summary(weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
# in the data, there appears to be an similar 'min' and 'max' value between all lag variables, as well as the 'today' variable. There is also a similar median between the variables. There are 484 'down' directions and 605 'up' directions, indicating the overall shift of the market. This is shown in the summary below.
glmfit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = weekly, family = binomial)
summary (glmfit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
# Lag2 appears to be significant.
#creating a confusion matrix
coef(glmfit)
## (Intercept) Lag1 Lag2 Lag3 Lag4 Lag5
## 0.26686414 -0.04126894 0.05844168 -0.01606114 -0.02779021 -0.01447206
## Volume
## -0.02274153
summary(glmfit)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686414 0.08592961 3.1056134 0.001898848
## Lag1 -0.04126894 0.02641026 -1.5626099 0.118144368
## Lag2 0.05844168 0.02686499 2.1753839 0.029601361
## Lag3 -0.01606114 0.02666299 -0.6023760 0.546923890
## Lag4 -0.02779021 0.02646332 -1.0501409 0.293653342
## Lag5 -0.01447206 0.02638478 -0.5485006 0.583348244
## Volume -0.02274153 0.03689812 -0.6163330 0.537674762
glmprob <- predict(glmfit , type = "response")
glmprob[1:10]
## 1 2 3 4 5 6 7 8
## 0.6086249 0.6010314 0.5875699 0.4816416 0.6169013 0.5684190 0.5786097 0.5151972
## 9 10
## 0.5715200 0.5554287
contrasts(weekly$Direction)
## Up
## Down 0
## Up 1
glmpred <- rep (" Down ", 1089)
glmpred[glmprob > .5] = "Up"
table(glmpred,weekly$Direction)
##
## glmpred Down Up
## Down 54 48
## Up 430 557
(557 + 54) / 1089
## [1] 0.5610652
# the number .561 below indicated that the model correctly predicted 51.1% of the time. To further interpret the confusion matrix, the model correctly predicted that there would be an "Up" trend 557 times and a 'Down' trend 54 times. The model is better at predicting 'Up' trends and very often mistakes "Down" trends for "Up" trends.
train <- (Year <= 2008)
weekly2008tr <- weekly[!train , ]
dim(weekly2008tr)
## [1] 104 9
direction2008tr <- Direction[!train]
glmfit<- glm(Direction ~ Lag2, family = binomial , subset = train)
glmprob <- predict(glmfit, weekly2008tr, type = "response")
glmpred <- rep("Down", 104)
glmpred[glmprob > .5] <- "Up"
table(glmpred, direction2008tr)
## direction2008tr
## glmpred Down Up
## Down 9 5
## Up 34 56
mean(glmpred==direction2008tr)
## [1] 0.625
mean(glmpred!= direction2008tr)
## [1] 0.375
# As shown below, the model correctly performs 62.5% of the time. Better than the first model, but still not entirely great. The model correctly predicted 56 "up" trends and 9 "down" trends. Similar to the last model, this one also frequently wrongly predicts "down" trends. There is also shown to be a 37.5% test error rate.
ldafit <- lda(Direction ~ Lag2, data = weekly, subset = train)
ldafit
## Call:
## lda(Direction ~ Lag2, data = weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
##
## Coefficients of linear discriminants:
## LD1
## Lag2 0.4414162
plot(ldafit)
ldapred <- predict(ldafit, weekly2008tr)
names(ldapred)
## [1] "class" "posterior" "x"
ldaclass <- ldapred$class
table(ldaclass, direction2008tr)
## direction2008tr
## ldaclass Down Up
## Down 9 5
## Up 34 56
mean(ldaclass == direction2008tr)
## [1] 0.625
# We can see that the lda model has almost identical results as the logistic regression model. There are 56 correctly predicted "Up" trends and only 9 predicted "down" trends.
qdafit <- qda(Direction ~ Lag2, data = weekly, subset = train)
qdafit
## Call:
## qda(Direction ~ Lag2, data = weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
qdapred <- predict(qdafit, weekly2008tr)
names(qdapred)
## [1] "class" "posterior"
qdaclass <- qdapred$class
table(qdaclass, direction2008tr)
## direction2008tr
## qdaclass Down Up
## Down 0 0
## Up 43 61
mean(qdaclass == direction2008tr)
## [1] 0.5865385
## This model gave interesting results. As shown in the confusion matrix, the model correctly predicted all of the "Up" trends. On the contrary, it did not correctly predict any "Down" trends. The model, overall, had 58.7% accuracy.
