library("pipeR")
cars %>>%
(~plot(dist~speed,data=.)) %>>%
(lm(dist~speed,data=.)) %>>%
abline(col="red")
mtcars$mpg %>>%
sample(size=1000,replace=TRUE) %>>%
density(kernel="gaussian") %>>%
plot(col="red",main="density of mpg")
rnorm(100) %>>%
summary()
rnorm(100) %>>%
plot(col="red")
mtcars %>>%
(lm(mpg~cyl+wt,data=.))
##
## Call:
## lm(formula = mpg ~ cyl + wt, data = .)
##
## Coefficients:
## (Intercept) cyl wt
## 39.686 -1.508 -3.191
mtcars %>>%
(df ~ lm(mpg ~.,data=df))
##
## Call:
## lm(formula = mpg ~ ., data = df)
##
## Coefficients:
## (Intercept) cyl disp hp drat
## 12.30337 -0.11144 0.01334 -0.02148 0.78711
## wt qsec vs am gear
## -3.71530 0.82104 0.31776 2.52023 0.65541
## carb
## -0.19942
cars %>>%
(~plot(dist~speed,data=.)) %>>%
(lm(dist~speed,data=.)) %>>%
abline(col="red")
#代入ありパイプ
cars %>>%
(~plot(dist~speed,data=.)) %>>%
(lm(dist~speed,data=.)) %>>%
(~ lm_model) %>>%
abline(col="red")
lm_model
##
## Call:
## lm(formula = dist ~ speed, data = .)
##
## Coefficients:
## (Intercept) speed
## -17.579 3.932
cars %>>%
(~plot(dist~speed,data=.)) %>>%
(lm(dist~speed,data=.)) %>>%
(~ summary(.) -> lm_model_summary) %>>%
abline(col="red")
lm_model_summary
##
## Call:
## lm(formula = dist ~ speed, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
cars %>>%
(~plot(dist~speed,data=.)) %>>%
(lm(dist~speed,data=.)) %>>%
(coefficients) %>>%
(abline(.[1],.[2],col="red"))
library("pipeR")
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
mtcars %>>%
filter(mpg <= mean(mpg)) %>>%
select(mpg,wt,cyl) %>>%
(~ plot(.)) %>>%
(model = lm(mpg ~ wt + cyl,data=.)) %>>%
(summ = summary(.)) %>>%
(coefficients)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31.928632 4.0100333 7.962186 9.127888e-07
## wt -2.183321 0.6536109 -3.340398 4.472574e-03
## cyl -1.012133 0.5699081 -1.775959 9.602413e-02
#install.packages("dplyr")
#install.packages("babynames")
library(babynames) # data package
library(dplyr) # provides data manipulating functions.
library(magrittr) # ceci n'est pas un pipe
library(ggplot2) # for graphics
data(babynames)
## Warning in data(babynames): data set 'babynames' not found
summary(babynames)
## year sex name n
## Min. :1880 Length:1792091 Length:1792091 Min. : 5.0
## 1st Qu.:1948 Class :character Class :character 1st Qu.: 7.0
## Median :1981 Mode :character Mode :character Median : 12.0
## Mean :1972 Mean : 186.1
## 3rd Qu.:2000 3rd Qu.: 32.0
## Max. :2013 Max. :99674.0
## prop
## Min. :2.260e-06
## 1st Qu.:3.930e-06
## Median :7.430e-06
## Mean :1.422e-04
## 3rd Qu.:2.366e-05
## Max. :8.155e-02
str(babynames)
## Classes 'tbl_df', 'tbl' and 'data.frame': 1792091 obs. of 5 variables:
## $ year: num 1880 1880 1880 1880 1880 1880 1880 1880 1880 1880 ...
## $ sex : chr "F" "F" "F" "F" ...
## $ name: chr "Mary" "Anna" "Emma" "Elizabeth" ...
## $ n : int 7065 2604 2003 1939 1746 1578 1472 1414 1320 1288 ...
## $ prop: num 0.0724 0.0267 0.0205 0.0199 0.0179 ...
babynames %>%
filter(name %>% substr(1, 3) %>% equals("Ste")) %>%
group_by(year, sex) %>%
summarize(total = sum(n)) %>%
qplot(year, total, color = sex, data = ., geom = "line") %>%
add(ggtitle('Names starting with "Ste"')) %>%
print