Performing a designed experiment to determine the effect of the available factors of Pin Elevation, Fire Angle, Bungee Position, Release Angle and ball type, on distance in which a ball was thrown.

We observed that

This is an un-replicated \(2^{4}\) design with four factors and each factor has a low level (-1) and a high level(+1). The four factors are:

Part A

Proposing a data collection layout with a randomized order we have

library(agricolae)
trts <- c(2,2,2,2)
design <- design.ab(trt=trts,r=1,design = "crd",seed = 11345)
design$book
##    plots r A B C D
## 1    101 1 1 1 1 1
## 2    102 1 2 2 2 2
## 3    103 1 2 1 1 2
## 4    104 1 2 2 2 1
## 5    105 1 2 2 1 1
## 6    106 1 1 2 2 1
## 7    107 1 1 1 1 2
## 8    108 1 1 1 2 2
## 9    109 1 1 1 2 1
## 10   110 1 2 1 2 1
## 11   111 1 1 2 2 2
## 12   112 1 1 2 1 1
## 13   113 1 1 2 1 2
## 14   114 1 2 2 1 2
## 15   115 1 2 1 1 1
## 16   116 1 2 1 2 2

Part B

dat<-read.csv("part.csv",TRUE,",")
dat
##     X plots r  A  B  C  D values
## 1   1   101 1 -1 -1 -1 -1     35
## 2   2   102 1  1  1  1  1     62
## 3   3   103 1  1 -1 -1  1     31
## 4   4   104 1  1  1  1 -1     60
## 5   5   105 1  1  1 -1 -1     34
## 6   6   106 1 -1  1  1 -1     46
## 7   7   107 1 -1 -1 -1  1     29
## 8   8   108 1 -1 -1  1  1     42
## 9   9   109 1 -1 -1  1 -1     44
## 10 10   110 1  1 -1  1 -1     64
## 11 11   111 1 -1  1  1  1     29
## 12 12   112 1 -1  1 -1 -1     35
## 13 13   113 1 -1  1 -1  1     34
## 14 14   114 1  1  1 -1  1     37
## 15 15   115 1  1 -1 -1 -1     48
## 16 16   116 1  1 -1  1  1     57

Part C

Model Equation

\(Y_{ikjl}=\mu+\alpha_{i}+\beta_{j}+\alpha\beta_{ij}+\gamma_{k}+\alpha\gamma_{ik}+\beta\gamma_{jk}+\alpha\beta\gamma_{ijk}+\delta_{l}+\alpha\delta_{il}+\beta\delta_{jl}+\gamma\delta_{kl}+\alpha\beta\delta_{ijl}+\alpha\gamma\delta_{ikl}+\beta\gamma\delta_{jkl}+\alpha\beta\gamma\delta_{ijkl}+\epsilon_{ijkl}\)

where

\(\alpha_{i}\)= Factor A (Pin elevation)

\(\beta_{j}\)= Factor B ( Bungee Position)

\(\gamma_{k}\)=Factor C ( Release Angle)

\(\delta\)= Factor D ( Ball type)

\(\epsilon_{ijkl}\) = Random error term

library(DoE.base)
model<-lm(values~A*B*C*D,data=dat)
halfnormal(model)

From the half normal plots, we can see that the significant factors are A,C,A:C. This essentially means that only Pin elevation, Release angle and the interaction between Pin elevation and release angle are significant.

Section 3D

Performing analysis of variance to determine the final model we have

Main effect ( Pin elevation)

Null hypothesis : \(\alpha_{i}=0\) For all i

Alternative hypothesis: \(\alpha\neq 0\) for some i

Main effect (Release angle)

Null hypothesis- \(\gamma_{k}=0\) for all k

Alternative hypothesis- \(\gamma_{k}=0\) for some k

Interaction effect (Pin elevation & Release angle)

Null hypothesis- \(\alpha\gamma_{ik}=0\)

Alternative hypothesis- \(\alpha\gamma_{ik}\neq 0\)

Running the new model

dat2<-dat[,c("A","C","values")]
dat2
##     A  C values
## 1  -1 -1     35
## 2   1  1     62
## 3   1 -1     31
## 4   1  1     60
## 5   1 -1     34
## 6  -1  1     46
## 7  -1 -1     29
## 8  -1  1     42
## 9  -1  1     44
## 10  1  1     64
## 11 -1  1     29
## 12 -1 -1     35
## 13 -1 -1     34
## 14  1 -1     37
## 15  1 -1     48
## 16  1  1     57
library(GAD)
dat2$A<-as.fixed(dat2$A)
dat2$C<-as.fixed(dat2$C)
model1<-aov(values~A*C,data = dat2)
GAD::gad(model1)
## Analysis of Variance Table
## 
## Response: values
##          Df Sum Sq Mean Sq F value    Pr(>F)    
## A         1 612.56  612.56 18.6923 0.0009901 ***
## C         1 915.06  915.06 27.9231 0.0001933 ***
## A:C       1 264.06  264.06  8.0579 0.0149345 *  
## Residual 12 393.25   32.77                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the ANOVA values

We can see that the p-value of factor A, factor C and factor A:C (0.0011619, 0.0002014,0.0166751) are all significant because they are all less than our reference significant level of alpha(0.05)

Therefore we are rejecting the null hypothesis claiming that they have significant effect on the model.

The final model can be written has

\(Y_{ikl}=\mu+\alpha_{i}+\gamma_{k}+\alpha\gamma_{ik}+\epsilon_{ikl}\)

\(\alpha_{i}\)= Factor A (Pin elevation)

\(\gamma_{k}\)= Factor C ( Release Angle)

\(\alpha\gamma_{ik}\) = interaction term between factor A and factor C

\(\epsilon_{ikl}\)= Standard error term