library(rio)
admit=import("dataAdmit.xlsx")
#gre+gpa+pres
str(admit)
## 'data.frame':    400 obs. of  4 variables:
##  $ admitido : chr  "no" "si" "si" "si" ...
##  $ gre      : num  380 660 800 640 520 760 560 400 540 700 ...
##  $ gpa      : num  3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
##  $ prestigio: chr  "Bajo" "Bajo" "MuyAlto" "MuyBajo" ...
names(admit)
## [1] "admitido"  "gre"       "gpa"       "prestigio"
admit$admitido=as.factor(admit$admitido)
admit$prestigio=as.factor(admit$prestigio)
rlog1=glm(admitido ~ gre+gpa+prestigio,data = admit, family = binomial(link = "logit"))

summary(rlog1)
## 
## Call:
## glm(formula = admitido ~ gre + gpa + prestigio, family = binomial(link = "logit"), 
##     data = admit)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6268  -0.8662  -0.6388   1.1490   2.0790  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -4.665422   1.109370  -4.205 2.61e-05 ***
## gre               0.002264   0.001094   2.070   0.0385 *  
## gpa               0.804038   0.331819   2.423   0.0154 *  
## prestigioBajo    -0.664761   0.283319  -2.346   0.0190 *  
## prestigioMuyAlto  0.675443   0.316490   2.134   0.0328 *  
## prestigioMuyBajo -0.876021   0.366735  -2.389   0.0169 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.98  on 399  degrees of freedom
## Residual deviance: 458.52  on 394  degrees of freedom
## AIC: 470.52
## 
## Number of Fisher Scoring iterations: 4