R2 | RMSE | Sigma | Score_log | Score_spherical
-----------------------------------------------------------------------------------
5223.296 | 5369.973 | 0.081 | 0.875 | 0.907 | -1.005 | 0.017
tbl_regression(shingrix_nb2, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_4 ~ "SVI Quartile", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
IRR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.12 |
0.97, 1.31 |
0.12 |
| Â Â Â Â Unspecified |
0.83 |
0.25, 2.43 |
0.7 |
| Age |
1.01 |
1.01, 1.02 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.16 |
1.01, 1.34 |
0.042 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.64 |
0.45, 0.90 |
0.012 |
| Â Â Â Â Asian |
1.23 |
0.78, 1.96 |
0.4 |
| Â Â Â Â Native |
0.91 |
0.32, 2.52 |
0.9 |
| Â Â Â Â Other |
0.96 |
0.60, 1.52 |
0.9 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.30 |
0.77, 2.21 |
0.3 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.54 |
0.25, 1.13 |
0.10 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.99 |
0.85, 1.16 |
>0.9 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.92 |
0.76, 1.12 |
0.4 |
| Â Â Â Â Unmarried |
0.84 |
0.68, 1.04 |
0.10 |
| Â Â Â Â DivorcedSeparated |
0.81 |
0.56, 1.15 |
0.2 |
| Â Â Â Â Widow |
0.58 |
0.39, 0.86 |
0.007 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.66 |
0.50, 0.85 |
0.002 |
| Charlson Comorbidity Index |
1.01 |
1.0, 1.02 |
0.3 |
| Immunocompromised |
1.25 |
1.08, 1.45 |
0.003 |
| Population Density |
1.00 |
1.00, 1.00 |
0.4 |
| Percent Republican |
0.98 |
0.98, 0.99 |
<0.001 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.82 |
0.69, 0.96 |
0.015 |
| Â Â Â Â Third |
0.72 |
0.59, 0.89 |
0.002 |
| Â Â Â Â Fourth |
0.61 |
0.44, 0.82 |
0.001 |
performance::check_model(shingrix_nb2, panel = TRUE)

All themes
shingrix_nb3 <- glm.nb(total_shingrix ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEME1
+ RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
data = shingrix_clean1)
summary(shingrix_nb3)
Call:
glm.nb(formula = total_shingrix ~ ibd_3 + age_yrs + gender +
race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob +
max_ch + IC + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 +
RPL_THEME3 + RPL_THEME4, data = shingrix_clean1, init.theta = 0.7787687096,
link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3197 -0.9231 -0.7822 0.4586 2.2552
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.694e-01 3.411e-01 -2.256 0.024080 *
ibd_3UC 1.087e-01 7.541e-02 1.441 0.149495
ibd_3Unspecified -1.540e-01 5.744e-01 -0.268 0.788618
age_yrs 1.297e-02 3.819e-03 3.397 0.000681 ***
genderFemale 1.406e-01 7.226e-02 1.946 0.051624 .
race_5Black -3.933e-01 1.781e-01 -2.208 0.027222 *
race_5Asian 1.504e-01 2.317e-01 0.649 0.516253
race_5Native -2.970e-02 5.112e-01 -0.058 0.953679
race_5Other -2.716e-02 2.346e-01 -0.116 0.907833
ethnic_3Hispanic 2.453e-01 2.662e-01 0.921 0.356808
lang_3Other -6.164e-01 3.735e-01 -1.650 0.098855 .
relig_affilNo -8.496e-03 7.817e-02 -0.109 0.913447
mstat_5Unknown -6.201e-02 9.828e-02 -0.631 0.528073
mstat_5Unmarried -1.607e-01 1.056e-01 -1.522 0.128111
mstat_5DivorcedSeparated -1.963e-01 1.827e-01 -1.075 0.282468
mstat_5Widow -5.307e-01 1.990e-01 -2.667 0.007644 **
act_tobYes -4.098e-01 1.340e-01 -3.058 0.002228 **
max_ch 7.069e-03 6.055e-03 1.168 0.242990
IC 2.203e-01 7.497e-02 2.938 0.003298 **
pop_dens -1.005e-05 2.034e-05 -0.494 0.621114
r_pct -1.209e-02 2.991e-03 -4.042 5.3e-05 ***
RPL_THEME1 -3.936e-01 2.196e-01 -1.793 0.073050 .
