cor(x, y, method = c(“pearson”, “kendall”, “spearman”)) cor.test(x, y, method=c(“pearson”, “kendall”, “spearman”)) When there are missing variables, use the code below- cor(x, y, method = “pearson”, use = “complete.obs”)

#mostcommonly used correlation is pearson correlation
library(readr)
Sumita_Addicon <- read_csv("~/Documents/OneDrive/2_Apple/sumita/Sumita_Addicon.csv")
## New names:
## Rows: 34 Columns: 15
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): State/UT, percentage...15 dbl (13): population_million, Population, total
## crime, COTPA, GATS-2, men, w...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `percentage` -> `percentage...12`
## • `percentage` -> `percentage...15`
library(tigerstats)
## Loading required package: abd
## Loading required package: nlme
## Loading required package: lattice
## Loading required package: grid
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## 
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## 
## The following object is masked from 'package:Matrix':
## 
##     mean
## 
## The following object is masked from 'package:ggplot2':
## 
##     stat
## 
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## 
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## 
## Welcome to tigerstats!
## To learn more about this package, consult its website:
##  http://homerhanumat.github.io/tigerstats
favstats(Sumita_Addicon$population_cotpa~ Sumita_Addicon$`State/UT`, data = Sumita_Addicon) [c("Sumita_Addicon$`State/UT`", "mean")]

How to visualise data

library("ggpubr")
ggscatter(Sumita_Addicon, x = "population_cotpa", y = "GATS-2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "COTPA cases per million", ylab = "Tobacco prevalence GATS-2")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 2 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 2 rows containing missing values (`geom_point()`).

# There is no correlation between prevalence of tobacco use and COTPA cases
cor.test(Sumita_Addicon$population_cotpa, Sumita_Addicon$`GATS-2`, method = c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  x and y
## t = -0.91972, df = 30, p-value = 0.3651
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4862171  0.1943154
## sample estimates:
##       cor 
## -0.165599
ggscatter(Sumita_Addicon, x = "population_cotpa", y = "population_crimes", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "COTPA cases per million", ylab = "Crimes recorded oer million")
## `geom_smooth()` using formula = 'y ~ x'

# There is no correlation between crime cases for the states and COTPA cases
cor.test(Sumita_Addicon$population_cotpa, Sumita_Addicon$population_crimes, method = c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  x and y
## t = 7.6161, df = 32, p-value = 1.119e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6377516 0.8973442
## sample estimates:
##       cor 
## 0.8027843

Smoking and smokeless tobacco use

ggscatter(Sumita_Addicon, x = "population_cotpa", y = "smokeless", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "COTPA cases per million", ylab = "smokeless")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 2 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 2 rows containing missing values (`geom_point()`).

# There is no correlation between crime cases for the states and smokeless tobacco
cor.test(Sumita_Addicon$population_cotpa, Sumita_Addicon$smokeless, method = c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  x and y
## t = -0.89323, df = 30, p-value = 0.3788
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4825651  0.1989025
## sample estimates:
##        cor 
## -0.1609546
ggscatter(Sumita_Addicon, x = "population_cotpa", y = "smoke", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "COTPA cases per million", ylab = "smoking")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 2 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 2 rows containing missing values (`geom_point()`).

# There is no correlation between crime cases for the states and smoking
cor.test(Sumita_Addicon$population_cotpa, Sumita_Addicon$smoke, method = c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  x and y
## t = 0.088645, df = 30, p-value = 0.93
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3343987  0.3628289
## sample estimates:
##       cor 
## 0.0161822
#men and women
ggscatter(Sumita_Addicon, x = "population_cotpa", y = "women", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "COTPA cases per million", ylab = "Tobacco use in women")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 2 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 2 rows containing missing values (`geom_point()`).

# There is no correlation between tobacco use in women for the states and COTPA cases
cor.test(Sumita_Addicon$population_cotpa, Sumita_Addicon$women, method = c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  x and y
## t = -0.44337, df = 30, p-value = 0.6607
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4176283  0.2757686
## sample estimates:
##         cor 
## -0.08068386
ggscatter(Sumita_Addicon, x = "population_cotpa", y = "men", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "COTPA cases per million", ylab = "tobacco use in men")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 2 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 2 rows containing missing values (`geom_point()`).

