library(wooldridge)
library(rmarkdown)
data('engin')
paged_table(engin)

This is a nice change of pace from wage data sets for the United States. These data are for engineers in Thailand, and represents a more homogeneous group than data sets that consist of people across a variety of occupations. Plus, the starting salary is also provided in the data set, so factors affecting wage growth – and not just wage levels at a given point in time – can be studied. This is a good data set for a common term project that tests basic understanding of multiple regression and the interpretation of models with a logarithm for a dependent variable.A data.frame with 403 observations on 17 variables:

male: =1 if male

educ: highest grade completed

wage: monthly salary, Thai baht

swage: starting wage

exper: years on current job

pexper: previous experience

lwage: log(wage)

expersq: exper^2

highgrad: =1 if high school graduate

college: =1 if college graduate

grad: =1 if some graduate school

polytech: =1 if a polytech

highdrop: =1 if no high school degree

lswage: log(swage)

pexpersq: pexper^2

mleeduc: male*educ

mleeduc0: male*(educ - 14)

summary

summary is a generic function used to produce result summaries of the results of various model fitting functions. The function invokes particular methods which depend on the class of the first argument.

summary(lm(formula = male ~ educ + wage + swage + exper + pexper + lwage + expersq + highgrad ,data = engin))
## 
## Call:
## lm(formula = male ~ educ + wage + swage + exper + pexper + lwage + 
##     expersq + highgrad, data = engin)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.98404 -0.23997 -0.00984  0.28752  0.86903 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.433e+01  2.243e+00  -6.390 4.68e-10 ***
## educ         5.425e-03  1.076e-02   0.504   0.6144    
## wage        -2.996e-05  5.289e-06  -5.664 2.86e-08 ***
## swage        1.056e-05  5.953e-06   1.774   0.0769 .  
## exper       -1.716e-01  1.270e-01  -1.351   0.1773    
## pexper       6.464e-03  1.950e-03   3.315   0.0010 ** 
## lwage        1.630e+00  2.211e-01   7.370 1.01e-12 ***
## expersq      5.842e-03  4.686e-03   1.247   0.2132    
## highgrad    -1.972e-01  4.628e-02  -4.261 2.55e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3728 on 394 degrees of freedom
## Multiple R-squared:  0.4547, Adjusted R-squared:  0.4436 
## F-statistic: 41.07 on 8 and 394 DF,  p-value: < 2.2e-16

stargezer

library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
model1 <- lm( male ~ educ + wage + swage + exper + pexper + lwage + expersq + highgrad ,data = engin)
model1_2 <- lm( male ~ educ + log(wage) + swage + exper + pexper + lwage + expersq + highgrad ,data = engin)
stargazer(model1,model1_2, type = "text")
## 
## ===================================================================
##                                   Dependent variable:              
##                     -----------------------------------------------
##                                          male                      
##                               (1)                     (2)          
## -------------------------------------------------------------------
## educ                         0.005                   0.018         
##                             (0.011)                 (0.011)        
##                                                                    
## wage                      -0.00003***                              
##                            (0.00001)                               
##                                                                    
## log(wage)                                          0.537***        
##                                                     (0.112)        
##                                                                    
## swage                      0.00001*                -0.00000        
##                            (0.00001)               (0.00001)       
##                                                                    
## exper                       -0.172                  -0.110         
##                             (0.127)                 (0.131)        
##                                                                    
## pexper                     0.006***                0.008***        
##                             (0.002)                 (0.002)        
##                                                                    
## lwage                      1.630***                                
##                             (0.221)                                
##                                                                    
## expersq                      0.006                   0.004         
##                             (0.005)                 (0.005)        
##                                                                    
## highgrad                   -0.197***               -0.236***       
##                             (0.046)                 (0.048)        
##                                                                    
## Constant                  -14.333***               -4.400***       
##                             (2.243)                 (1.452)        
##                                                                    
## -------------------------------------------------------------------
## Observations                  403                     403          
## R2                           0.455                   0.410         
## Adjusted R2                  0.444                   0.400         
## Residual Std. Error    0.373 (df = 394)        0.387 (df = 395)    
## F Statistic         41.067*** (df = 8; 394) 39.262*** (df = 7; 395)
## ===================================================================
## Note:                                   *p<0.1; **p<0.05; ***p<0.01
lm(scale(wage) ~ scale(educ) + scale(wage) +scale(swage) + scale(exper) + scale(pexper) + scale(lwage) + scale(expersq) ,data = engin)
## Warning in model.matrix.default(mt, mf, contrasts): the response appeared on the
## right-hand side and was dropped
## Warning in model.matrix.default(mt, mf, contrasts): problem with term 2 in
## model.matrix: no columns are assigned
## 
## Call:
## lm(formula = scale(wage) ~ scale(educ) + scale(wage) + scale(swage) + 
##     scale(exper) + scale(pexper) + scale(lwage) + scale(expersq), 
##     data = engin)
## 
## Coefficients:
##    (Intercept)     scale(educ)    scale(swage)    scale(exper)   scale(pexper)  
##     -1.753e-15      -7.825e-02       2.107e-01      -2.164e-01      -2.750e-02  
##   scale(lwage)  scale(expersq)  
##      8.456e-01       2.140e-01

logarithmic

lm(scale(wage) ~ scale(educ) + scale(wage) +scale(swage) + scale(exper) + (pexper) + (lwage) + (expersq) ,data = engin)
## Warning in model.matrix.default(mt, mf, contrasts): the response appeared on the
## right-hand side and was dropped
## Warning in model.matrix.default(mt, mf, contrasts): problem with term 2 in
## model.matrix: no columns are assigned
## 
## Call:
## lm(formula = scale(wage) ~ scale(educ) + scale(wage) + scale(swage) + 
##     scale(exper) + (pexper) + (lwage) + (expersq), data = engin)
## 
## Coefficients:
##  (Intercept)   scale(educ)  scale(swage)  scale(exper)        pexper  
##   -22.612953     -0.078251      0.210717     -0.216424     -0.002625  
##        lwage       expersq  
##     2.104275      0.004500