Baseline characteristics
pneumo_clean1 %>%
dplyr::select(ibd_3, age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, act_tob, max_ch, IC, pop_dens,r_pct, pvax_2, prevnar_2, pneumo_count, pneumo_2, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4) -> pneumo_baseline
pneumo_baseline %>% tbl_summary(label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Primary Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", pop_dens ~ "Population Density", RPL_4 ~ "SVI Quartiles", r_pct ~ "Percent Republican", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", ibd_3 ~ "IBD Type", pvax_2 ~ "Pneumovax", prevnar_2 ~ "Prevnar", pneumo_count ~ "Total Pneumonia Vaccines", IC ~ "Immunocompromised", pneumo_2 ~ "Fully Vaccinated"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 15,208 |
| IBD Type |
|
| Â Â Â Â CD |
7,712 (51%) |
| Â Â Â Â UC |
7,345 (48%) |
| Â Â Â Â Unspecified |
151 (1.0%) |
| Age |
49 (19) |
| Gender |
|
| Â Â Â Â Male |
6,962 (46%) |
| Â Â Â Â Female |
8,246 (54%) |
| Race |
|
| Â Â Â Â White |
13,202 (87%) |
| Â Â Â Â Black |
946 (6.2%) |
| Â Â Â Â Asian |
373 (2.5%) |
| Â Â Â Â Native |
56 (0.4%) |
| Â Â Â Â Other |
631 (4.1%) |
| Ethnicity |
|
| Â Â Â Â NonHispanic |
14,371 (98%) |
| Â Â Â Â UNKNOWN |
0 (0%) |
| Â Â Â Â Hispanic |
299 (2.0%) |
| Â Â Â Â CHOOSE NOT TO DISCLOSE |
0 (0%) |
| Â Â Â Â (Missing) |
538 |
| Primary Language |
|
| Â Â Â Â English |
15,046 (99%) |
| Â Â Â Â Other |
162 (1.1%) |
| Any Religious Affiliation |
|
| Â Â Â Â Yes |
8,193 (57%) |
| Â Â Â Â No |
6,075 (43%) |
| Â Â Â Â UNKNOWN |
0 (0%) |
| Â Â Â Â PATIENT REFUSED |
0 (0%) |
| Â Â Â Â (Missing) |
940 |
| Marital Status |
|
| Â Â Â Â Married |
6,178 (41%) |
| Â Â Â Â Unknown |
3,226 (21%) |
| Â Â Â Â Unmarried |
4,990 (33%) |
| Â Â Â Â DivorcedSeparated |
507 (3.3%) |
| Â Â Â Â Widow |
307 (2.0%) |
| Active Tobacco Use |
|
| Â Â Â Â No |
12,593 (87%) |
| Â Â Â Â Yes |
1,878 (13%) |
| Â Â Â Â NOT ASKED |
0 (0%) |
| Â Â Â Â (Missing) |
737 |
| Charlson Comorbidity Index |
3.3 (4.9) |
| Â Â Â Â (Missing) |
435 |
| Immunocompromised |
4,890 (62%) |
| Â Â Â Â (Missing) |
7,372 |
| Population Density |
2,290 (4,016) |
| Â Â Â Â (Missing) |
629 |
| Percent Republican |
45 (18) |
| Â Â Â Â (Missing) |
2,265 |
| Pneumovax |
3,986 (26%) |
| Prevnar |
4,508 (30%) |
| Total Pneumonia Vaccines |
|
| Â Â Â Â 0 |
9,474 (62%) |
| Â Â Â Â 1 |
2,974 (20%) |
| Â Â Â Â 2 |
2,760 (18%) |
| Fully Vaccinated |
2,760 (18%) |
| Total SVI |
0.37 (0.26) |
| Â Â Â Â (Missing) |
288 |
| SVI Quartiles |
|
| Â Â Â Â First |
5,833 (39%) |
| Â Â Â Â Second |
4,492 (30%) |
| Â Â Â Â Third |
3,052 (20%) |
| Â Â Â Â Fourth |
1,543 (10%) |
| Â Â Â Â (Missing) |
288 |
| Soceioeconomic Status |
0.35 (0.26) |
| Â Â Â Â (Missing) |
338 |
| Household Composition |
0.40 (0.27) |
| Â Â Â Â (Missing) |
287 |
| Minority Status and Language |
0.48 (0.29) |
| Â Â Â Â (Missing) |
279 |
| Housing and Transportation |
0.44 (0.29) |
| Â Â Â Â (Missing) |
310 |
Bivariate Analysis
Total pneumonia count (negative binomial)
library(MASS)
tot_pneumo_biv <-
tbl_uvregression(
pneumo_clean1[c("pneumo_count", "ibd_3", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "mstat_5", "relig_affil", "act_tob", "max_ch", "IC", "pop_dens", "r_pct", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm.nb,
y = pneumo_count,
label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"),
exponentiate = TRUE)
Warning: iteration limit reachedWarning: iteration limit reached
print(tot_pneumo_biv, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
IRR |
95% CI |
p-value |
| IBD Type |
15,208 |
|
|
|
| Â Â Â Â CD |
|
— |
— |
|
| Â Â Â Â UC |
|
0.93 |
0.89, 0.97 |
0.002 |
| Â Â Â Â Unspecified |
|
0.36 |
0.25, 0.51 |
<0.001 |
| Age |
15,208 |
1.00 |
1.00, 1.01 |
<0.001 |
| Gender |
15,208 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
0.94 |
0.89, 0.98 |
0.005 |
| Race |
15,208 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
0.91 |
0.83, 1.01 |
0.069 |
| Â Â Â Â Asian |
|
1.04 |
0.90, 1.20 |
0.6 |
| Â Â Â Â Native |
|
0.95 |
0.63, 1.37 |
0.8 |
| Â Â Â Â Other |
|
0.79 |
0.70, 0.90 |
<0.001 |
| Ethnicity |
14,670 |
|
|
|
| Â Â Â Â NonHispanic |
|
— |
— |
|
| Â Â Â Â Hispanic |
|
0.97 |
0.82, 1.14 |
0.7 |
| Preferred Language |
15,208 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
0.77 |
0.60, 0.98 |
0.042 |
| Marital Status |
15,208 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Unknown |
|
0.79 |
0.74, 0.84 |
<0.001 |
| Â Â Â Â Unmarried |
|
0.88 |
0.83, 0.93 |
<0.001 |
| Â Â Â Â DivorcedSeparated |
|
0.90 |
0.79, 1.02 |
0.11 |
| Â Â Â Â Widow |
|
1.08 |
0.92, 1.25 |
0.3 |
| Any Religious Affiliation |