library(class)
train.x=as.matrix(Lag2[train])
test.x=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed (1)
knnpred <- knn (train.x, test.x, train.Direction , k = 1)
table(knnpred, direction2008tr)
## direction2008tr
## knnpred Down Up
## Down 21 30
## Up 22 31
direction2008tr
## [1] Down Down Down Down Up Down Down Down Down Up Up Up Up Up Up
## [16] Down Up Up Down Up Up Up Up Down Down Down Down Up Up Up
## [31] Up Down Up Up Down Up Up Down Down Up Up Down Down Up Up
## [46] Down Up Up Up Down Up Down Up Down Down Down Down Up Up Down
## [61] Up Up Up Up Up Up Down Up Down Down Up Down Up Down Up
## [76] Up Down Down Up Down Up Down Up Down Down Down Up Up Up Up
## [91] Down Up Up Up Up Up Down Up Down Up Up Up Up Up
## Levels: Down Up
mean(knnpred == direction2008tr)
## [1] 0.5
# The KNN model only predicted correctly 50% of the time. The model predicted 31 "Up" trends correctly and 21 "Down" trends correctly.
library(e1071)
## Warning: package 'e1071' was built under R version 4.2.2
nbfit <-naiveBayes(Direction ~ Lag2, data = weekly, subset = train)
nbfit
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## Down Up
## 0.4477157 0.5522843
##
## Conditional probabilities:
## Lag2
## Y [,1] [,2]
## Down -0.03568254 2.199504
## Up 0.26036581 2.317485
nbclass <- predict(nbfit , weekly2008tr)
table(nbclass , direction2008tr)
## direction2008tr
## nbclass Down Up
## Down 0 0
## Up 43 61
mean(nbclass == direction2008tr)
## [1] 0.5865385
## The Naive Bayes correctly predicted 58.7% of the time. The model correctly predicted 61 "up" trends and 0 "down" trends.
The LDA and GLM performed the best out of all the models, both with 62.5% accuracy.
# KNN with different K values
train.x=as.matrix(Lag2[train])
test.x=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed (1)
knnpred <- knn (train.x, test.x, train.Direction , k = 3)
table(knnpred, direction2008tr)
## direction2008tr
## knnpred Down Up
## Down 16 20
## Up 27 41
mean(knnpred == direction2008tr)
## [1] 0.5480769
train.x=as.matrix(Lag2[train])
test.x=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed (1)
knnpred <- knn (train.x, test.x, train.Direction , k = 9)
table(knnpred, direction2008tr)
## direction2008tr
## knnpred Down Up
## Down 17 20
## Up 26 41
mean(knnpred == direction2008tr)
## [1] 0.5576923
# LDA with different predictors
ldafit <- lda(Direction ~ Lag2 + Lag5, data = weekly, subset = train)
ldafit
## Call:
## lda(Direction ~ Lag2 + Lag5, data = weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2 Lag5
## Down -0.03568254 0.21409297
## Up 0.26036581 0.04548897
##
## Coefficients of linear discriminants:
## LD1
## Lag2 0.3813248
## Lag5 -0.1980466
ldapred <- predict(ldafit, weekly2008tr)
names(ldapred)
## [1] "class" "posterior" "x"
ldaclass <- ldapred$class
table(ldaclass, direction2008tr)
## direction2008tr
## ldaclass Down Up
## Down 6 5
## Up 37 56
mean(ldaclass == direction2008tr)
## [1] 0.5961538
library(ISLR2)
auto <- ISLR2::Auto
auto$mpg01 <- ifelse(auto$mpg >= median(auto$mpg), 1, 0)
pairs(Auto[, -9])
par(mfrow=c(2,4))
boxplot(auto$cylinders ~ auto$mpg01)
boxplot(auto$displacement ~ auto$mpg01)
boxplot(auto$horsepower ~ auto$mpg01)
boxplot(auto$weight ~ auto$mpg01)
boxplot(auto$acceleration ~ auto$mpg01)
boxplot(auto$year ~ auto$mpg01)
boxplot(auto$origin ~ auto$mpg01)