RPL_THEME2 -4.660e-01 1.911e-01 -2.438 0.014768 *
RPL_THEME3 5.068e-02 1.491e-01 0.340 0.734003
RPL_THEME4 -9.555e-02 1.620e-01 -0.590 0.555320
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.7788) family taken to be 1)
Null deviance: 2271.7 on 2609 degrees of freedom
Residual deviance: 2132.1 on 2585 degrees of freedom
(4855 observations deleted due to missingness)
AIC: 5212.6
Number of Fisher Scoring iterations: 1
Theta: 0.7788
Std. Err.: 0.0811
2 x log-likelihood: -5160.5730
broom::glance(shingrix_nb3)
broom::tidy(shingrix_nb3, exponentiate = TRUE)
model_performance(shingrix_nb3)
# Indices of model performance
AIC | BIC | Nagelkerke's R2 | RMSE | Sigma | Score_log | Score_spherical
-----------------------------------------------------------------------------------
5212.573 | 5365.118 | 0.090 | 0.872 | 0.908 | -1.002 | 0.017
tbl_regression(shingrix_nb3, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
IRR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.11 |
0.96, 1.29 |
0.15 |
| Â Â Â Â Unspecified |
0.86 |
0.26, 2.50 |
0.8 |
| Age |
1.01 |
1.01, 1.02 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.15 |
1.00, 1.33 |
0.052 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.67 |
0.47, 0.95 |
0.027 |
| Â Â Â Â Asian |
1.16 |
0.74, 1.84 |
0.5 |
| Â Â Â Â Native |
0.97 |
0.34, 2.66 |
>0.9 |
| Â Â Â Â Other |
0.97 |
0.61, 1.54 |
>0.9 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.28 |
0.75, 2.16 |
0.4 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.54 |
0.25, 1.11 |
0.10 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.99 |
0.85, 1.16 |
>0.9 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.94 |
0.77, 1.14 |
0.5 |
| Â Â Â Â Unmarried |
0.85 |
0.69, 1.05 |
0.13 |
| Â Â Â Â DivorcedSeparated |
0.82 |
0.57, 1.17 |
0.3 |
| Â Â Â Â Widow |
0.59 |
0.40, 0.87 |
0.008 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.66 |
0.51, 0.86 |
0.002 |
| Charlson Comorbidity Index |
1.01 |
1.00, 1.02 |
0.2 |
| Immunocompromised |
1.25 |
1.08, 1.45 |
0.003 |
| Population Density |
1.00 |
1.00, 1.00 |
0.6 |
| Percent Republican |
0.99 |
0.98, 0.99 |
<0.001 |
| Soceioeconomic Status |
0.67 |
0.44, 1.04 |
0.073 |
| Household Composition |
0.63 |
0.43, 0.91 |
0.015 |
| Minority Status and Language |
1.05 |
0.78, 1.41 |
0.7 |
| Housing and Transportation |
0.91 |
0.66, 1.25 |
0.6 |
performance::check_model(shingrix_nb3, panel = TRUE)

Fully Vaccinated (logistic)
SVI Continuous
shingrix_full1 <- glm(full_shingrix ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEMES,
family = binomial,
data = shingrix_clean1)
summary(shingrix_full1)
Call:
glm(formula = full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_THEMES, family = binomial, data = shingrix_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3480 -0.7710 -0.6258 -0.3827 2.3826
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.746e-01 4.175e-01 -2.334 0.01958 *
ibd_3UC 1.231e-01 1.015e-01 1.212 0.22547
ibd_3Unspecified -1.721e-01 8.008e-01 -0.215 0.82987
age_yrs 1.589e-02 5.144e-03 3.088 0.00201 **
genderFemale 1.738e-01 9.749e-02 1.783 0.07461 .
race_5Black -5.162e-01 2.402e-01 -2.149 0.03165 *
race_5Asian 3.698e-01 3.044e-01 1.215 0.22439
race_5Native -9.060e-02 7.028e-01 -0.129 0.89743
race_5Other -1.457e-01 3.235e-01 -0.450 0.65255
ethnic_3Hispanic 4.587e-01 3.567e-01 1.286 0.19843
lang_3Other -7.416e-01 5.148e-01 -1.440 0.14975
relig_affilNo 6.335e-02 1.045e-01 0.606 0.54434
mstat_5Unknown -1.362e-01 1.337e-01 -1.019 0.30808
mstat_5Unmarried -2.537e-01 1.435e-01 -1.767 0.07721 .