14,268 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
0.91 |
0.87, 0.96 |
<0.001 |
| Active Tobacco Use |
14,471 |
|
|
|
| Â Â Â Â No |
|
— |
— |
|
| Â Â Â Â Yes |
|
0.84 |
0.78, 0.90 |
<0.001 |
| Charlson Comorbidity Index |
14,773 |
1.03 |
1.03, 1.04 |
<0.001 |
| Immunocompromised |
7,836 |
1.60 |
1.51, 1.69 |
<0.001 |
| Population Density |
14,579 |
1.00 |
1.00, 1.00 |
0.7 |
| Percent Republican |
12,943 |
1.00 |
0.99, 1.00 |
<0.001 |
| Total SVI |
14,920 |
0.68 |
0.62, 0.75 |
<0.001 |
| Soceioeconomic Status |
14,870 |
0.68 |
0.62, 0.74 |
<0.001 |
| Household Composition |
14,921 |
0.65 |
0.59, 0.71 |
<0.001 |
| Minority Status and Language |
14,929 |
1.11 |
1.03, 1.21 |
0.008 |
| Housing and Transportation |
14,898 |
0.79 |
0.73, 0.85 |
<0.001 |
NULL
Fully vaccinated (logistic)
pneumo_full_biv <-
tbl_uvregression(
pneumo_clean1[c("pneumo_2", "ibd_3", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "mstat_5", "relig_affil", "act_tob", "max_ch", "IC", "pop_dens", "r_pct", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm,
y = pneumo_2,
method.args = list(family = binomial),
label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"),
exponentiate = TRUE)
print(pneumo_full_biv, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
OR |
95% CI |
p-value |
| IBD Type |
15,208 |
|
|
|
| Â Â Â Â CD |
|
— |
— |
|
| Â Â Â Â UC |
|
0.83 |
0.77, 0.90 |
<0.001 |
| Â Â Â Â Unspecified |
|
0.23 |
0.10, 0.44 |
<0.001 |
| Age |
15,208 |
1.00 |
1.00, 1.01 |
<0.001 |
| Gender |
15,208 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
0.91 |
0.84, 0.99 |
0.033 |
| Race |
15,208 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
0.81 |
0.67, 0.96 |
0.021 |
| Â Â Â Â Asian |
|
1.00 |
0.76, 1.29 |
>0.9 |
| Â Â Â Â Native |
|
0.95 |
0.45, 1.81 |
0.9 |
| Â Â Â Â Other |
|
0.67 |
0.53, 0.85 |
<0.001 |
| Ethnicity |
14,670 |
|
|
|
| Â Â Â Â NonHispanic |
|
— |
— |
|
| Â Â Â Â Hispanic |
|
0.89 |
0.65, 1.20 |
0.5 |
| Preferred Language |
15,208 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
0.49 |
0.28, 0.80 |
0.007 |
| Marital Status |
15,208 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Unknown |
|
0.72 |
0.64, 0.80 |
<0.001 |
| Â Â Â Â Unmarried |
|
0.82 |
0.75, 0.91 |
<0.001 |
| Â Â Â Â DivorcedSeparated |
|
0.78 |
0.61, 0.99 |
0.042 |
| Â Â Â Â Widow |
|
0.84 |
0.61, 1.12 |
0.2 |
| Any Religious Affiliation |
14,268 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
0.90 |
0.83, 0.98 |
0.020 |
| Active Tobacco Use |
14,471 |
|
|
|
| Â Â Â Â No |
|
— |
— |
|
| Â Â Â Â Yes |
|
0.74 |
0.65, 0.84 |
<0.001 |
| Charlson Comorbidity Index |
14,773 |
1.04 |
1.03, 1.05 |
<0.001 |
| Immunocompromised |
7,836 |
2.38 |
2.13, 2.66 |
<0.001 |
| Population Density |
14,579 |
1.00 |
1.00, 1.00 |
0.8 |
| Percent Republican |
12,943 |
0.99 |
0.99, 1.00 |
<0.001 |
| Total SVI |
14,920 |
0.57 |
0.48, 0.67 |
<0.001 |
| Soceioeconomic Status |
14,870 |
0.57 |
0.48, 0.67 |
<0.001 |
| Household Composition |
14,921 |
0.54 |
0.46, 0.63 |
<0.001 |
| Minority Status and Language |
14,929 |
1.19 |
1.03, 1.37 |
0.020 |
| Housing and Transportation |
14,898 |
0.67 |
0.58, 0.78 |
<0.001 |
NULL
Total Pneumonia count (negative binomial)
SVI Continuous
pneumo_nb <- glm.nb(pneumo_count ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEMES,
data = pneumo_clean1)
Warning: iteration limit reachedWarning: iteration limit reached
summary(pneumo_nb)
Call:
glm.nb(formula = pneumo_count ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_THEMES, data = pneumo_clean1,
init.theta = 14929.24052, link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2497 -1.1737 -0.1137 0.6613 2.3195
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.447e-01 8.449e-02 -6.448 1.14e-10 ***
ibd_3UC -4.394e-02 2.912e-02 -1.509 0.131358
ibd_3Unspecified -1.459e+00 4.089e-01 -3.568 0.000360 ***
age_yrs 8.317e-03 9.452e-04 8.798 < 2e-16 ***
genderFemale -1.206e-02 2.759e-02 -0.437 0.662010
race_5Black -2.314e-01 6.211e-02 -3.726 0.000194 ***
race_5Asian -1.486e-02 8.596e-02 -0.173 0.862768
race_5Native 7.400e-02 2.142e-01 0.345 0.729730
race_5Other -1.640e-01 8.508e-02 -1.928 0.053834 .
ethnic_3Hispanic 1.345e-01 9.605e-02 1.401 0.161318
lang_3Other -1.153e-01 1.499e-01 -0.769 0.441756
relig_affilNo -4.640e-02 2.863e-02 -1.621 0.105056
mstat_5Unknown -1.826e-01 3.995e-02 -4.572 4.83e-06 ***
mstat_5Unmarried -8.922e-02 3.649e-02 -2.445 0.014482 *
mstat_5DivorcedSeparated -3.791e-02 8.093e-02 -0.468 0.639429
mstat_5Widow -3.041e-01 1.055e-01 -2.881 0.003962 **
act_tobYes -4.880e-02 4.552e-02 -1.072 0.283735
max_ch 1.721e-02 2.879e-03 5.979 2.25e-09 ***
IC 5.850e-01 3.306e-02 17.694 < 2e-16 ***
pop_dens -7.902e-06 4.304e-06 -1.836 0.066330 .