# There is the strongest of relationships between mpg and displacement, horsepower, and weight.
train <- (auto$year <= 77)
auto77tr <- auto[!train , ]
dim(auto77tr)
## [1] 150 10
mpg77tr <- auto$mpg01[!train]
ldafit <- lda(mpg01 ~ displacement + horsepower + weight, data = auto, subset = train)
ldafit
## Call:
## lda(mpg01 ~ displacement + horsepower + weight, data = auto,
## subset = train)
##
## Prior probabilities of groups:
## 0 1
## 0.6487603 0.3512397
##
## Group means:
## displacement horsepower weight
## 0 280.5350 133.63694 3675.758
## 1 105.5118 78.14118 2219.953
##
## Coefficients of linear discriminants:
## LD1
## displacement -0.008602118
## horsepower 0.013384743
## weight -0.001206420
plot(ldafit)
ldapred <- predict(ldafit, auto77tr)
names(ldapred)
## [1] "class" "posterior" "x"
ldaclass <- ldapred$class
table(ldaclass, mpg77tr)
## mpg77tr
## ldaclass 0 1
## 0 34 14
## 1 5 97
mean(ldaclass == mpg77tr)
## [1] 0.8733333
1-mean(ldaclass == mpg77tr)
## [1] 0.1266667
# the LDA model has a test error of 12.7%.
qdafit <- qda(mpg01 ~ displacement + horsepower + weight, data = auto, subset = train)
qdafit
## Call:
## qda(mpg01 ~ displacement + horsepower + weight, data = auto,
## subset = train)
##
## Prior probabilities of groups:
## 0 1
## 0.6487603 0.3512397
##
## Group means:
## displacement horsepower weight
## 0 280.5350 133.63694 3675.758
## 1 105.5118 78.14118 2219.953
qdapred <- predict(qdafit, auto77tr)
names(qdapred)
## [1] "class" "posterior"
qdaclass <- qdapred$class
table(qdaclass, mpg77tr)
## mpg77tr
## qdaclass 0 1
## 0 36 20
## 1 3 91
mean(qdaclass == mpg77tr)
## [1] 0.8466667
1-mean(ldaclass == mpg77tr)
## [1] 0.1266667
# the test error of the LDA model is 12.7%.
glmfit <- glm(auto$mpg01 ~ displacement + weight + horsepower + horsepower, data = Auto, family = binomial, subset = train)
glmprob <- predict(glmfit, auto77tr, type = "response")
glmpred <- rep(0, length(glmprob))
glmpred[glmprob > 0.5] <- 1
table(glmpred, mpg77tr)
## mpg77tr
## glmpred 0 1
## 0 38 33
## 1 1 78
mean(glmpred==mpg77tr)
## [1] 0.7733333
1-mean(glmpred== mpg77tr)
## [1] 0.2266667
# the logistic regression had a test error of 22.7%.
library(e1071)
nbfit <-naiveBayes(mpg01 ~ displacement + horsepower + weight, data = auto, subset = train)
nbfit
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## 0 1
## 0.6487603 0.3512397
##
## Conditional probabilities:
## displacement
## Y [,1] [,2]
## 0 280.5350 93.39326
## 1 105.5118 23.60160
##
## horsepower
## Y [,1] [,2]
## 0 133.63694 39.44132
## 1 78.14118 14.85898
##
## weight
## Y [,1] [,2]
## 0 3675.758 720.1427
## 1 2219.953 301.3293
nbclass <- predict(nbfit , auto77tr)
table(nbclass , mpg77tr)
## mpg77tr
## nbclass 0 1
## 0 36 20
## 1 3 91
mean(nbclass == mpg77tr)
## [1] 0.8466667
1-mean(nbclass == mpg77tr)
## [1] 0.1533333
# the model has a test error 15.3%.
train.x = cbind(auto$displacement, auto$horsepower, auto$weight)[train,]
test.x=cbind(auto$displacement,auto$horsepower, auto$weight)[!train,]
train.mpg01=auto$mpg01[train]
set.seed (1)
knnpred <- knn(train.x, test.x, train.mpg01 , k = 1)
table(knnpred, mpg77tr)
## mpg77tr
## knnpred 0 1
## 0 37 27
## 1 2 84
mean(knnpred == mpg77tr)
## [1] 0.8066667
1-mean(knnpred == mpg77tr)
## [1] 0.1933333
knnpred <- knn(train.x, test.x, train.mpg01 , k = 4)
table(knnpred, mpg77tr)
## mpg77tr
## knnpred 0 1
## 0 38 25
## 1 1 86
mean(knnpred == mpg77tr)
## [1] 0.8266667
1-mean(knnpred == mpg77tr)
## [1] 0.1733333
knnpred <- knn(train.x, test.x, train.mpg01 , k = 2)
table(knnpred, mpg77tr)
## mpg77tr
## knnpred 0 1
## 0 39 26
## 1 0 85
mean(knnpred == mpg77tr)
## [1] 0.8266667
1-mean(knnpred == mpg77tr)