mstat_5DivorcedSeparated -2.089e-01 2.439e-01 -0.856 0.39180
mstat_5Widow -5.383e-01 2.624e-01 -2.051 0.04026 *
act_tobYes -5.023e-01 1.841e-01 -2.728 0.00638 **
max_ch 9.487e-03 8.161e-03 1.162 0.24506
IC 3.168e-01 1.012e-01 3.131 0.00174 **
pop_dens -3.101e-05 2.638e-05 -1.175 0.23984
r_pct -2.317e-02 3.414e-03 -6.787 1.15e-11 ***
RPL_THEMES -1.157e+00 2.113e-01 -5.472 4.44e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2875.7 on 2609 degrees of freedom
Residual deviance: 2732.6 on 2588 degrees of freedom
(4855 observations deleted due to missingness)
AIC: 2776.6
Number of Fisher Scoring iterations: 4
broom::glance(shingrix_full1)
broom::tidy(shingrix_full1, exponentiate = TRUE)
model_performance(shingrix_full1)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
2776.622 | 2905.698 | 0.055 | 0.415 | 1.028 | 0.523 | -176.245 | 3.897e-04 | 0.655
tbl_regression(shingrix_full1, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEMES ~ "Total SVI", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.13 |
0.93, 1.38 |
0.2 |
| Â Â Â Â Unspecified |
0.84 |
0.12, 3.39 |
0.8 |
| Age |
1.02 |
1.01, 1.03 |
0.002 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.19 |
0.98, 1.44 |
0.075 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.60 |
0.37, 0.94 |
0.032 |
| Â Â Â Â Asian |
1.45 |
0.79, 2.61 |
0.2 |
| Â Â Â Â Native |
0.91 |
0.19, 3.31 |
0.9 |
| Â Â Â Â Other |
0.86 |
0.44, 1.59 |
0.7 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.58 |
0.77, 3.14 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.48 |
0.15, 1.21 |
0.15 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.07 |
0.87, 1.31 |
0.5 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.87 |
0.67, 1.13 |
0.3 |
| Â Â Â Â Unmarried |
0.78 |
0.58, 1.02 |
0.077 |
| Â Â Â Â DivorcedSeparated |
0.81 |
0.49, 1.29 |
0.4 |
| Â Â Â Â Widow |
0.58 |
0.34, 0.96 |
0.040 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.61 |
0.42, 0.86 |
0.006 |
| Charlson Comorbidity Index |
1.01 |
0.99, 1.03 |
0.2 |
| Immunocompromised |
1.37 |
1.13, 1.67 |
0.002 |
| Population Density |
1.00 |
1.00, 1.00 |
0.2 |
| Percent Republican |
0.98 |
0.97, 0.98 |
<0.001 |
| Total SVI |
0.31 |
0.21, 0.47 |
<0.001 |
performance::check_model(shingrix_full1, panel = TRUE)

SVI Quartiles
shingrix_full2 <- glm(full_shingrix ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_4,
family = binomial,
data = shingrix_clean1)
summary(shingrix_full2)
Call:
glm(formula = full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_4, family = binomial, data = shingrix_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3071 -0.7703 -0.6308 -0.3852 2.3398
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.124e+00 4.159e-01 -2.701 0.006905 **
ibd_3UC 1.300e-01 1.014e-01 1.282 0.199781
ibd_3Unspecified -2.157e-01 7.978e-01 -0.270 0.786862
age_yrs 1.590e-02 5.135e-03 3.095 0.001966 **
genderFemale 1.803e-01 9.741e-02 1.851 0.064172 .
race_5Black -5.500e-01 2.407e-01 -2.285 0.022340 *
race_5Asian 3.862e-01 3.044e-01 1.269 0.204483
race_5Native -1.214e-01 7.022e-01 -0.173 0.862788
race_5Other -1.628e-01 3.234e-01 -0.503 0.614744
ethnic_3Hispanic 4.662e-01 3.571e-01 1.306 0.191655
lang_3Other -7.571e-01 5.148e-01 -1.471 0.141377
relig_affilNo 6.346e-02 1.043e-01 0.608 0.543049
mstat_5Unknown -1.431e-01 1.335e-01 -1.072 0.283733
mstat_5Unmarried -2.672e-01 1.433e-01 -1.865 0.062200 .
