library(rio)
## Warning: package 'rio' was built under R version 4.2.2
data=import("Etr.csv")
data[,c(6:49)]=NULL
names1=c('Pais','FRS','NDS','RPGS','WRS')
names(data)=names1
library(rio)
data2=import("gpi.csv")
merge
names2=c('Pais','2022')
names(data2)=names2
Basefinal=merge(data,data2)
library(polycor)
## Warning: package 'polycor' was built under R version 4.2.2
corMatrix=polycor::hetcor(Basefinal)$correlations
## data contain one or more character variables
## the values of which are ordered alphabetically
dontselect=c("pais")
select=setdiff(names(Basefinal), dontselect)
DL=Basefinal[,select]
library(polycor)
corL=polycor::hetcor(DL)$correlations
## data contain one or more character variables
## the values of which are ordered alphabetically
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.2.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.2
ggcorrplot(corL)
library(psych)
## Warning: package 'psych' was built under R version 4.2.2
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:polycor':
##
## polyserial
psych::KMO(corMatrix)
## Kaiser-Meyer-Olkin factor adequacy
## Call: psych::KMO(r = corMatrix)
## Overall MSA = 0.79
## MSA for each item =
## Pais FRS NDS RPGS WRS 2022
## 0.58 0.74 0.76 0.79 0.81 0.90
cortest.bartlett(corMatrix,n=nrow(DL))$p.value>0.05
## [1] FALSE
library(matrixcalc)
is.singular.matrix(corMatrix)
## [1] FALSE
fa.parallel(DL, fa = ‘fa’,correct = T,plot = F)
library(GPArotation) resfa <- fa(DL, nfactors = 2, cor = ‘mixed’, rotate = “varimax”, fm=“minres”) print(resfa$loadings)