## [1] 0.1733333
# the KNN with k=4 and k=2 have the lowest error rate: 17.3.
boston <- ISLR2::Boston
boston$crim01 <- ifelse(boston$crim >= median(boston$crim), 1, 0)
pairs(boston[, -4])
round(cor(boston[, -4]), digits = 2)
## crim zn indus nox rm age dis rad tax ptratio lstat
## crim 1.00 -0.20 0.41 0.42 -0.22 0.35 -0.38 0.63 0.58 0.29 0.46
## zn -0.20 1.00 -0.53 -0.52 0.31 -0.57 0.66 -0.31 -0.31 -0.39 -0.41
## indus 0.41 -0.53 1.00 0.76 -0.39 0.64 -0.71 0.60 0.72 0.38 0.60
## nox 0.42 -0.52 0.76 1.00 -0.30 0.73 -0.77 0.61 0.67 0.19 0.59
## rm -0.22 0.31 -0.39 -0.30 1.00 -0.24 0.21 -0.21 -0.29 -0.36 -0.61
## age 0.35 -0.57 0.64 0.73 -0.24 1.00 -0.75 0.46 0.51 0.26 0.60
## dis -0.38 0.66 -0.71 -0.77 0.21 -0.75 1.00 -0.49 -0.53 -0.23 -0.50
## rad 0.63 -0.31 0.60 0.61 -0.21 0.46 -0.49 1.00 0.91 0.46 0.49
## tax 0.58 -0.31 0.72 0.67 -0.29 0.51 -0.53 0.91 1.00 0.46 0.54
## ptratio 0.29 -0.39 0.38 0.19 -0.36 0.26 -0.23 0.46 0.46 1.00 0.37
## lstat 0.46 -0.41 0.60 0.59 -0.61 0.60 -0.50 0.49 0.54 0.37 1.00
## medv -0.39 0.36 -0.48 -0.43 0.70 -0.38 0.25 -0.38 -0.47 -0.51 -0.74
## crim01 0.41 -0.44 0.60 0.72 -0.16 0.61 -0.62 0.62 0.61 0.25 0.45
## medv crim01
## crim -0.39 0.41
## zn 0.36 -0.44
## indus -0.48 0.60
## nox -0.43 0.72
## rm 0.70 -0.16
## age -0.38 0.61
## dis 0.25 -0.62
## rad -0.38 0.62
## tax -0.47 0.61
## ptratio -0.51 0.25
## lstat -0.74 0.45
## medv 1.00 -0.26
## crim01 -0.26 1.00
# We can see that indus, nox, rad, tax, age, and lstat have the highest correlation with crime rate per capita.
set.seed(1)
sample <- sample.int(n = nrow(boston), size = floor(.7*nrow(boston)), replace = F)
train <- boston[sample, ]
test <- boston[-sample, ]
glmfit <- glm(crim01 ~ indus + nox + rad + tax + age + lstat, data = train, family = binomial)
summary(glmfit)
##
## Call:
## glm(formula = crim01 ~ indus + nox + rad + tax + age + lstat,
## family = binomial, data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.09915 -0.28081 -0.03413 0.00474 2.56795
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -21.569492 3.454173 -6.244 4.25e-10 ***
## indus -0.066141 0.051218 -1.291 0.19658
## nox 38.906387 7.370033 5.279 1.30e-07 ***
## rad 0.625093 0.139993 4.465 8.00e-06 ***
## tax -0.007698 0.002765 -2.784 0.00537 **
## age 0.005389 0.010695 0.504 0.61435
## lstat 0.025567 0.039065 0.654 0.51280
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 490.65 on 353 degrees of freedom
## Residual deviance: 171.76 on 347 degrees of freedom
## AIC: 185.76
##
## Number of Fisher Scoring iterations: 8
## indus, age, and lstat are not significant predictors
glmfit <- glm(crim01 ~ nox + rad + tax, data = train, family = binomial)
summary(glmfit)
##
## Call:
## glm(formula = crim01 ~ nox + rad + tax, family = binomial, data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.94970 -0.30307 -0.03747 0.00553 2.51044
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -19.613946 2.596569 -7.554 4.23e-14 ***
## nox 35.312548 4.917585 7.181 6.93e-13 ***
## rad 0.651184 0.132400 4.918 8.73e-07 ***
## tax -0.008215 0.002558 -3.212 0.00132 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 490.65 on 353 degrees of freedom
## Residual deviance: 174.14 on 350 degrees of freedom
## AIC: 182.14
##
## Number of Fisher Scoring iterations: 8
glmprob <- predict(glmfit, test, type = "response")
glmpred <- rep(0, 152)
glmpred[glmprob > .5] <- 1
matrix(data=table(glmpred, test$crim01), nrow=2, ncol=2, dimnames=list(c("low", "high"), c("low", "high")))