mstat_5DivorcedSeparated -2.225e-01 2.435e-01 -0.914 0.360889
mstat_5Widow -5.423e-01 2.621e-01 -2.069 0.038519 *
act_tobYes -5.153e-01 1.839e-01 -2.802 0.005073 **
max_ch 9.333e-03 8.148e-03 1.145 0.252050
IC 3.143e-01 1.011e-01 3.109 0.001875 **
pop_dens -3.461e-05 2.636e-05 -1.313 0.189303
r_pct -2.318e-02 3.419e-03 -6.781 1.2e-11 ***
RPL_4Second -2.448e-01 1.107e-01 -2.210 0.027080 *
RPL_4Third -4.969e-01 1.403e-01 -3.542 0.000398 ***
RPL_4Fourth -8.249e-01 2.218e-01 -3.720 0.000200 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2875.7 on 2609 degrees of freedom
Residual deviance: 2740.1 on 2586 degrees of freedom
(4855 observations deleted due to missingness)
AIC: 2788.1
Number of Fisher Scoring iterations: 4
broom::glance(shingrix_full2)
broom::tidy(shingrix_full2, exponentiate = TRUE)
model_performance(shingrix_full2)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
2788.101 | 2928.912 | 0.052 | 0.416 | 1.029 | 0.525 | -175.945 | 3.833e-04 | 0.654
tbl_regression(shingrix_full2, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_4 ~ "SVI Quartile", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.14 |
0.93, 1.39 |
0.2 |
| Â Â Â Â Unspecified |
0.81 |
0.12, 3.22 |
0.8 |
| Age |
1.02 |
1.01, 1.03 |
0.002 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.20 |
0.99, 1.45 |
0.064 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.58 |
0.35, 0.91 |
0.022 |
| Â Â Â Â Asian |
1.47 |
0.80, 2.65 |
0.2 |
| Â Â Â Â Native |
0.89 |
0.19, 3.20 |
0.9 |
| Â Â Â Â Other |
0.85 |
0.44, 1.56 |
0.6 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.59 |
0.77, 3.17 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.47 |
0.15, 1.19 |
0.14 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.07 |
0.87, 1.31 |
0.5 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.87 |
0.66, 1.12 |
0.3 |
| Â Â Â Â Unmarried |
0.77 |
0.58, 1.01 |
0.062 |
| Â Â Â Â DivorcedSeparated |
0.80 |
0.49, 1.27 |
0.4 |
| Â Â Â Â Widow |
0.58 |
0.34, 0.96 |
0.039 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.60 |
0.41, 0.85 |
0.005 |
| Charlson Comorbidity Index |
1.01 |
0.99, 1.03 |
0.3 |
| Immunocompromised |
1.37 |
1.12, 1.67 |
0.002 |
| Population Density |
1.00 |
1.00, 1.00 |
0.2 |
| Percent Republican |
0.98 |
0.97, 0.98 |
<0.001 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.78 |
0.63, 0.97 |
0.027 |
| Â Â Â Â Third |
0.61 |
0.46, 0.80 |
<0.001 |
| Â Â Â Â Fourth |
0.44 |
0.28, 0.67 |
<0.001 |
performance::check_model(shingrix_full2, panel = TRUE)

All Themes
shingrix_full3 <- glm(full_shingrix ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEME1
+ RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
family = binomial,
data = shingrix_clean1)
summary(shingrix_full3)
Call:
glm(formula = full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4, family = binomial, data = shingrix_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3010 -0.7695 -0.6161 -0.3752 2.3850
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.096e+00 4.591e-01 -2.388 0.01694 *
ibd_3UC 1.214e-01 1.018e-01 1.192 0.23324
ibd_3Unspecified -1.582e-01 7.973e-01 -0.198 0.84276
age_yrs 1.561e-02 5.166e-03 3.021 0.00252 **
genderFemale 1.735e-01 9.772e-02 1.775 0.07589 .
race_5Black -4.768e-01 2.410e-01 -1.978 0.04788 *
race_5Asian 2.815e-01 3.066e-01 0.918 0.35859
race_5Native -9.599e-02 7.034e-01 -0.136 0.89146
race_5Other -1.664e-01 3.250e-01 -0.512 0.60874
ethnic_3Hispanic 4.400e-01 3.586e-01 1.227 0.21984
lang_3Other -7.794e-01 5.149e-01 -1.514 0.13006
relig_affilNo 6.467e-02 1.049e-01 0.616 0.53774
mstat_5Unknown -1.275e-01 1.342e-01 -0.950 0.34219
mstat_5Unmarried -2.527e-01 1.441e-01 -1.753 0.07952 .
