Limpieza de la data

Importamos la data

library(rio)
## Warning: package 'rio' was built under R version 4.2.2
admit = "https://raw.githubusercontent.com/aishamartinez03/Estad-stica-/main/dataAdmit%20-%20dataAdmit.csv"
admit =import(admit)
str(admit)
## 'data.frame':    400 obs. of  4 variables:
##  $ admitido : chr  "no" "si" "si" "si" ...
##  $ gre      : int  380 660 800 640 520 760 560 400 540 700 ...
##  $ gpa      : num  3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
##  $ prestigio: chr  "Bajo" "Bajo" "MuyAlto" "MuyBajo" ...
library(rio)
mort = "https://raw.githubusercontent.com/aishamartinez03/Estad-stica-/main/mortalidad%20-%20datos.csv"
mort =import(mort)
str(mort)
## 'data.frame':    26574 obs. of  7 variables:
##  $ sex            : chr  "male" "male" "male" "male" ...
##  $ padreSector    : chr  "Agricultura" "Agricultura" "NoFijo" "Agricultura" ...
##  $ fechaNacimiento: IDate, format: "1853-05-23" "1853-07-19" ...
##  $ edadDejaEstudio: num  15 15 15 15 0.559 0.315 15 15 15 15 ...
##  $ muere          : int  0 0 0 0 1 1 0 0 0 0 ...
##  $ naceFueraMatri : chr  "no" "no" "no" "no" ...
##  $ madreEdad      : num  35 30.6 29.3 41.2 42.1 ...
library(rio)
data2022 = "https://raw.githubusercontent.com/aishamartinez03/Estad-stica-/main/data2022.csv"
data2022 =import(data2022)
str(data2022)
## 'data.frame':    228 obs. of  5 variables:
##  $ Country                      : chr  "Burundi" "Central African Republic" "Republic of the Congo" "Kenya" ...
##  $ Food Risk Score              : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Natural Disasters Score      : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Rapid Population Growth Score: int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Water Risk Score             : int  5 5 5 5 5 5 5 5 5 5 ...