## low high
## low 66 14
## high 7 65
(66 + 65) / 152
## [1] 0.8618421
1-(66 + 65) / 152
## [1] 0.1381579
# the model has a 13.8% error rate. It correctly predicted 65 "high" crime rates and 66 "low" crime rates.
library(MASS)
ldafit <- lda(crim01 ~ nox + rad + tax, data = train)
ldafit
## Call:
## lda(crim01 ~ nox + rad + tax, data = train)
##
## Prior probabilities of groups:
## 0 1
## 0.5084746 0.4915254
##
## Group means:
## nox rad tax
## 0 0.4695150 4.127778 306.9444
## 1 0.6377989 14.873563 510.2989
##
## Coefficients of linear discriminants:
## LD1
## nox 9.776108458
## rad 0.095225895
## tax -0.001700844
plot(ldafit)
ldapred <- predict(ldafit, test)
names(ldapred)
## [1] "class" "posterior" "x"
ldaclass <- ldapred$class
summary(ldaclass)
## 0 1
## 93 59
matrix(data=table(ldaclass, test$crim01), nrow=2, ncol=2, dimnames=list(c("low", "high"), c("low", "high")))
## low high
## low 73 20
## high 0 59
(59+73)/152*100
## [1] 86.84211
(1-(59+73)/152)*100
## [1] 13.15789
# The lda model had an error rate of 13%. It correctly predicted 59 'high' crime rates and 73 'low' crime rates. This model performed very well.
library(e1071)
nbfit <-naiveBayes(crim01 ~ tax + rad + nox, data = train)
nbfit
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## 0 1
## 0.5084746 0.4915254
##
## Conditional probabilities:
## tax
## Y [,1] [,2]
## 0 306.9444 89.9149
## 1 510.2989 167.2258
##
## rad
## Y [,1] [,2]
## 0 4.127778 1.704514
## 1 14.873563 9.526118
##
## nox
## Y [,1] [,2]
## 0 0.4695150 0.05545892
## 1 0.6377989 0.10196576
nbclass <- predict(nbfit , test)
matrix(data=table(nbclass, test$crim01), nrow=2, ncol=2, dimnames=list(c("low", "high"), c("low", "high")))
## low high
## low 72 24
## high 1 55
(55+72)/152*100
## [1] 83.55263
(1-(55+72)/152)*100
## [1] 16.44737
# The Naive Bayes model has a 16.5% error rate. It correctly predicted 55 "high" crime rates and 72 "low".
library(class)
train.x<- cbind(train$tax, train$rad, train$nox)
test.x <- cbind(test$tax, test$rad, test$nox)
set.seed(1)
knnpred <- knn(train.x, test.x, train$crim01, k=1)
matrix(data=table(knnpred, test$crim01), nrow=2, ncol=2, dimnames=list(c("low", "high"), c("low", "high")))
## low high
## low 69 2
## high 4 77
(77+69)/152*100
## [1] 96.05263
(1-(77+69)/152)*100
## [1] 3.947368
knnpred <- knn(train.x, test.x, train$crim01, k=10)
matrix(data=table(knnpred, test$crim01), nrow=2, ncol=2, dimnames=list(c("low", "high"), c("low", "high")))
## low high
## low 54 3
## high 19 76
knnpred <- knn(train.x, test.x, train$crim01, k=100)
matrix(data=table(knnpred, test$crim01), nrow=2, ncol=2, dimnames=list(c("low", "high"), c("low", "high")))
## low high
## low 65 36
## high 8 43
# The KNN model preformed the best with k=1, with only a 3.9% error rate. It correctly predicted 77 "high" crime rates and 69 "low".