r_pct -5.467e-03 8.878e-04 -6.158 7.36e-10 ***
RPL_THEMES -2.048e-01 5.703e-02 -3.592 0.000328 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(14929.24) family taken to be 1)
Null deviance: 7036.5 on 6407 degrees of freedom
Residual deviance: 6393.2 on 6386 degrees of freedom
(8800 observations deleted due to missingness)
AIC: 14617
Number of Fisher Scoring iterations: 1
Theta: 14929
Std. Err.: 27767
Warning while fitting theta: iteration limit reached
2 x log-likelihood: -14571.23
broom::glance(pneumo_nb)
broom::tidy(pneumo_nb, exponentiate = TRUE)
model_performance(pneumo_nb)
# Indices of model performance
AIC | BIC | Nagelkerke's R2 | RMSE | Sigma | Score_log | Score_spherical
-------------------------------------------------------------------------------------
14617.233 | 14772.835 | 0.143 | 0.800 | 1.001 | -1.182 | 0.011
tbl_regression(pneumo_nb, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEMES ~ "Total SVI", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
IRR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.96 |
0.90, 1.01 |
0.13 |
| Â Â Â Â Unspecified |
0.23 |
0.09, 0.47 |
<0.001 |
| Age |
1.01 |
1.01, 1.01 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.99 |
0.94, 1.04 |
0.7 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.79 |
0.70, 0.89 |
<0.001 |
| Â Â Â Â Asian |
0.99 |
0.83, 1.16 |
0.9 |
| Â Â Â Â Native |
1.08 |
0.69, 1.60 |
0.7 |
| Â Â Â Â Other |
0.85 |
0.72, 1.00 |
0.054 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.14 |
0.94, 1.37 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.89 |
0.66, 1.18 |
0.4 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.95 |
0.90, 1.01 |
0.11 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.83 |
0.77, 0.90 |
<0.001 |
| Â Â Â Â Unmarried |
0.91 |
0.85, 0.98 |
0.014 |
| Â Â Â Â DivorcedSeparated |
0.96 |
0.82, 1.12 |
0.6 |
| Â Â Â Â Widow |
0.74 |
0.60, 0.90 |
0.004 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.95 |
0.87, 1.04 |
0.3 |
| Charlson Comorbidity Index |
1.02 |
1.01, 1.02 |
<0.001 |
| Immunocompromised |
1.80 |
1.68, 1.92 |
<0.001 |
| Population Density |
1.00 |
1.00, 1.00 |
0.066 |
| Percent Republican |
1.0 |
0.99, 1.00 |
<0.001 |
| Total SVI |
0.81 |
0.73, 0.91 |
<0.001 |
# NB Residual Plot
pneumo_nb_res <- resid(pneumo_nb)
plot(fitted(pneumo_nb), pneumo_nb_res, col='steelblue', pch=16,
xlab='Predicted Vaccines', ylab='Standardized Residuals', main='Negative Binomial')
abline(0,0)

# NB regression more appropriate because residuals of the model are smaller
# Likelihood ratio test
pchisq(2 * (logLik(pneumo_nb) - logLik(pneumo_nb)), df = 1, lower.tail = FALSE)
'log Lik.' 1 (df=23)
# p-value of loglik is < 0.05 so NB regression is the more appropriate model
performance::check_model(pneumo_nb, panel = TRUE)

SVI Quartiles
pneumo_nb2 <- glm.nb(pneumo_count ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_4,
data = pneumo_clean1)
Warning: iteration limit reachedWarning: iteration limit reached
summary(pneumo_nb2)
Call:
glm.nb(formula = pneumo_count ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_4, data = pneumo_clean1, init.theta = 14928.06554,
link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.1836 -1.1733 -0.1180 0.6586 2.3274
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.531e-01 8.372e-02 -6.607 3.92e-11 ***
ibd_3UC -4.243e-02 2.913e-02 -1.456 0.145304
ibd_3Unspecified -1.467e+00 4.089e-01 -3.588 0.000333 ***
age_yrs 8.322e-03 9.454e-04 8.802 < 2e-16 ***
genderFemale -1.120e-02 2.759e-02 -0.406 0.684793
race_5Black -2.387e-01 6.232e-02 -3.831 0.000128 ***
race_5Asian -1.020e-02 8.597e-02 -0.119 0.905526
race_5Native 7.081e-02 2.142e-01 0.331 0.740952
race_5Other -1.676e-01 8.507e-02 -1.971 0.048778 *
ethnic_3Hispanic 1.306e-01 9.604e-02 1.360 0.173775
lang_3Other -1.195e-01 1.499e-01 -0.797 0.425289
relig_affilNo -4.562e-02 2.863e-02 -1.593 0.111108
mstat_5Unknown -1.821e-01 3.995e-02 -4.559 5.13e-06 ***
mstat_5Unmarried -8.872e-02 3.649e-02 -2.431 0.015043 *
mstat_5DivorcedSeparated -3.687e-02 8.091e-02 -0.456 0.648637
mstat_5Widow -3.045e-01 1.056e-01 -2.885 0.003918 **
act_tobYes -4.859e-02 4.550e-02 -1.068 0.285480
max_ch 1.735e-02 2.881e-03 6.022 1.72e-09 ***
IC 5.848e-01 3.306e-02 17.687 < 2e-16 ***
pop_dens -7.846e-06 4.298e-06 -1.826 0.067915 .
r_pct -5.401e-03 8.913e-04 -6.060 1.37e-09 ***
RPL_4Second -1.138e-01 3.280e-02 -3.471 0.000519 ***
RPL_4Third -1.182e-01 3.909e-02 -3.024 0.002498 **
RPL_4Fourth -1.489e-01 5.333e-02 -2.793 0.005223 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(14928.07) family taken to be 1)
Null deviance: 7036.5 on 6407 degrees of freedom
Residual deviance: 6387.5 on 6384 degrees of freedom
(8800 observations deleted due to missingness)
AIC: 14616
Number of Fisher Scoring iterations: 1
Theta: 14928
Std. Err.: 27709
Warning while fitting theta: iteration limit reached
2 x log-likelihood: -14565.5
broom::glance(pneumo_nb2)
broom::tidy(pneumo_nb2, exponentiate = TRUE)
model_performance(pneumo_nb2)
# Indices of model performance
AIC | BIC | Nagelkerke's R2 | RMSE | Sigma | Score_log | Score_spherical
-------------------------------------------------------------------------------------
14615.501 | 14784.634 | 0.145 | 0.799 | 1.000 | -1.182 | 0.011
tbl_regression(pneumo_nb2, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_4 ~ "SVI Quartile", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
IRR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.96 |
0.91, 1.01 |
0.15 |
| Â Â Â Â Unspecified |
0.23 |
0.09, 0.47 |
<0.001 |
| Age |
1.01 |
1.01, 1.01 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.99 |
0.94, 1.04 |
0.7 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.79 |
0.70, 0.89 |
<0.001 |
| Â Â Â Â Asian |
0.99 |
0.83, 1.17 |
>0.9 |
| Â Â Â Â Native |
1.07 |
0.68, 1.59 |
0.7 |
| Â Â Â Â Other |
0.85 |
0.71, 1.00 |
0.049 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.14 |
0.94, 1.37 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.89 |
0.65, 1.18 |
0.4 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.96 |
0.90, 1.01 |
0.11 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.83 |
0.77, 0.90 |
<0.001 |
| Â Â Â Â Unmarried |
0.92 |
0.85, 0.98 |
0.015 |
| Â Â Â Â DivorcedSeparated |
0.96 |
0.82, 1.13 |
0.6 |
| Â Â Â Â Widow |
0.74 |
0.60, 0.90 |
0.004 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.95 |
0.87, 1.04 |
0.3 |
| Charlson Comorbidity Index |
1.02 |
1.01, 1.02 |
<0.001 |
| Immunocompromised |
1.79 |
1.68, 1.92 |
<0.001 |
| Population Density |
1.00 |
1.00, 1.00 |
0.068 |
| Percent Republican |
1.0 |
0.99, 1.00 |
<0.001 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.89 |
0.84, 0.95 |
<0.001 |
| Â Â Â Â Third |
0.89 |
0.82, 0.96 |
0.002 |
| Â Â Â Â Fourth |
0.86 |
0.78, 0.96 |
0.005 |
performance::check_model(pneumo_nb2, panel = TRUE)

All themes
pneumo_nb3 <- glm.nb(pneumo_count ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEME1
+ RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
data = pneumo_clean1)
Warning: iteration limit reachedWarning: iteration limit reached
summary(pneumo_nb3)
Call:
glm.nb(formula = pneumo_count ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4, data = pneumo_clean1, init.theta = 14908.29627,
link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2810 -1.1726 -0.1110 0.6599 2.3658
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.413e-01 1.002e-01 -5.402 6.58e-08 ***
ibd_3UC -4.456e-02 2.914e-02 -1.529 0.126160
ibd_3Unspecified -1.457e+00 4.089e-01 -3.563 0.000367 ***
age_yrs 8.349e-03 9.453e-04 8.833 < 2e-16 ***
genderFemale -1.242e-02 2.759e-02 -0.450 0.652704
race_5Black -2.225e-01 6.250e-02 -3.559 0.000372 ***
race_5Asian -2.516e-02 8.656e-02 -0.291 0.771308
race_5Native 7.315e-02 2.142e-01 0.342 0.732725
race_5Other -1.669e-01 8.514e-02 -1.961 0.049910 *
ethnic_3Hispanic 1.287e-01 9.611e-02 1.339 0.180578
lang_3Other -1.331e-01 1.501e-01 -0.886 0.375473
relig_affilNo -4.723e-02 2.871e-02 -1.645 0.099950 .