mstat_5DivorcedSeparated -1.860e-01 2.445e-01 -0.761 0.44679
mstat_5Widow -5.317e-01 2.627e-01 -2.024 0.04296 *
act_tobYes -4.953e-01 1.845e-01 -2.685 0.00726 **
max_ch 9.513e-03 8.186e-03 1.162 0.24517
IC 3.100e-01 1.016e-01 3.052 0.00227 **
pop_dens -2.899e-05 2.757e-05 -1.052 0.29298
r_pct -1.801e-02 4.046e-03 -4.452 8.51e-06 ***
RPL_THEME1 -5.728e-01 2.974e-01 -1.926 0.05411 .
RPL_THEME2 -8.025e-01 2.600e-01 -3.086 0.00203 **
RPL_THEME3 8.795e-02 2.011e-01 0.437 0.66193
RPL_THEME4 -1.249e-01 2.202e-01 -0.567 0.57055
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2875.7 on 2609 degrees of freedom
Residual deviance: 2721.6 on 2585 degrees of freedom
(4855 observations deleted due to missingness)
AIC: 2771.6
Number of Fisher Scoring iterations: 4
broom::glance(shingrix_full3)
broom::tidy(shingrix_full3, exponentiate = TRUE)
model_performance(shingrix_full3)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
2771.594 | 2918.271 | 0.059 | 0.414 | 1.026 | 0.521 | -176.657 | 3.938e-04 | 0.657
tbl_regression(shingrix_full3, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.13 |
0.93, 1.38 |
0.2 |
| Â Â Â Â Unspecified |
0.85 |
0.13, 3.40 |
0.8 |
| Age |
1.02 |
1.01, 1.03 |
0.003 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.19 |
0.98, 1.44 |
0.076 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.62 |
0.38, 0.98 |
0.048 |
| Â Â Â Â Asian |
1.33 |
0.72, 2.40 |
0.4 |
| Â Â Â Â Native |
0.91 |
0.19, 3.30 |
0.9 |
| Â Â Â Â Other |
0.85 |
0.43, 1.56 |
0.6 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.55 |
0.75, 3.09 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.46 |
0.15, 1.16 |
0.13 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.07 |
0.87, 1.31 |
0.5 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.88 |
0.67, 1.14 |
0.3 |
| Â Â Â Â Unmarried |
0.78 |
0.58, 1.03 |
0.080 |
| Â Â Â Â DivorcedSeparated |
0.83 |
0.50, 1.32 |
0.4 |
| Â Â Â Â Widow |
0.59 |
0.34, 0.97 |
0.043 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.61 |
0.42, 0.87 |
0.007 |
| Charlson Comorbidity Index |
1.01 |
0.99, 1.03 |
0.2 |
| Immunocompromised |
1.36 |
1.12, 1.66 |
0.002 |
| Population Density |
1.00 |
1.00, 1.00 |
0.3 |
| Percent Republican |
0.98 |
0.97, 0.99 |
<0.001 |
| Soceioeconomic Status |
0.56 |
0.31, 1.01 |
0.054 |
| Household Composition |
0.45 |
0.27, 0.74 |
0.002 |
| Minority Status and Language |
1.09 |
0.74, 1.62 |
0.7 |
| Housing and Transportation |
0.88 |
0.57, 1.36 |
0.6 |
performance::check_model(shingrix_full3, panel = TRUE)

Mediation Analysis?