# There is no correlation between COTPA for the states and tobacco use in men
cor.test(Sumita_Addicon$population_cotpa, Sumita_Addicon$men, method = c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  x and y
## t = -0.96119, df = 30, p-value = 0.3441
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4918939  0.1871254
## sample estimates:
##        cor 
## -0.1728467

We intend to do a time series as we have data for 5 years (2017-2021)

library(readr)
COTPA_Time_series <- read_csv("~/Documents/OneDrive/2_Apple/sumita/COTPA_Time_series.csv")
## Rows: 5 Columns: 37
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (37): Year, Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chhattisgar...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
attach(COTPA_Time_series)
summary(COTPA_Time_series)
##       Year      Andhra Pradesh Arunachal Pradesh     Assam       Bihar  
##  Min.   :2017   Min.   :0.0    Min.   :0         Min.   :0   Min.   :0  
##  1st Qu.:2018   1st Qu.:0.1    1st Qu.:0         1st Qu.:0   1st Qu.:0  
##  Median :2019   Median :0.3    Median :0         Median :0   Median :0  
##  Mean   :2019   Mean   :0.3    Mean   :0         Mean   :0   Mean   :0  
##  3rd Qu.:2020   3rd Qu.:0.3    3rd Qu.:0         3rd Qu.:0   3rd Qu.:0  
##  Max.   :2021   Max.   :0.8    Max.   :0         Max.   :0   Max.   :0  
##   Chhattisgarh      Goa          Gujarat       Haryana  Himachal Pradesh
##  Min.   :0.0   Min.   :0.00   Min.   :0.1   Min.   :0   Min.   :0       
##  1st Qu.:0.1   1st Qu.:0.00   1st Qu.:0.1   1st Qu.:0   1st Qu.:0       
##  Median :0.1   Median :0.00   Median :0.1   Median :0   Median :0       
##  Mean   :0.2   Mean   :0.22   Mean   :0.1   Mean   :0   Mean   :0       
##  3rd Qu.:0.2   3rd Qu.:0.10   3rd Qu.:0.1   3rd Qu.:0   3rd Qu.:0       
##  Max.   :0.6   Max.   :1.00   Max.   :0.1   Max.   :0   Max.   :0       
##    Jharkhand      Karnataka        Kerala      Madhya Pradesh  Maharashtra  
##  Min.   :0.00   Min.   :0.30   Min.   : 5.00   Min.   :0      Min.   :0.10  
##  1st Qu.:0.00   1st Qu.:0.40   1st Qu.: 7.40   1st Qu.:0      1st Qu.:0.50  
##  Median :0.00   Median :0.50   Median :14.30   Median :0      Median :0.60  
##  Mean   :0.02   Mean   :0.44   Mean   :12.38   Mean   :0      Mean   :0.52  
##  3rd Qu.:0.00   3rd Qu.:0.50   3rd Qu.:16.40   3rd Qu.:0      3rd Qu.:0.70  
##  Max.   :0.10   Max.   :0.50   Max.   :18.80   Max.   :0      Max.   :0.70  
##     Manipur       Meghalaya    Mizoram        Nagaland        Odisha 
##  Min.   :0.00   Min.   :0   Min.   :0.00   Min.   :0.00   Min.   :0  
##  1st Qu.:0.00   1st Qu.:0   1st Qu.:0.00   1st Qu.:0.00   1st Qu.:0  
##  Median :0.00   Median :0   Median :0.00   Median :0.00   Median :0  
##  Mean   :0.08   Mean   :0   Mean   :0.04   Mean   :0.02   Mean   :0  
##  3rd Qu.:0.10   3rd Qu.:0   3rd Qu.:0.00   3rd Qu.:0.00   3rd Qu.:0  
##  Max.   :0.30   Max.   :0   Max.   :0.20   Max.   :0.10   Max.   :0  
##      Punjab       Rajasthan        Sikkim    Tamil Nadu      Telangana   
##  Min.   :0.00   Min.   :1.70   Min.   :0   Min.   :17.50   Min.   :0.80  
##  1st Qu.:0.00   1st Qu.:1.80   1st Qu.:0   1st Qu.:19.20   1st Qu.:1.10  
##  Median :0.00   Median :2.40   Median :0   Median :29.60   Median :1.30  
##  Mean   :0.02   Mean   :2.22   Mean   :0   Mean   :36.62   Mean   :1.28  
##  3rd Qu.:0.00   3rd Qu.:2.40   3rd Qu.:0   3rd Qu.:56.10   3rd Qu.:1.30  
##  Max.   :0.10   Max.   :2.80   Max.   :0   Max.   :60.70   Max.   :1.90  
##     Tripura  Uttar Pradesh  Uttarakhand     West Bengal  A&N Islands
##  Min.   :0   Min.   :0     Min.   : 0.10   Min.   :0    Min.   :0   
##  1st Qu.:0   1st Qu.:0     1st Qu.: 0.50   1st Qu.:0    1st Qu.:0   
##  Median :0   Median :0     Median : 1.30   Median :0    Median :0   
##  Mean   :0   Mean   :0     Mean   : 4.06   Mean   :0    Mean   :0   
##  3rd Qu.:0   3rd Qu.:0     3rd Qu.: 7.40   3rd Qu.:0    3rd Qu.:0   
##  Max.   :0   Max.   :0     Max.   :11.00   Max.   :0    Max.   :0   
##    Chandigarh D&N Haveli and\nDaman & Diu     Delhi     Jammu & Kashmir
##  Min.   :0    Min.   :0.00                Min.   :0.0   Min.   :0      
##  1st Qu.:0    1st Qu.:0.00                1st Qu.:0.0   1st Qu.:0      
##  Median :0    Median :0.00                Median :0.1   Median :0      
##  Mean   :0    Mean   :0.04                Mean   :0.1   Mean   :0      
##  3rd Qu.:0    3rd Qu.:0.00                3rd Qu.:0.1   3rd Qu.:0      
##  Max.   :0    Max.   :0.20                Max.   :0.3   Max.   :0      
##   Lakshadweep     Puducherry     Average   
##  Min.   :0.00   Min.   :1.5   Min.   :1.3  
##  1st Qu.:0.00   1st Qu.:3.5   1st Qu.:1.3  
##  Median :1.40   Median :4.3   Median :1.6  
##  Mean   :0.88   Mean   :3.9   Mean   :1.8  
##  3rd Qu.:1.50   3rd Qu.:4.3   3rd Qu.:2.4  
##  Max.   :1.50   Max.   :5.9   Max.   :2.4
library(dplyr)
COTPA_Time_series_2 <- select(COTPA_Time_series,-1)
COTPA_Time_series_3 <- scale(COTPA_Time_series_2)
COTPA_Time_series_3
##      Andhra Pradesh Arunachal Pradesh Assam Bihar  Chhattisgarh        Goa
## [1,]     -0.9733285               NaN   NaN   NaN -8.528029e-01  1.7800983
## [2,]     -0.6488857               NaN   NaN   NaN -4.264014e-01 -0.5020790
## [3,]      0.0000000               NaN   NaN   NaN  1.705606e+00 -0.2738613
## [4,]      0.0000000               NaN   NaN   NaN  1.183502e-16 -0.5020790
## [5,]      1.6222142               NaN   NaN   NaN -4.264014e-01 -0.5020790
##      Gujarat Haryana Himachal Pradesh  Jharkhand  Karnataka     Kerala
## [1,]     NaN     NaN              NaN -0.4472136  0.6708204  1.0839091
## [2,]     NaN     NaN              NaN -0.4472136 -0.4472136  0.6787094
## [3,]     NaN     NaN              NaN -0.4472136  0.6708204  0.3241597
## [4,]     NaN     NaN              NaN  1.7888544  0.6708204 -1.2459889
## [5,]     NaN     NaN              NaN -0.4472136 -1.5652476 -0.8407893
##      Madhya Pradesh Maharashtra   Manipur Meghalaya    Mizoram   Nagaland
## [1,]            NaN -1.68676059 -0.613572       NaN -0.4472136 -0.4472136
## [2,]            NaN  0.72289740 -0.613572       NaN -0.4472136 -0.4472136
## [3,]            NaN  0.32128773  1.687323       NaN -0.4472136 -0.4472136
## [4,]            NaN -0.08032193  0.153393       NaN -0.4472136  1.7888544
## [5,]            NaN  0.72289740 -0.613572       NaN  1.7888544 -0.4472136
##      Odisha     Punjab  Rajasthan Sikkim Tamil Nadu  Telangana Tripura
## [1,]    NaN -0.4472136 -1.1293678    NaN -0.3427830 -1.1925696     NaN
## [2,]    NaN -0.4472136 -0.9121817    NaN -0.8506097  0.0496904     NaN
## [3,]    NaN -0.4472136  1.2596795    NaN -0.9336198 -0.4472136     NaN
## [4,]    NaN  1.7888544  0.3909350    NaN  0.9511984  1.5404024     NaN
## [5,]    NaN -0.4472136  0.3909350    NaN  1.1758140  0.0496904     NaN
##      Uttar Pradesh Uttarakhand West Bengal A&N Islands Chandigarh
## [1,]           NaN  -0.8113289         NaN         NaN        NaN
## [2,]           NaN  -0.5654717         NaN         NaN        NaN
## [3,]           NaN  -0.7293765         NaN         NaN        NaN
## [4,]           NaN   1.4218744         NaN         NaN        NaN
## [5,]           NaN   0.6843027         NaN         NaN        NaN
##      D&N Haveli and\nDaman & Diu      Delhi Jammu & Kashmir Lakshadweep
## [1,]                  -0.4472136 -0.8164966             NaN  -1.0940333
## [2,]                   1.7888544  0.0000000             NaN  -1.0940333
## [3,]                  -0.4472136 -0.8164966             NaN   0.7707962
## [4,]                  -0.4472136  0.0000000             NaN   0.6464742
## [5,]                  -0.4472136  1.6329932             NaN   0.7707962
##      Puducherry    Average
## [1,]       0.25 -0.3563483
## [2,]       0.25 -0.8908708
## [3,]       1.25 -0.8908708
## [4,]      -0.25  1.0690450
## [5,]      -1.50  1.0690450
## attr(,"scaled:center")
##              Andhra Pradesh           Arunachal Pradesh 
##                        0.30                        0.00 
##                       Assam                       Bihar 
##                        0.00                        0.00 
##                