mstat_5Unknown -1.837e-01 3.997e-02 -4.595 4.32e-06 ***
mstat_5Unmarried -9.096e-02 3.651e-02 -2.491 0.012731 *
mstat_5DivorcedSeparated -3.642e-02 8.094e-02 -0.450 0.652775
mstat_5Widow -3.060e-01 1.056e-01 -2.899 0.003749 **
act_tobYes -4.984e-02 4.556e-02 -1.094 0.274000
max_ch 1.720e-02 2.879e-03 5.976 2.28e-09 ***
IC 5.848e-01 3.309e-02 17.676 < 2e-16 ***
pop_dens -8.938e-06 4.488e-06 -1.991 0.046434 *
r_pct -4.710e-03 1.072e-03 -4.394 1.11e-05 ***
RPL_THEME1 -9.510e-03 8.082e-02 -0.118 0.906336
RPL_THEME2 -2.257e-01 7.147e-02 -3.158 0.001589 **
RPL_THEME3 -1.890e-02 5.784e-02 -0.327 0.743848
RPL_THEME4 -2.457e-02 6.052e-02 -0.406 0.684807
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(14908.3) family taken to be 1)
Null deviance: 7036.5 on 6407 degrees of freedom
Residual deviance: 6386.4 on 6383 degrees of freedom
(8800 observations deleted due to missingness)
AIC: 14616
Number of Fisher Scoring iterations: 1
Theta: 14908
Std. Err.: 27654
Warning while fitting theta: iteration limit reached
2 x log-likelihood: -14564.39
broom::glance(pneumo_nb3)
broom::tidy(pneumo_nb3, exponentiate = TRUE)
model_performance(pneumo_nb3)
# Indices of model performance
AIC | BIC | Nagelkerke's R2 | RMSE | Sigma | Score_log | Score_spherical
-------------------------------------------------------------------------------------
14616.389 | 14792.287 | 0.145 | 0.799 | 1.000 | -1.182 | 0.011
tbl_regression(pneumo_nb3, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
IRR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.96 |
0.90, 1.01 |
0.13 |
| Â Â Â Â Unspecified |
0.23 |
0.09, 0.47 |
<0.001 |
| Age |
1.01 |
1.01, 1.01 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.99 |
0.94, 1.04 |
0.7 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.80 |
0.71, 0.90 |
<0.001 |
| Â Â Â Â Asian |
0.98 |
0.82, 1.15 |
0.8 |
| Â Â Â Â Native |
1.08 |
0.69, 1.59 |
0.7 |
| Â Â Â Â Other |
0.85 |
0.71, 1.00 |
0.050 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.14 |
0.94, 1.37 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.88 |
0.64, 1.16 |
0.4 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.95 |
0.90, 1.01 |
0.10 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.83 |
0.77, 0.90 |
<0.001 |
| Â Â Â Â Unmarried |
0.91 |
0.85, 0.98 |
0.013 |
| Â Â Â Â DivorcedSeparated |
0.96 |
0.82, 1.13 |
0.7 |
| Â Â Â Â Widow |
0.74 |
0.60, 0.90 |
0.004 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.95 |
0.87, 1.04 |
0.3 |
| Charlson Comorbidity Index |
1.02 |
1.01, 1.02 |
<0.001 |
| Immunocompromised |
1.79 |
1.68, 1.92 |
<0.001 |
| Population Density |
1.00 |
1.00, 1.00 |
0.046 |
| Percent Republican |
1.00 |
0.99, 1.00 |
<0.001 |
| Soceioeconomic Status |
0.99 |
0.85, 1.16 |
>0.9 |
| Household Composition |
0.80 |
0.69, 0.92 |
0.002 |
| Minority Status and Language |
0.98 |
0.88, 1.10 |
0.7 |
| Housing and Transportation |
0.98 |
0.87, 1.10 |
0.7 |
performance::check_model(pneumo_nb3, panel = TRUE)

Fully Vaccinated (logistic regression)
SVI Continuous
pneumo_full1 <- glm(pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEMES,
family = binomial,
data = pneumo_clean1)
summary(pneumo_full1)
Call:
glm(formula = pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_THEMES, family = binomial, data = pneumo_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6919 -0.8492 -0.6649 1.2255 2.5357
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.346e+00 1.771e-01 -7.597 3.04e-14 ***
ibd_3UC -1.220e-01 6.120e-02 -1.994 0.046205 *
ibd_3Unspecified -2.528e+00 1.022e+00 -2.473 0.013408 *
age_yrs 1.298e-02 2.012e-03 6.454 1.09e-10 ***
genderFemale -3.080e-02 5.781e-02 -0.533 0.594171
race_5Black -4.746e-01 1.285e-01 -3.693 0.000222 ***
race_5Asian -4.251e-02 1.782e-01 -0.239 0.811456
race_5Native 2.150e-01 4.613e-01 0.466 0.641251
race_5Other -4.468e-01 1.802e-01 -2.480 0.013142 *
ethnic_3Hispanic 2.652e-01 2.032e-01 1.305 0.191846
lang_3Other -4.036e-01 3.258e-01 -1.239 0.215476
relig_affilNo -9.831e-02 5.963e-02 -1.649 0.099228 .
mstat_5Unknown -3.577e-01 8.294e-02 -4.313 1.61e-05 ***
mstat_5Unmarried -2.361e-01 7.683e-02 -3.073 0.002117 **
mstat_5DivorcedSeparated -2.571e-01 1.769e-01 -1.454 0.145999
mstat_5Widow -8.491e-01 2.384e-01 -3.561 0.000369 ***
act_tobYes -8.724e-02 9.414e-02 -0.927 0.354058
max_ch 3.070e-02 6.339e-03 4.843 1.28e-06 ***
IC 1.089e+00 7.010e-02 15.534 < 2e-16 ***
pop_dens -1.648e-05 9.272e-06 -1.777 0.075512 .
