#Installing packages #install.packages(“qqman”) library(qqman) library(ggplot2)
#This GWAS dataset is taken from our published paper (Torre, A. et. al., 2021).
library(qqman)
##
## For example usage please run: vignette('qqman')
##
## Citation appreciated but not required:
## Turner, (2018). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Journal of Open Source Software, 3(25), 731, https://doi.org/10.21105/joss.00731.
##
library(ggplot2)
# import data
tassel_glm <- read.table("~/Documents/R_plots/segi_more-trait/segi_mlm-manhattan.txt", header = T, sep = "\t")
# Manhattan plot
#Remove NaNs values from the input file if there are any
manhattan(tassel_glm, chr="Chr", bp="Pos", snp="Marker", p="p", suggestiveline = FALSE, genomewideline = FALSE,
col = c("blue4", "orange3"),
ylim=c(0,8), cex.lab=1.5, cex.axis = 2,cex = 1)
# QQ plot
qq(tassel_glm$p)
se_pca <- read.csv (file= "~/Documents/R_plots/SEGI_PCA/segi_filter_PCA.csv", header = T)
#Plot PCA with color
se_p1 <- ggplot(se_pca, aes(x= PC1, y=PC2))+
geom_hline(yintercept = 0, lty = 2) +
geom_vline(xintercept = 0, lty = 2) +
geom_point(alpha = 0.8, size = 4, aes(color = Grove))
#segi_p1
#segi_p2 <- segi_p1 + theme(legend.position = "none")
se_p1 + theme(
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(family="Times New Roman", face="bold", size=16),
panel.background = element_blank(),
axis.text.y = element_text(size=16),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1, size=16)
)