Chhattisgarh                         Goa 
##                        0.20                        0.22 
##                     Gujarat                     Haryana 
##                        0.10                        0.00 
##            Himachal Pradesh                   Jharkhand 
##                        0.00                        0.02 
##                   Karnataka                      Kerala 
##                        0.44                       12.38 
##              Madhya Pradesh                 Maharashtra 
##                        0.00                        0.52 
##                     Manipur                   Meghalaya 
##                        0.08                        0.00 
##                     Mizoram                    Nagaland 
##                        0.04                        0.02 
##                      Odisha                      Punjab 
##                        0.00                        0.02 
##                   Rajasthan                      Sikkim 
##                        2.22                        0.00 
##                  Tamil Nadu                   Telangana 
##                       36.62                        1.28 
##                     Tripura               Uttar Pradesh 
##                        0.00                        0.00 
##                 Uttarakhand                 West Bengal 
##                        4.06                        0.00 
##                 A&N Islands                  Chandigarh 
##                        0.00                        0.00 
## D&N Haveli and\nDaman & Diu                       Delhi 
##                        0.04                        0.10 
##             Jammu & Kashmir                 Lakshadweep 
##                        0.00                        0.88 
##                  Puducherry                     Average 
##                        3.90                        1.80 
## attr(,"scaled:scale")
##              Andhra Pradesh           Arunachal Pradesh 
##                  0.30822070                  0.00000000 
##                       Assam                       Bihar 
##                  0.00000000                  0.00000000 
##                Chhattisgarh                         Goa 
##                  0.23452079                  0.43817805 
##                     Gujarat                     Haryana 
##                  0.00000000                  0.00000000 
##            Himachal Pradesh                   Jharkhand 
##                  0.00000000                  0.04472136 
##                   Karnataka                      Kerala 
##                  0.08944272                  5.92300599 
##              Madhya Pradesh                 Maharashtra 
##                  0.00000000                  0.24899799 
##                     Manipur                   Meghalaya 
##                  0.13038405                  0.00000000 
##                     Mizoram                    Nagaland 
##                  0.08944272                  0.04472136 
##                      Odisha                      Punjab 
##                  0.00000000                  0.04472136 
##                   Rajasthan                      Sikkim 
##                  0.46043458                  0.00000000 
##                  Tamil Nadu                   Telangana 
##                 20.47942870                  0.40249224 
##                     Tripura               Uttar Pradesh 
##                  0.00000000                  0.00000000 
##                 Uttarakhand                 West Bengal 
##                  4.88088107                  0.00000000 
##                 A&N Islands                  Chandigarh 
##                  0.00000000                  0.00000000 
## D&N Haveli and\nDaman & Diu                       Delhi 
##                  0.08944272                  0.12247449 
##             Jammu & Kashmir                 Lakshadweep 
##                  0.00000000                  0.80436310 
##                  Puducherry                     Average 
##                  1.60000000                  0.56124861