r_pct -1.034e-02 1.887e-03 -5.481 4.22e-08 ***
RPL_THEMES -3.919e-01 1.192e-01 -3.287 0.001011 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7714.8 on 6407 degrees of freedom
Residual deviance: 7233.7 on 6386 degrees of freedom
(8800 observations deleted due to missingness)
AIC: 7277.7
Number of Fisher Scoring iterations: 5
broom::glance(pneumo_full1)
broom::tidy(pneumo_full1, exponentiate = TRUE)
model_performance(pneumo_full1)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
7277.714 | 7426.550 | 0.072 | 0.437 | 1.064 | 0.564 | -Inf | 2.066e-04 | 0.618
tbl_regression(pneumo_full1, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEMES ~ "Total SVI", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.89 |
0.79, 1.00 |
0.046 |
| Â Â Â Â Unspecified |
0.08 |
0.00, 0.38 |
0.013 |
| Age |
1.01 |
1.01, 1.02 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.97 |
0.87, 1.09 |
0.6 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.62 |
0.48, 0.80 |
<0.001 |
| Â Â Â Â Asian |
0.96 |
0.67, 1.35 |
0.8 |
| Â Â Â Â Native |
1.24 |
0.48, 2.99 |
0.6 |
| Â Â Â Â Other |
0.64 |
0.45, 0.90 |
0.013 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.30 |
0.87, 1.93 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.67 |
0.34, 1.23 |
0.2 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.91 |
0.81, 1.02 |
0.10 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.70 |
0.59, 0.82 |
<0.001 |
| Â Â Â Â Unmarried |
0.79 |
0.68, 0.92 |
0.002 |
| Â Â Â Â DivorcedSeparated |
0.77 |
0.54, 1.09 |
0.15 |
| Â Â Â Â Widow |
0.43 |
0.26, 0.67 |
<0.001 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.92 |
0.76, 1.10 |
0.4 |
| Charlson Comorbidity Index |
1.03 |
1.02, 1.04 |
<0.001 |
| Immunocompromised |
2.97 |
2.59, 3.41 |
<0.001 |
| Population Density |
1.00 |
1.00, 1.00 |
0.076 |
| Percent Republican |
0.99 |
0.99, 0.99 |
<0.001 |
| Total SVI |
0.68 |
0.53, 0.85 |
0.001 |
performance::check_model(pneumo_full1, panel = TRUE)

SVI Quartiles
covid_full3 <- glm(pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_4,
family = binomial,
data = pneumo_clean1)
summary(covid_full3)
Call:
glm(formula = pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_4, family = binomial, data = pneumo_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6388 -0.8494 -0.6612 1.2209 2.5394
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.369e+00 1.756e-01 -7.795 6.43e-15 ***
ibd_3UC -1.176e-01 6.126e-02 -1.919 0.054952 .
ibd_3Unspecified -2.539e+00 1.023e+00 -2.483 0.013029 *
age_yrs 1.302e-02 2.012e-03 6.470 9.77e-11 ***
genderFemale -2.839e-02 5.785e-02 -0.491 0.623635
race_5Black -5.006e-01 1.291e-01 -3.878 0.000105 ***
race_5Asian -2.759e-02 1.784e-01 -0.155 0.877107
race_5Native 2.086e-01 4.628e-01 0.451 0.652118
race_5Other -4.561e-01 1.802e-01 -2.531 0.011380 *
ethnic_3Hispanic 2.546e-01 2.035e-01 1.251 0.210954
lang_3Other -4.161e-01 3.265e-01 -1.274 0.202512
relig_affilNo -9.684e-02 5.967e-02 -1.623 0.104598
mstat_5Unknown -3.558e-01 8.298e-02 -4.288 1.80e-05 ***
mstat_5Unmarried -2.350e-01 7.687e-02 -3.057 0.002236 **
mstat_5DivorcedSeparated -2.535e-01 1.769e-01 -1.433 0.151745
mstat_5Widow -8.473e-01 2.385e-01 -3.553 0.000381 ***
act_tobYes -8.919e-02 9.412e-02 -0.948 0.343365
max_ch 3.098e-02 6.344e-03 4.884 1.04e-06 ***
IC 1.090e+00 7.014e-02 15.536 < 2e-16 ***
pop_dens -1.605e-05 9.205e-06 -1.743 0.081283 .
r_pct -1.003e-02 1.892e-03 -5.303 1.14e-07 ***
RPL_4Second -2.222e-01 6.873e-02 -3.233 0.001227 **
RPL_4Third -2.815e-01 8.238e-02 -3.417 0.000633 ***
RPL_4Fourth -2.123e-01 1.099e-01 -1.932 0.053377 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7714.8 on 6407 degrees of freedom
Residual deviance: 7227.5 on 6384 degrees of freedom
(8800 observations deleted due to missingness)
AIC: 7275.5
Number of Fisher Scoring iterations: 5
broom::glance(covid_full3)
broom::tidy(covid_full3, exponentiate = TRUE)
model_performance(covid_full3)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
7275.486 | 7437.853 | 0.073 | 0.437 | 1.064 | 0.564 | -Inf | 1.871e-04 | 0.618
tbl_regression(covid_full3, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_4 ~ "SVI Quartile", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.89 |
0.79, 1.00 |
0.055 |
| Â Â Â Â Unspecified |
0.08 |
0.00, 0.38 |
0.013 |
| Age |
1.01 |
1.01, 1.02 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.97 |
0.87, 1.09 |
0.6 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.61 |
0.47, 0.78 |
<0.001 |
| Â Â Â Â Asian |
0.97 |
0.68, 1.37 |
0.9 |
| Â Â Â Â Native |
1.23 |
0.47, 2.98 |
0.7 |
| Â Â Â Â Other |
0.63 |
0.44, 0.90 |
0.011 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.29 |
0.86, 1.91 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.66 |
0.33, 1.22 |
0.2 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.91 |
0.81, 1.02 |
0.10 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.70 |
0.60, 0.82 |
<0.001 |
| Â Â Â Â Unmarried |
0.79 |
0.68, 0.92 |
0.002 |
| Â Â Â Â DivorcedSeparated |
0.78 |
0.55, 1.09 |
0.2 |
| Â Â Â Â Widow |
0.43 |
0.26, 0.68 |
<0.001 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.91 |
0.76, 1.10 |
0.3 |
| Charlson Comorbidity Index |
1.03 |
1.02, 1.04 |
<0.001 |
| Immunocompromised |
2.97 |
2.59, 3.41 |
<0.001 |
| Population Density |
1.00 |
1.00, 1.00 |
0.081 |
| Percent Republican |
0.99 |
0.99, 0.99 |
<0.001 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.80 |
0.70, 0.92 |
0.001 |
| Â Â Â Â Third |
0.75 |
0.64, 0.89 |
<0.001 |
| Â Â Â Â Fourth |
0.81 |
0.65, 1.00 |
0.053 |
performance::check_model(covid_full3, panel = TRUE)

All Themes
pneummo_full3 <- glm(pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch + IC + pop_dens + r_pct + RPL_THEME1
+ RPL_THEME2 + RPL_THEME3 + RPL_THEME4,
family = binomial,
data = pneumo_clean1)
summary(pneummo_full3)
Call:
glm(formula = pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + lang_3 + relig_affil + mstat_5 + act_tob + max_ch +
IC + pop_dens + r_pct + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4, family = binomial, data = pneumo_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7027 -0.8493 -0.6610 1.2170 2.5748
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.305e+00 2.108e-01 -6.192 5.95e-10 ***
ibd_3UC -1.228e-01 6.127e-02 -2.005 0.045003 *
ibd_3Unspecified -2.522e+00 1.022e+00 -2.466 0.013653 *
age_yrs 1.306e-02 2.013e-03 6.488 8.70e-11 ***
genderFemale -3.186e-02 5.785e-02 -0.551 0.581852
race_5Black -4.687e-01 1.294e-01 -3.621 0.000294 ***
race_5Asian -5.635e-02 1.794e-01 -0.314 0.753490
race_5Native 2.123e-01 4.613e-01 0.460 0.645399
race_5Other -4.539e-01 1.804e-01 -2.515 0.011896 *
ethnic_3Hispanic 2.557e-01 2.036e-01 1.256 0.208976
lang_3Other -4.459e-01 3.266e-01 -1.365 0.172101
relig_affilNo -9.982e-02 5.984e-02 -1.668 0.095310 .