LS0tCnRpdGxlOiAiU2hpbmdyaXggTW9kZWxzIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lczogcGFwZXIKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwplZGl0b3Jfb3B0aW9uczoKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCmRhdGU6ICIyMDIyLTExLTI3IgotLS0KIyBMb2FkIFBhY2thZ2VzIApgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoY29kZWJvb2tyKQpsaWJyYXJ5KHN1bW1hcnl0b29scykKbGlicmFyeShicm9vbSkgCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkoZ3QpCmxpYnJhcnkoZ3RzdW1tYXJ5KQpsaWJyYXJ5KGphbml0b3IpCmxpYnJhcnkoZm9yY2F0cykKbGlicmFyeShoZXJlKQpsaWJyYXJ5KG1hcmdpbnMpCmxpYnJhcnkoZ2dwbG90MikKYGBgCgojIEltcG9ydCBEYXRhIApgYGB7cn0KbG9hZChmaWxlID0gIn4vRGVza3RvcC9SLUNvZGUvU0RPSF9WYXgvdmF4X2NsZWFuMS5yZGEiKQoKCmBgYAoKIyBEYXRhIGNsZWFuaW5nCmBgYHtyfQpzaGluZ3JpeDEgPC0gdmF4X2NsZWFuMVsgd2hpY2godmF4X2NsZWFuMSRhZ2VfeXJzID4gNDkuOTk5KSwgXQoKc2hpbmdyaXgxICU+JSAKbXV0YXRlKGZ1bGxfc2hpbmdyaXggPSBjYXNlX3doZW4odG90YWxfc2hpbmdyaXg+PSAyIH4gJzEnLFRSVUUgfiAiMCIpKSAtPiBzaGluZ3JpeF9jbGVhbjEKCnNoaW5ncml4X2NsZWFuMSRmdWxsX3NoaW5ncml4ID0gYXMubnVtZXJpYyhzaGluZ3JpeF9jbGVhbjEkZnVsbF9zaGluZ3JpeCkKYGBgCgojIEJhc2VsaW5lIENoYXJhY3RlcmlzdGljcyAKYGBge3J9CnNoaW5ncml4X2NsZWFuMSAlPiUgCiAgZHBseXI6OnNlbGVjdChpYmRfMywgYWdlX3lycywgZ2VuZGVyLCByYWNlXzUsIGV0aG5pY18zLCBsYW5nXzMsIHJlbGlnX2FmZmlsLCBtc3RhdF81LCBhY3RfdG9iLCBtYXhfY2gsIElDLCBwb3BfZGVucyxyX3BjdCwgdG90YWxfc2hpbmdyaXgsIGZ1bGxfc2hpbmdyaXgsIFJQTF9USEVNRVMsIFJQTF80LCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0KSAtPiBzaGluZ3JpeF9iYXNlbGluZQpzaGluZ3JpeF9iYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkobGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJpbWFyeSBMYW5ndWFnZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIFJQTF80IH4gIlNWSSBRdWFydGlsZXMiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCBhY3RfdG9iIH4iQWN0aXZlIFRvYmFjY28gVXNlIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgaWJkXzMgfiAiSUJEIFR5cGUiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIHRvdGFsX3NoaW5ncml4IH4gIlRvdGFsIFNoaW5ncml4IFZhY2NpbmVzIiwgZnVsbF9zaGluZ3JpeCB+ICJGdWxseSBWYWNjaW5hdGVkIiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikKYGBgCiMgQmFzZWxpbmUgY2hhcmFjdGVyaXN0aWNzIGJ5IFNWSSBRdWFydGlsZSAKYGBge3J9CnNoaW5ncml4X2Jhc2VsaW5lICU+JSAKdGJsX3N1bW1hcnkoYnkgPSBSUExfNCwKICAgICAgICAgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJpbWFyeSBMYW5ndWFnZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIFJQTF80IH4gIlNWSSBRdWFydGlsZXMiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCBhY3RfdG9iIH4iQWN0aXZlIFRvYmFjY28gVXNlIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgaWJkXzMgfiAiSUJEIFR5cGUiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIHRvdGFsX3NoaW5ncml4IH4gIlRvdGFsIFNoaW5ncml4IFZhY2NpbmVzIiwgZnVsbF9zaGluZ3JpeCB+ICJGdWxseSBWYWNjaW5hdGVkIiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikgJT4lIGFkZF9wKCkKYGBgCgojIFNoaW5ncml4IENvdW50IChuZWdhdGl2ZSBiaW5vbWlhbCBtb2RlbHMpIHsudGFic2V0fQoKIyMgU1ZJIENvbnRpbnVvdXMgCmBgYHtyfQpzaGluZ3JpeF9uYiA8LSBnbG0ubmIodG90YWxfc2hpbmdyaXggfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIGxhbmdfMyArIHJlbGlnX2FmZmlsICsgbXN0YXRfNSArIGFjdF90b2IgKyBtYXhfY2ggKyBJQyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUVTLAogICAgICAgICAgICAgICBkYXRhID0gc2hpbmdyaXhfY2xlYW4xKSAKc3VtbWFyeShzaGluZ3JpeF9uYikKYnJvb206OmdsYW5jZShzaGluZ3JpeF9uYikKYnJvb206OnRpZHkoc2hpbmdyaXhfbmIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHNoaW5ncml4X25iKQp0YmxfcmVncmVzc2lvbihzaGluZ3JpeF9uYiwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJhY2VfNSB+ICJSYWNlIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgojIE5CIFJlc2lkdWFsIFBsb3QKc2hpbmdyaXhfbmJfcmVzIDwtIHJlc2lkKHNoaW5ncml4X25iKQpwbG90KGZpdHRlZChzaGluZ3JpeF9uYiksIHNoaW5ncml4X25iX3JlcywgY29sPSdzdGVlbGJsdWUnLCBwY2g9MTYsCiAgICAgeGxhYj0nUHJlZGljdGVkIFZhY2NpbmVzJywgeWxhYj0nU3RhbmRhcmRpemVkIFJlc2lkdWFscycsIG1haW49J05lZ2F0aXZlIEJpbm9taWFsJykKYWJsaW5lKDAsMCkKIyBOQiByZWdyZXNzaW9uIG1vcmUgYXBwcm9wcmlhdGUgYmVjYXVzZSByZXNpZHVhbHMgb2YgdGhlIG1vZGVsIGFyZSBzbWFsbGVyIAoKIyBMaWtlbGlob29kIHJhdGlvIHRlc3QgCnBjaGlzcSgyICogKGxvZ0xpayhzaGluZ3JpeF9uYikgLSBsb2dMaWsoc2hpbmdyaXhfbmIpKSwgZGYgPSAxLCBsb3dlci50YWlsID0gRkFMU0UpCiMgcC12YWx1ZSBvZiBsb2dsaWsgaXMgPCAwLjA1IHNvIE5CIHJlZ3Jlc3Npb24gaXMgdGhlIG1vcmUgYXBwcm9wcmlhdGUgbW9kZWwgCgpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoc2hpbmdyaXhfbmIsIHBhbmVsID0gVFJVRSkKYGBgCiMjIFNWSSBRdWFydGlsZXMgCmBgYHtyfQpzaGluZ3JpeF9uYjIgPC0gZ2xtLm5iKHRvdGFsX3NoaW5ncml4IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgKyByZWxpZ19hZmZpbCArIG1zdGF0XzUgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMXzQsCiAgICAgICAgICAgICAgIGRhdGEgPSBzaGluZ3JpeF9jbGVhbjEpIApzdW1tYXJ5KHNoaW5ncml4X25iMikKYnJvb206OmdsYW5jZShzaGluZ3JpeF9uYjIpCmJyb29tOjp0aWR5KHNoaW5ncml4X25iMiwgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2Uoc2hpbmdyaXhfbmIyKQp0YmxfcmVncmVzc2lvbihzaGluZ3JpeF9uYjIsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCByYWNlXzUgfiAiUmFjZSIsIFJQTF80IH4gIlNWSSBRdWFydGlsZSIsIHJfcGN0IH4gIlBlcmNlbnQgUmVwdWJsaWNhbiIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiwgYWN0X3RvYiB+IkFjdGl2ZSBUb2JhY2NvIFVzZSIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIsIElDIH4gIkltbXVub2NvbXByb21pc2VkIiwgaWJkXzMgfiAiSUJEIFR5cGUiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChzaGluZ3JpeF9uYjIsIHBhbmVsID0gVFJVRSkKYGBgCiMjIEFsbCB0aGVtZXMgCmBgYHtyfQpzaGluZ3JpeF9uYjMgPC0gZ2xtLm5iKHRvdGFsX3NoaW5ncml4IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgKyByZWxpZ19hZmZpbCArIG1zdGF0XzUgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMX1RIRU1FMQogICAgICAgICAgICAgICAgICAgICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LAogICAgICAgICAgICAgICBkYXRhID0gc2hpbmdyaXhfY2xlYW4xKSAKc3VtbWFyeShzaGluZ3JpeF9uYjMpCmJyb29tOjpnbGFuY2Uoc2hpbmdyaXhfbmIzKQpicm9vbTo6dGlkeShzaGluZ3JpeF9uYjMsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHNoaW5ncml4X25iMykKdGJsX3JlZ3Jlc3Npb24oc2hpbmdyaXhfbmIzLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgcmFjZV81IH4gIlJhY2UiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHJfcGN0IH4gIlBlcmNlbnQgUmVwdWJsaWNhbiIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiwgYWN0X3RvYiB+IkFjdGl2ZSBUb2JhY2NvIFVzZSIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIsIElDIH4gIkltbXVub2NvbXByb21pc2VkIiwgaWJkXzMgfiAiSUJEIFR5cGUiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChzaGluZ3JpeF9uYjMsIHBhbmVsID0gVFJVRSkKYGBgCgoKIyBGdWxseSBWYWNjaW5hdGVkIChsb2dpc3RpYykgey50YWJzZXR9CiMjIFNWSSBDb250aW51b3VzIApgYGB7cn0Kc2hpbmdyaXhfZnVsbDEgPC0gZ2xtKGZ1bGxfc2hpbmdyaXggfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIGxhbmdfMyArIHJlbGlnX2FmZmlsICsgbXN0YXRfNSArIGFjdF90b2IgKyBtYXhfY2ggKyBJQyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUVTLAogICAgICAgICAgICAgICAgICAgZmFtaWx5ID0gYmlub21pYWwsIAogICAgICAgICAgICAgICBkYXRhID0gc2hpbmdyaXhfY2xlYW4xKSAKc3VtbWFyeShzaGluZ3JpeF9mdWxsMSkKYnJvb206OmdsYW5jZShzaGluZ3JpeF9mdWxsMSkKYnJvb206OnRpZHkoc2hpbmdyaXhfZnVsbDEsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHNoaW5ncml4X2Z1bGwxKQp0YmxfcmVncmVzc2lvbihzaGluZ3JpeF9mdWxsMSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJhY2VfNSB+ICJSYWNlIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoc2hpbmdyaXhfZnVsbDEsIHBhbmVsID0gVFJVRSkKCmBgYAoKIyMgU1ZJIFF1YXJ0aWxlcyAKYGBge3J9CnNoaW5ncml4X2Z1bGwyIDwtIGdsbShmdWxsX3NoaW5ncml4IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgKyByZWxpZ19hZmZpbCArIG1zdGF0XzUgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMXzQsCiAgICAgICAgICAgICAgICAgICBmYW1pbHkgPSBiaW5vbWlhbCwKICAgICAgICAgICAgICAgZGF0YSA9IHNoaW5ncml4X2NsZWFuMSkgCnN1bW1hcnkoc2hpbmdyaXhfZnVsbDIpCmJyb29tOjpnbGFuY2Uoc2hpbmdyaXhfZnVsbDIpCmJyb29tOjp0aWR5KHNoaW5ncml4X2Z1bGwyLCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZShzaGluZ3JpeF9mdWxsMikKdGJsX3JlZ3Jlc3Npb24oc2hpbmdyaXhfZnVsbDIsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCByYWNlXzUgfiAiUmFjZSIsIFJQTF80IH4gIlNWSSBRdWFydGlsZSIsIHJfcGN0IH4gIlBlcmNlbnQgUmVwdWJsaWNhbiIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiwgYWN0X3RvYiB+IkFjdGl2ZSBUb2JhY2NvIFVzZSIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIsIElDIH4gIkltbXVub2NvbXByb21pc2VkIiwgaWJkXzMgfiAiSUJEIFR5cGUiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChzaGluZ3JpeF9mdWxsMiwgcGFuZWwgPSBUUlVFKQpgYGAKCiMjIEFsbCBUaGVtZXMgCmBgYHtyfQpzaGluZ3JpeF9mdWxsMyA8LSBnbG0oZnVsbF9zaGluZ3JpeCB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICsgcmVsaWdfYWZmaWwgKyBtc3RhdF81ICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRTEKICAgICAgICAgICAgICAgICAgICArIFJQTF9USEVNRTIgKyBSUExfVEhFTUUzICsgUlBMX1RIRU1FNCwKICAgICAgICAgICAgICAgICAgIGZhbWlseSA9IGJpbm9taWFsLAogICAgICAgICAgICAgICBkYXRhID0gc2hpbmdyaXhfY2xlYW4xKSAKc3VtbWFyeShzaGluZ3JpeF9mdWxsMykKYnJvb206OmdsYW5jZShzaGluZ3JpeF9mdWxsMykKYnJvb206OnRpZHkoc2hpbmdyaXhfZnVsbDMsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHNoaW5ncml4X2Z1bGwzKQp0YmxfcmVncmVzc2lvbihzaGluZ3JpeF9mdWxsMywgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJhY2VfNSB+ICJSYWNlIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoc2hpbmdyaXhfZnVsbDMsIHBhbmVsID0gVFJVRSkKYGBgCiMgTWVkaWF0aW9uIEFuYWx5c2lzPwo=