time series

COTPA_Time_Series_Five_Years <- ts(COTPA_Time_series_3, frequency=1, start=c(2017,1))
COTPA_Time_Series_Five_Years
## Time Series:
## Start = 2017 
## End = 2021 
## Frequency = 1 
##      Andhra Pradesh Arunachal Pradesh Assam Bihar  Chhattisgarh        Goa
## 2017     -0.9733285               NaN   NaN   NaN -8.528029e-01  1.7800983
## 2018     -0.6488857               NaN   NaN   NaN -4.264014e-01 -0.5020790
## 2019      0.0000000               NaN   NaN   NaN  1.705606e+00 -0.2738613
## 2020      0.0000000               NaN   NaN   NaN  1.183502e-16 -0.5020790
## 2021      1.6222142               NaN   NaN   NaN -4.264014e-01 -0.5020790
##      Gujarat Haryana Himachal Pradesh  Jharkhand  Karnataka     Kerala
## 2017     NaN     NaN              NaN -0.4472136  0.6708204  1.0839091
## 2018     NaN     NaN              NaN -0.4472136 -0.4472136  0.6787094
## 2019     NaN     NaN              NaN -0.4472136  0.6708204  0.3241597
## 2020     NaN     NaN              NaN  1.7888544  0.6708204 -1.2459889
## 2021     NaN     NaN              NaN -0.4472136 -1.5652476 -0.8407893
##      Madhya Pradesh Maharashtra   Manipur Meghalaya    Mizoram   Nagaland
## 2017            NaN -1.68676059 -0.613572       NaN -0.4472136 -0.4472136
## 2018            NaN  0.72289740 -0.613572       NaN -0.4472136 -0.4472136
## 2019            NaN  0.32128773  1.687323       NaN -0.4472136 -0.4472136
## 2020            NaN -0.08032193  0.153393       NaN -0.4472136  1.7888544
## 2021            NaN  0.72289740 -0.613572       NaN  1.7888544 -0.4472136
##      Odisha     Punjab  Rajasthan Sikkim Tamil Nadu  Telangana Tripura
## 2017    NaN -0.4472136 -1.1293678    NaN -0.3427830 -1.1925696     NaN
## 2018    NaN -0.4472136 -0.9121817    NaN -0.8506097  0.0496904     NaN
## 2019    NaN -0.4472136  1.2596795    NaN -0.9336198 -0.4472136     NaN
## 2020    NaN  1.7888544  0.3909350    NaN  0.9511984  1.5404024     NaN
## 2021    NaN -0.4472136  0.3909350    NaN  1.1758140  0.0496904     NaN
##      Uttar Pradesh Uttarakhand West Bengal A&N Islands Chandigarh
## 2017           NaN  -0.8113289         NaN         NaN        NaN
## 2018           NaN  -0.5654717         NaN         NaN        NaN
## 2019           NaN  -0.7293765         NaN         NaN        NaN
## 2020           NaN   1.4218744         NaN         NaN        NaN
## 2021           NaN   0.6843027         NaN         NaN        NaN
##      D&N Haveli and\nDaman & Diu      Delhi Jammu & Kashmir Lakshadweep
## 2017                  -0.4472136 -0.8164966             NaN  -1.0940333
## 2018                   1.7888544  0.0000000             NaN  -1.0940333
## 2019                  -0.4472136 -0.8164966             NaN   0.7707962
## 2020                  -0.4472136  0.0000000             NaN   0.6464742
## 2021                  -0.4472136  1.6329932             NaN   0.7707962
##      Puducherry    Average
## 2017       0.25 -0.3563483
## 2018       0.25 -0.8908708
## 2019       1.25 -0.8908708
## 2020      -0.25  1.0690450
## 2021      -1.50  1.0690450
## attr(,"scaled:center")
##              Andhra Pradesh           Arunachal Pradesh 
##                        0.30                        0.00 
##                       Assam                       Bihar 
##                        0.00                        0.00 
##                Chhattisgarh                         Goa 
##                        0.20                        0.22 
##                     Gujarat                     Haryana 
##                        0.10                        0.00 
##            Himachal Pradesh                   Jharkhand 
##                        0.00                        0.02 
##                   Karnataka                      Kerala 
##                        0.44                       12.38 
##              Madhya Pradesh                 Maharashtra 
##                        