This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
We are trying to fit the kyphosis data with the GAM method. ##This is and incomplete work, only to be seen for a partner!!!
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk with the comand “´´´{r}”
## Loading required package: splines
## Loading required package: foreach
## Loaded gam 1.22
## [1] "The head of the data to be used in the training process"
## Kyphosis Age Number Start
## 25 absent 131 2 3
## 1 absent 71 3 5
## 62 absent 102 3 13
## 64 present 114 7 8
## 12 absent 148 3 16
## 10 present 59 6 12
## [1] "and now the head of the data to be used in predictions"
## Kyphosis Age Number Start
## 4 absent 2 5 1
## 6 absent 1 2 16
## 22 absent 22 2 16
## 29 absent 8 3 6
## 31 absent 4 3 16
## 33 absent 31 3 16
## GAM s.wam loop 1: deviance = 49.64933
## GAM s.wam loop 2: deviance = 47.31545
## GAM s.wam loop 3: deviance = 46.29691
## GAM s.wam loop 4: deviance = 45.70711
## GAM s.wam loop 5: deviance = 45.44348
## GAM s.wam loop 6: deviance = 45.35662
## GAM s.wam loop 7: deviance = 45.33547
## GAM s.wam loop 8: deviance = 45.33114
## GAM s.wam loop 9: deviance = 45.33029
## GAM s.wam loop 10: deviance = 45.33013
## GAM s.wam loop 11: deviance = 45.3301
## GAM s.wam loop 12: deviance = 45.33009
## GAM s.wam loop 13: deviance = 45.33009
##
## Call: gam(formula = Kyphosis ~ s(Age, 4) + Number, family = binomial,
## data = kyph.training, trace = TRUE)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.65777 -0.74780 -0.34854 -0.01102 2.18556
##
## (Dispersion Parameter for binomial family taken to be 1)
##
## Null Deviance: 65.1927 on 59 degrees of freedom
## Residual Deviance: 45.3301 on 53.9998 degrees of freedom
## AIC: 57.3305
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## s(Age, 4) 1 0.429 0.4291 0.5498 0.461621
## Number 1 8.256 8.2564 10.5781 0.001975 **
## Residuals 54 42.148 0.7805
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar Chisq P(Chi)
## (Intercept)
## s(Age, 4) 3 5.9373 0.1147
## Number
## s(Age, 4) Number
## 4 -2.1999570 0.4561159
## 6 -2.2479093 -1.4532064
## 22 -1.3191931 -1.4532064
## 29 -1.9149893 -0.8167656
## 31 -2.1042412 -0.8167656
## 33 -0.9407890 -0.8167656
## 38 0.6138317 -0.8167656
## 39 -2.2479093 -0.8167656
## 41 -1.3988071 1.0925566
## 43 -0.1966336 0.4561159
## 46 -0.2464173 -0.1803249
## 49 -0.1013489 -0.1803249
## 50 0.3249586 0.4561159
## 51 0.8388334 -0.8167656
## 52 -4.9611675 -1.4532064
## 54 -1.8684291 -1.4532064
## 59 -2.1999570 -0.8167656
## 67 0.9112785 -0.1803249
## 79 -2.5146546 -0.8167656
## 81 0.8667885 -1.4532064
## 83 -0.7255399 -0.1803249
## attr(,"constant")
## [1] -1.07123
## GAM s.wam loop 1: deviance = 48.06192
## GAM s.wam loop 2: deviance = 44.95525
## GAM s.wam loop 3: deviance = 43.67214
## GAM s.wam loop 4: deviance = 43.04551
## GAM s.wam loop 5: deviance = 42.80878
## GAM s.wam loop 6: deviance = 42.73908
## GAM s.wam loop 7: deviance = 42.72331
## GAM s.wam loop 8: deviance = 42.72097
## GAM s.wam loop 9: deviance = 42.72055
## GAM s.wam loop 10: deviance = 42.72048
## GAM s.wam loop 11: deviance = 42.72046
## GAM s.wam loop 12: deviance = 42.72046
##
## Call: gam(formula = Kyphosis ~ s(Age, 4) + s(Number, 4), family = binomial,
## data = kyph.training, trace = TRUE)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.33716 -0.68978 -0.29316 -0.01484 2.14117
##
## (Dispersion Parameter for binomial family taken to be 1)
##
## Null Deviance: 65.1927 on 59 degrees of freedom
## Residual Deviance: 42.7205 on 51.0001 degrees of freedom
## AIC: 60.7203
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## s(Age, 4) 1 1.349 1.3485 1.7762 0.188534
## s(Number, 4) 1 7.697 7.6969 10.1384 0.002476 **
## Residuals 51 38.718 0.7592
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar Chisq P(Chi)
## (Intercept)
## s(Age, 4) 3 5.9463 0.1142
## s(Number, 4) 3 2.6705 0.4453
## s(Age, 4) s(Number, 4)
## 4 -2.2160604 0.6740591
## 6 -2.2593451 -2.7699914
## 22 -1.4145543 -2.7699914
## 29 -1.9585781 -1.1215605
## 31 -2.1296478 -1.1215605
## 33 -1.0633294 -1.1215605
## 38 0.6462161 -1.1215605
## 39 -2.2593451 -1.1215605
## 41 -1.4879770 1.6010805
## 43 -0.3202441 0.6740591
## 46 -0.4174279 -0.1644021
## 49 0.3208429 -0.1644021
## 50 0.6751306 0.6740591
## 51 1.0832773 -1.1215605
## 52 -4.1815587 -2.7699914
## 54 -1.9164119 -2.7699914
## 59 -2.2160604 -1.1215605
## 67 1.1332297 -0.1644021
## 79 -1.8609915 -1.1215605
## 81 1.1033650 -2.7699914
## 83 -0.8640442 -0.1644021
## attr(,"constant")
## [1] -1.126854
You can also embed plots, for example:
plot( Gam.Kyph2,se=TRUE) Note that the
echo = FALSE
parameter was added to the code chunk to prevent printing of the R code
that generated the plot.