mstat_5Unknown -3.600e-01 8.303e-02 -4.335 1.46e-05 ***
mstat_5Unmarried -2.390e-01 7.693e-02 -3.107 0.001893 **
mstat_5DivorcedSeparated -2.568e-01 1.769e-01 -1.452 0.146583
mstat_5Widow -8.526e-01 2.386e-01 -3.574 0.000352 ***
act_tobYes -9.212e-02 9.428e-02 -0.977 0.328518
max_ch 3.083e-02 6.344e-03 4.860 1.17e-06 ***
IC 1.089e+00 7.017e-02 15.525 < 2e-16 ***
pop_dens -1.959e-05 1.003e-05 -1.954 0.050727 .
r_pct -9.281e-03 2.273e-03 -4.084 4.44e-05 ***
RPL_THEME1 7.734e-02 1.701e-01 0.455 0.649370
RPL_THEME2 -4.546e-01 1.496e-01 -3.038 0.002383 **
RPL_THEME3 -5.362e-02 1.213e-01 -0.442 0.658510
RPL_THEME4 -1.194e-01 1.269e-01 -0.941 0.346689
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7714.8 on 6407 degrees of freedom
Residual deviance: 7227.3 on 6383 degrees of freedom
(8800 observations deleted due to missingness)
AIC: 7277.3
Number of Fisher Scoring iterations: 5
broom::glance(pneummo_full3)
broom::tidy(pneummo_full3, exponentiate = TRUE)
model_performance(pneummo_full3)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
7277.291 | 7446.424 | 0.073 | 0.437 | 1.064 | 0.564 | -Inf | 1.724e-04 | 0.618
tbl_regression(pneummo_full3, label = list(age_yrs ~ "Age", gender~ "Gender", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", race_5 ~ "Race", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", r_pct ~ "Percent Republican", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", pop_dens ~ "Population Density", act_tob ~"Active Tobacco Use", max_ch ~ "Charlson Comorbidity Index", IC ~ "Immunocompromised", ibd_3 ~ "IBD Type"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| IBD Type |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.88 |
0.78, 1.00 |
0.045 |
| Â Â Â Â Unspecified |
0.08 |
0.00, 0.38 |
0.014 |
| Age |
1.01 |
1.01, 1.02 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.97 |
0.86, 1.09 |
0.6 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.63 |
0.48, 0.80 |
<0.001 |
| Â Â Â Â Asian |
0.95 |
0.66, 1.34 |
0.8 |
| Â Â Â Â Native |
1.24 |
0.48, 2.98 |
0.6 |
| Â Â Â Â Other |
0.64 |
0.44, 0.90 |
0.012 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.29 |
0.86, 1.91 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.64 |
0.32, 1.18 |
0.2 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.90 |
0.80, 1.02 |
0.10 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
0.70 |
0.59, 0.82 |
<0.001 |
| Â Â Â Â Unmarried |
0.79 |
0.68, 0.92 |
0.002 |
| Â Â Â Â DivorcedSeparated |
0.77 |
0.54, 1.09 |
0.15 |
| Â Â Â Â Widow |
0.43 |
0.26, 0.67 |
<0.001 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.91 |
0.76, 1.10 |
0.3 |
| Charlson Comorbidity Index |
1.03 |
1.02, 1.04 |
<0.001 |
| Immunocompromised |
2.97 |
2.59, 3.41 |
<0.001 |
| Population Density |
1.00 |
1.00, 1.00 |
0.051 |
| Percent Republican |
0.99 |
0.99, 1.00 |
<0.001 |
| Soceioeconomic Status |
1.08 |
0.77, 1.51 |
0.6 |
| Household Composition |
0.63 |
0.47, 0.85 |
0.002 |
| Minority Status and Language |
0.95 |
0.75, 1.20 |
0.7 |
| Housing and Transportation |
0.89 |
0.69, 1.14 |
0.3 |
performance::check_model(pneummo_full3, panel = TRUE)

LS0tCnRpdGxlOiAiUG5ldW1vbmlhIE1vZGVscyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZXM6IHBhcGVyCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQpkYXRlOiAnMjAyMi0xMS0yNycKLS0tCiMgTG9hZCBQYWNrYWdlcyAKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGNvZGVib29rcikKbGlicmFyeShzdW1tYXJ5dG9vbHMpCmxpYnJhcnkoYnJvb20pIApsaWJyYXJ5KHBlcmZvcm1hbmNlKQpsaWJyYXJ5KGd0KQpsaWJyYXJ5KGd0c3VtbWFyeSkKbGlicmFyeShqYW5pdG9yKQpsaWJyYXJ5KGZvcmNhdHMpCmxpYnJhcnkoaGVyZSkKbGlicmFyeShtYXJnaW5zKQpsaWJyYXJ5KGdncGxvdDIpCmBgYAoKIyBJbXBvcnQgRGF0YSAKYGBge3J9CmxvYWQoZmlsZSA9ICJ+L0Rlc2t0b3AvUi1Db2RlL1NET0hfVmF4L3ZheF9jbGVhbjEucmRhIikKCgpgYGAKCgpEYXRhIENsZWFuaW5nCmBgYHtyfQp2YXhfY2xlYW4xICU+JSAKbXV0YXRlKHB2YXhfMiA9IGNhc2Vfd2hlbihwdmF4Pj0gMSB+ICcxJyxUUlVFIH4gIjAiKSkgJT4lIAogIG11dGF0ZShwcmV2bmFyXzIgPSBjYXNlX3doZW4ocHJldm5hcj49IDEgfiAnMScsVFJVRSB+ICIwIikpIC0+IHBuZXVtb18xCgpwbmV1bW9fMSRwdmF4XzIgPSBhcy5udW1lcmljKHBuZXVtb18xJHB2YXhfMikKcG5ldW1vXzEkcHJldm5hcl8yID0gYXMubnVtZXJpYyhwbmV1bW9fMSRwcmV2bmFyXzIpCgpwbmV1bW9fMSAlPiUgCiAgbXV0YXRlKHBuZXVtb19jb3VudCA9IHB2YXhfMiArIHByZXZuYXJfMikgLT4gcG5ldW1vX2NsZWFuCgpwbmV1bW9fY2xlYW4gJT4lIAogIG11dGF0ZShwbmV1bW9fMiA9IGNhc2Vfd2hlbihwbmV1bW9fY291bnQ+PSAyIH4gJzEnLFRSVUUgfiAiMCIpKSAtPiBwbmV1bW9fY2xlYW4xCgpwbmV1bW9fY2xlYW4xJHBuZXVtb18yID0gYXMubnVtZXJpYyhwbmV1bW9fY2xlYW4xJHBuZXVtb18yKQoKICAKYGBgCgojIEJhc2VsaW5lIGNoYXJhY3RlcmlzdGljcyAKYGBge3J9CnBuZXVtb19jbGVhbjEgJT4lIAogIGRwbHlyOjpzZWxlY3QoaWJkXzMsIGFnZV95cnMsIGdlbmRlciwgcmFjZV81LCBldGhuaWNfMywgbGFuZ18zLCByZWxpZ19hZmZpbCwgbXN0YXRfNSwgYWN0X3RvYiwgbWF4X2NoLCBJQywgcG9wX2RlbnMscl9wY3QsIHB2YXhfMiwgcHJldm5hcl8yLCBwbmV1bW9fY291bnQsIHBuZXVtb18yLCBSUExfVEhFTUVTLCBSUExfNCwgUlBMX1RIRU1FMSwgUlBMX1RIRU1FMiwgUlBMX1RIRU1FMywgUlBMX1RIRU1FNCkgLT4gcG5ldW1vX2Jhc2VsaW5lCnBuZXVtb19iYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkobGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJpbWFyeSBMYW5ndWFnZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIFJQTF80IH4gIlNWSSBRdWFydGlsZXMiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCBhY3RfdG9iIH4iQWN0aXZlIFRvYmFjY28gVXNlIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgaWJkXzMgfiAiSUJEIFR5cGUiLCBwdmF4XzIgfiAiUG5ldW1vdmF4IiwgcHJldm5hcl8yIH4gIlByZXZuYXIiLCBwbmV1bW9fY291bnQgfiAiVG90YWwgUG5ldW1vbmlhIFZhY2NpbmVzIiwgSUMgfiAiSW1tdW5vY29tcHJvbWlzZWQiLCBwbmV1bW9fMiB+ICJGdWxseSBWYWNjaW5hdGVkIiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikKYGBgCiMgQml2YXJpYXRlIEFuYWx5c2lzIHsudGFic2V0fQojIyBUb3RhbCBwbmV1bW9uaWEgY291bnQgKG5lZ2F0aXZlIGJpbm9taWFsKQpgYGB7cn0KbGlicmFyeShNQVNTKQp0b3RfcG5ldW1vX2JpdiA8LQogIHRibF91dnJlZ3Jlc3Npb24oCiAgICBwbmV1bW9fY2xlYW4xW2MoInBuZXVtb19jb3VudCIsICJpYmRfMyIsICJhZ2VfeXJzIiwgImdlbmRlciIsICJyYWNlXzUiLCAiZXRobmljXzMiLCAibGFuZ18zIiwgIm1zdGF0XzUiLCAicmVsaWdfYWZmaWwiLCAiYWN0X3RvYiIsICJtYXhfY2giLCAiSUMiLCAicG9wX2RlbnMiLCAicl9wY3QiLCAiUlBMX1RIRU1FUyIsICJSUExfVEhFTUUxIiwgIlJQTF9USEVNRTIiLCAiUlBMX1RIRU1FMyIsICJSUExfVEhFTUU0IildLAogICAgbWV0aG9kID0gZ2xtLm5iLAogICAgeSA9IHBuZXVtb19jb3VudCwKICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCByYWNlXzUgfiAiUmFjZSIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksCiAgZXhwb25lbnRpYXRlID0gVFJVRSkKcHJpbnQodG90X3BuZXVtb19iaXYsIG1ldGhvZCA9IHJlbmRlcikKYGBgCgojIyBGdWxseSB2YWNjaW5hdGVkIChsb2dpc3RpYykKYGBge3J9CnBuZXVtb19mdWxsX2JpdiA8LQogIHRibF91dnJlZ3Jlc3Npb24oCiAgICBwbmV1bW9fY2xlYW4xW2MoInBuZXVtb18yIiwgImliZF8zIiwgImFnZV95cnMiLCAiZ2VuZGVyIiwgInJhY2VfNSIsICJldGhuaWNfMyIsICJsYW5nXzMiLCAibXN0YXRfNSIsICJyZWxpZ19hZmZpbCIsICJhY3RfdG9iIiwgIm1heF9jaCIsICJJQyIsICJwb3BfZGVucyIsICJyX3BjdCIsICJSUExfVEhFTUVTIiwgIlJQTF9USEVNRTEiLCAiUlBMX1RIRU1FMiIsICJSUExfVEhFTUUzIiwgIlJQTF9USEVNRTQiKV0sCiAgICBtZXRob2QgPSBnbG0sCiAgICB5ID0gcG5ldW1vXzIsCiAgICBtZXRob2QuYXJncyA9IGxpc3QoZmFtaWx5ID0gYmlub21pYWwpLAogICAgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJhY2VfNSB+ICJSYWNlIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIHJfcGN0IH4gIlBlcmNlbnQgUmVwdWJsaWNhbiIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiwgYWN0X3RvYiB+IkFjdGl2ZSBUb2JhY2NvIFVzZSIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIsIElDIH4gIkltbXVub2NvbXByb21pc2VkIiwgaWJkXzMgfiAiSUJEIFR5cGUiKSwKICBleHBvbmVudGlhdGUgPSBUUlVFKQpwcmludChwbmV1bW9fZnVsbF9iaXYsIG1ldGhvZCA9IHJlbmRlcikKYGBgCgoKIyBUb3RhbCBQbmV1bW9uaWEgY291bnQgKG5lZ2F0aXZlIGJpbm9taWFsKSB7LnRhYnNldH0KIyMgU1ZJIENvbnRpbnVvdXMgCmBgYHtyfQpwbmV1bW9fbmIgPC0gZ2xtLm5iKHBuZXVtb19jb3VudCB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICsgcmVsaWdfYWZmaWwgKyBtc3RhdF81ICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRVMsCiAgICAgICAgICAgICAgIGRhdGEgPSBwbmV1bW9fY2xlYW4xKSAKc3VtbWFyeShwbmV1bW9fbmIpCmJyb29tOjpnbGFuY2UocG5ldW1vX25iKQpicm9vbTo6dGlkeShwbmV1bW9fbmIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHBuZXVtb19uYikKdGJsX3JlZ3Jlc3Npb24ocG5ldW1vX25iLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgcmFjZV81IH4gIlJhY2UiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIHJfcGN0IH4gIlBlcmNlbnQgUmVwdWJsaWNhbiIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiwgYWN0X3RvYiB+IkFjdGl2ZSBUb2JhY2NvIFVzZSIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIsIElDIH4gIkltbXVub2NvbXByb21pc2VkIiwgaWJkXzMgfiAiSUJEIFR5cGUiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMgTkIgUmVzaWR1YWwgUGxvdApwbmV1bW9fbmJfcmVzIDwtIHJlc2lkKHBuZXVtb19uYikKcGxvdChmaXR0ZWQocG5ldW1vX25iKSwgcG5ldW1vX25iX3JlcywgY29sPSdzdGVlbGJsdWUnLCBwY2g9MTYsCiAgICAgeGxhYj0nUHJlZGljdGVkIFZhY2NpbmVzJywgeWxhYj0nU3RhbmRhcmRpemVkIFJlc2lkdWFscycsIG1haW49J05lZ2F0aXZlIEJpbm9taWFsJykKYWJsaW5lKDAsMCkKIyBOQiByZWdyZXNzaW9uIG1vcmUgYXBwcm9wcmlhdGUgYmVjYXVzZSByZXNpZHVhbHMgb2YgdGhlIG1vZGVsIGFyZSBzbWFsbGVyIAoKIyBMaWtlbGlob29kIHJhdGlvIHRlc3QgCnBjaGlzcSgyICogKGxvZ0xpayhwbmV1bW9fbmIpIC0gbG9nTGlrKHBuZXVtb19uYikpLCBkZiA9IDEsIGxvd2VyLnRhaWwgPSBGQUxTRSkKIyBwLXZhbHVlIG9mIGxvZ2xpayBpcyA8IDAuMDUgc28gTkIgcmVncmVzc2lvbiBpcyB0aGUgbW9yZSBhcHByb3ByaWF0ZSBtb2RlbCAKCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChwbmV1bW9fbmIsIHBhbmVsID0gVFJVRSkKYGBgCgojIyBTVkkgUXVhcnRpbGVzIApgYGB7cn0KcG5ldW1vX25iMiA8LSBnbG0ubmIocG5ldW1vX2NvdW50IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgKyByZWxpZ19hZmZpbCArIG1zdGF0XzUgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMXzQsCiAgICAgICAgICAgICAgIGRhdGEgPSBwbmV1bW9fY2xlYW4xKSAKc3VtbWFyeShwbmV1bW9fbmIyKQpicm9vbTo6Z2xhbmNlKHBuZXVtb19uYjIpCmJyb29tOjp0aWR5KHBuZXVtb19uYjIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHBuZXVtb19uYjIpCnRibF9yZWdyZXNzaW9uKHBuZXVtb19uYjIsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCByYWNlXzUgfiAiUmFjZSIsIFJQTF80IH4gIlNWSSBRdWFydGlsZSIsIHJfcGN0IH4gIlBlcmNlbnQgUmVwdWJsaWNhbiIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcG9wX2RlbnMgfiAiUG9wdWxhdGlvbiBEZW5zaXR5IiwgYWN0X3RvYiB+IkFjdGl2ZSBUb2JhY2NvIFVzZSIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIsIElDIH4gIkltbXVub2NvbXByb21pc2VkIiwgaWJkXzMgfiAiSUJEIFR5cGUiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChwbmV1bW9fbmIyLCBwYW5lbCA9IFRSVUUpCmBgYAoKIyMgQWxsIHRoZW1lcyAKYGBge3J9CnBuZXVtb19uYjMgPC0gZ2xtLm5iKHBuZXVtb19jb3VudCB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICsgcmVsaWdfYWZmaWwgKyBtc3RhdF81ICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF9USEVNRTEKICAgICAgICAgICAgICAgICAgICArIFJQTF9USEVNRTIgKyBSUExfVEhFTUUzICsgUlBMX1RIRU1FNCwKICAgICAgICAgICAgICAgZGF0YSA9IHBuZXVtb19jbGVhbjEpIApzdW1tYXJ5KHBuZXVtb19uYjMpCmJyb29tOjpnbGFuY2UocG5ldW1vX25iMykKYnJvb206OnRpZHkocG5ldW1vX25iMywgZXhwb25lbnRpYXRlID0gVFJVRSkKbW9kZWxfcGVyZm9ybWFuY2UocG5ldW1vX25iMykKdGJsX3JlZ3Jlc3Npb24ocG5ldW1vX25iMywgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJhY2VfNSB+ICJSYWNlIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwocG5ldW1vX25iMywgcGFuZWwgPSBUUlVFKQpgYGAKCiMgRnVsbHkgVmFjY2luYXRlZCAobG9naXN0aWMgcmVncmVzc2lvbikgey50YWJzZXR9CgojIyBTVkkgQ29udGludW91cyAKYGBge3J9CnBuZXVtb19mdWxsMSA8LSBnbG0ocG5ldW1vXzIgfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIGxhbmdfMyArIHJlbGlnX2FmZmlsICsgbXN0YXRfNSArIGFjdF90b2IgKyBtYXhfY2ggKyBJQyArIHBvcF9kZW5zICsgcl9wY3QgKyBSUExfVEhFTUVTLAogICAgICAgICAgICAgICAgICAgZmFtaWx5ID0gYmlub21pYWwsIAogICAgICAgICAgICAgICBkYXRhID0gcG5ldW1vX2NsZWFuMSkgCnN1bW1hcnkocG5ldW1vX2Z1bGwxKQpicm9vbTo6Z2xhbmNlKHBuZXVtb19mdWxsMSkKYnJvb206OnRpZHkocG5ldW1vX2Z1bGwxLCBleHBvbmVudGlhdGUgPSBUUlVFKQptb2RlbF9wZXJmb3JtYW5jZShwbmV1bW9fZnVsbDEpCnRibF9yZWdyZXNzaW9uKHBuZXVtb19mdWxsMSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJhY2VfNSB+ICJSYWNlIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwocG5ldW1vX2Z1bGwxLCBwYW5lbCA9IFRSVUUpCmBgYAojIyBTVkkgUXVhcnRpbGVzIApgYGB7cn0KcG5ldW1vX2Z1bGwyIDwtIGdsbShwbmV1bW9fMiB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICsgcmVsaWdfYWZmaWwgKyBtc3RhdF81ICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgcG9wX2RlbnMgKyByX3BjdCArIFJQTF80LAogICAgICAgICAgICAgICAgICAgZmFtaWx5ID0gYmlub21pYWwsCiAgICAgICAgICAgICAgIGRhdGEgPSBwbmV1bW9fY2xlYW4xKSAKc3VtbWFyeShwbmV1bW9fZnVsbDIpCmJyb29tOjpnbGFuY2UocG5ldW1vX2Z1bGwyKQpicm9vbTo6dGlkeShwbmV1bW9fZnVsbDIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHBuZXVtb19mdWxsMikKdGJsX3JlZ3Jlc3Npb24ocG5ldW1vX2Z1bGwyLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgcmFjZV81IH4gIlJhY2UiLCBSUExfNCB+ICJTVkkgUXVhcnRpbGUiLCByX3BjdCB+ICJQZXJjZW50IFJlcHVibGljYW4iLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHBvcF9kZW5zIH4gIlBvcHVsYXRpb24gRGVuc2l0eSIsIGFjdF90b2IgfiJBY3RpdmUgVG9iYWNjbyBVc2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBJQyB+ICJJbW11bm9jb21wcm9taXNlZCIsIGliZF8zIH4gIklCRCBUeXBlIiksIGV4cG9uZW50aWF0ZSA9IFRSVUUpCgpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwocG5ldW1vX2Z1bGwyLCBwYW5lbCA9IFRSVUUpCmBgYAoKIyMgQWxsIFRoZW1lcyAKYGBge3J9CnBuZXVtbW9fZnVsbDMgPC0gZ2xtKHBuZXVtb18yIH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgKyByZWxpZ19hZmZpbCArIG1zdGF0XzUgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBwb3BfZGVucyArIHJfcGN0ICsgUlBMX1RIRU1FMQogICAgICAgICAgICAgICAgICAgICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LAogICAgICAgICAgICAgICAgICAgZmFtaWx5ID0gYmlub21pYWwsCiAgICAgICAgICAgICAgIGRhdGEgPSBwbmV1bW9fY2xlYW4xKSAKc3VtbWFyeShwbmV1bW1vX2Z1bGwzKQpicm9vbTo6Z2xhbmNlKHBuZXVtbW9fZnVsbDMpCmJyb29tOjp0aWR5KHBuZXVtbW9fZnVsbDMsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCm1vZGVsX3BlcmZvcm1hbmNlKHBuZXVtbW9fZnVsbDMpCnRibF9yZWdyZXNzaW9uKHBuZXVtbW9fZnVsbDMsIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCByYWNlXzUgfiAiUmFjZSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgcl9wY3QgfiAiUGVyY2VudCBSZXB1YmxpY2FuIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBwb3BfZGVucyB+ICJQb3B1bGF0aW9uIERlbnNpdHkiLCBhY3RfdG9iIH4iQWN0aXZlIFRvYmFjY28gVXNlIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgSUMgfiAiSW1tdW5vY29tcHJvbWlzZWQiLCBpYmRfMyB+ICJJQkQgVHlwZSIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKHBuZXVtbW9fZnVsbDMsIHBhbmVsID0gVFJVRSkKYGBgCgo=