0.00                        0.52 
##                     Manipur                   Meghalaya 
##                        0.08                        0.00 
##                     Mizoram                    Nagaland 
##                        0.04                        0.02 
##                      Odisha                      Punjab 
##                        0.00                        0.02 
##                   Rajasthan                      Sikkim 
##                        2.22                        0.00 
##                  Tamil Nadu                   Telangana 
##                       36.62                        1.28 
##                     Tripura               Uttar Pradesh 
##                        0.00                        0.00 
##                 Uttarakhand                 West Bengal 
##                        4.06                        0.00 
##                 A&N Islands                  Chandigarh 
##                        0.00                        0.00 
## D&N Haveli and\nDaman & Diu                       Delhi 
##                        0.04                        0.10 
##             Jammu & Kashmir                 Lakshadweep 
##                        0.00                        0.88 
##                  Puducherry                     Average 
##                        3.90                        1.80 
## attr(,"scaled:scale")
##              Andhra Pradesh           Arunachal Pradesh 
##                  0.30822070                  0.00000000 
##                       Assam                       Bihar 
##                  0.00000000                  0.00000000 
##                Chhattisgarh                         Goa 
##                  0.23452079                  0.43817805 
##                     Gujarat                     Haryana 
##                  0.00000000                  0.00000000 
##            Himachal Pradesh                   Jharkhand 
##                  0.00000000                  0.04472136 
##                   Karnataka                      Kerala 
##                  0.08944272                  5.92300599 
##              Madhya Pradesh                 Maharashtra 
##                  0.00000000                  0.24899799 
##                     Manipur                   Meghalaya 
##                  0.13038405                  0.00000000 
##                     Mizoram                    Nagaland 
##                  0.08944272                  0.04472136 
##                      Odisha                      Punjab 
##                  0.00000000                  0.04472136 
##                   Rajasthan                      Sikkim 
##                  0.46043458                  0.00000000 
##                  Tamil Nadu                   Telangana 
##                 20.47942870                  0.40249224 
##                     Tripura               Uttar Pradesh 
##                  0.00000000                  0.00000000 
##                 Uttarakhand                 West Bengal 
##                  4.88088107                  0.00000000 
##                 A&N Islands                  Chandigarh 
##                  0.00000000                  0.00000000 
## D&N Haveli and\nDaman & Diu                       Delhi 
##                  0.08944272                  0.12247449 
##             Jammu & Kashmir                 Lakshadweep 
##                  0.00000000                  0.80436310 
##                  Puducherry                     Average 
##                  1.60000000                  0.56124861
library(ggplot2)
library(dplyr)
library(ggfortify)
#theme_set(theme_bw())
#autoplot(ndps, ts.colour = 'red', ts.linetype = 'dashed') 
autoplot(COTPA_Time_Series_Five_Years, facets = FALSE) +
ggtitle("Time Series Plot of the `COTPA'") + theme(plot.title = element_text(hjust = 0.5)) #for centering the text
## Warning: Removed 80 rows containing missing values (`geom_line()`).