Ejercicio Análisis de Coyuntura

JACQUELINE VANESSA CLAROS RUIZ

2022-11-21

Importar datos

library(ggplot2)
library(forecast)
library(readxl)
library(tidyr)
library(dplyr)
library(kableExtra)
serie_IMAE <- read_excel("serie_IMAE.xlsx", col_types = c("text", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"))





1. El Salvador

1.1. Crear data de El Salvador

data_sv <- pivot_longer(data = serie_IMAE[,3],
                        cols = `El Salvador`,
                     names_to = "pais",
                     values_to = "indice") %>% select("indice")
imae_sv <- data_sv[1:164,] %>% ts(start = c(2009,1),frequency = 12)
print(imae_sv)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009  86.73  80.85  87.19  83.92  91.42  93.46  86.39  86.72  87.57  85.27
## 2010  85.56  84.69  90.90  85.94  94.33  92.23  87.18  90.25  89.00  88.74
## 2011  90.27  86.73  94.32  90.79  98.50  97.59  92.16  94.22  92.33  89.06
## 2012  92.65  91.20  98.46  91.23 102.83 102.84  93.61  98.21  93.94  93.49
## 2013  95.67  90.77  96.12  96.34 103.08 101.58  96.42  98.96  97.74  96.22
## 2014  98.70  94.70 101.30  97.12 103.86 104.73  98.48  98.60  98.25  96.43
## 2015  98.87  94.82 103.15  98.75 105.65 105.45 101.67 101.06 100.64 100.44
## 2016  99.25  97.76 102.58 103.43 107.76 110.71 104.01 106.24 104.83 102.04
## 2017 101.41  98.97 108.44 101.40 110.85 113.63 105.51 107.88 106.21 103.28
## 2018 105.17 102.53 108.39 107.93 112.46 113.55 108.80 111.94 107.54 105.81
## 2019 108.10 106.41 113.02 109.95 114.95 114.86 111.24 113.28 111.66 108.32
## 2020 109.49 109.27 104.04  87.36  89.33  96.05  96.95 103.34 106.72 106.12
## 2021 106.84 107.04 114.51 109.72 115.43 115.19 112.16 114.23 113.82 109.73
## 2022 109.25 110.28 118.85 111.15 120.33 118.27 113.36 116.30              
##         Nov    Dec
## 2009  91.86  99.64
## 2010  93.13 100.74
## 2011  96.86 103.91
## 2012  99.61 105.05
## 2013 101.24 108.37
## 2014 100.64 107.19
## 2015 104.90 109.86
## 2016 106.50 114.98
## 2017 110.39 117.56
## 2018 112.16 120.03
## 2019 116.10 122.08
## 2020 110.70 119.86
## 2021 116.70 123.69
## 2022
library(ggplot2)

autoplot(imae_sv,
         xlab = "años",
         ylab = "Indice",
         main = "IMAE total de El Salvador, periodo 2009 - 2022 (agosto)") +
  theme_bw()


1.2. Proyección a seis meses

library(forecast)

modelo_sv <- auto.arima(y = imae_sv)
summary(modelo_sv)
## Series: imae_sv 
## ARIMA(2,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1      ar2     sma1   drift
##       0.9235  -0.1436  -0.8361  0.1618
## s.e.  0.0802   0.0807   0.0825  0.0199
## 
## sigma^2 = 5.79:  log likelihood = -354.8
## AIC=719.59   AICc=720   BIC=734.71
## 
## Training set error measures:
##                      ME   RMSE      MAE        MPE     MAPE      MASE
## Training set 0.06329184 2.2858 1.545284 0.03154945 1.523289 0.4028524
##                      ACF1
## Training set -0.003845263

Se tiene:

\(ARIMA(2, 0, 0)(0, 1, 1)[12]\)

pronosticos_sv <- forecast(modelo_sv, h = 6)
autoplot(pronosticos_sv) + xlab("Años") + ylab("indice") + theme_bw()

library(forecast)

autoplot(pronosticos_sv$x, series = "IMAE El Salvador") + autolayer(pronosticos_sv$fitted, series = "Pronóstico") + ggtitle("Ajuste SARIMA")


1.3. Serie ampliada

ivae_h_sv <- ts(as.numeric(rbind(as.matrix(pronosticos_sv$x),
                              as.matrix(pronosticos_sv$mean))),
             start = c(2009,1),
             frequency = 12)
print(ivae_h_sv)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009  86.7300  80.8500  87.1900  83.9200  91.4200  93.4600  86.3900  86.7200
## 2010  85.5600  84.6900  90.9000  85.9400  94.3300  92.2300  87.1800  90.2500
## 2011  90.2700  86.7300  94.3200  90.7900  98.5000  97.5900  92.1600  94.2200
## 2012  92.6500  91.2000  98.4600  91.2300 102.8300 102.8400  93.6100  98.2100
## 2013  95.6700  90.7700  96.1200  96.3400 103.0800 101.5800  96.4200  98.9600
## 2014  98.7000  94.7000 101.3000  97.1200 103.8600 104.7300  98.4800  98.6000
## 2015  98.8700  94.8200 103.1500  98.7500 105.6500 105.4500 101.6700 101.0600
## 2016  99.2500  97.7600 102.5800 103.4300 107.7600 110.7100 104.0100 106.2400
## 2017 101.4100  98.9700 108.4400 101.4000 110.8500 113.6300 105.5100 107.8800
## 2018 105.1700 102.5300 108.3900 107.9300 112.4600 113.5500 108.8000 111.9400
## 2019 108.1000 106.4100 113.0200 109.9500 114.9500 114.8600 111.2400 113.2800
## 2020 109.4900 109.2700 104.0400  87.3600  89.3300  96.0500  96.9500 103.3400
## 2021 106.8400 107.0400 114.5100 109.7200 115.4300 115.1900 112.1600 114.2300
## 2022 109.2500 110.2800 118.8500 111.1500 120.3300 118.2700 113.3600 116.3000
## 2023 113.6007 112.1216                                                      
##           Sep      Oct      Nov      Dec
## 2009  87.5700  85.2700  91.8600  99.6400
## 2010  89.0000  88.7400  93.1300 100.7400
## 2011  92.3300  89.0600  96.8600 103.9100
## 2012  93.9400  93.4900  99.6100 105.0500
## 2013  97.7400  96.2200 101.2400 108.3700
## 2014  98.2500  96.4300 100.6400 107.1900
## 2015 100.6400 100.4400 104.9000 109.8600
## 2016 104.8300 102.0400 106.5000 114.9800
## 2017 106.2100 103.2800 110.3900 117.5600
## 2018 107.5400 105.8100 112.1600 120.0300
## 2019 111.6600 108.3200 116.1000 122.0800
## 2020 106.7200 106.1200 110.7000 119.8600
## 2021 113.8200 109.7300 116.7000 123.6900
## 2022 115.3201 112.9454 118.8018 125.9326
## 2023


1.4. Descomposición de la serie temporal

library(stats)

fit_sv <- stl(ivae_h_sv,"periodic")
autoplot(fit_sv) + theme_bw()

TC_sv <- fit_sv$time.series[,2]
print(TC_sv)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2009  87.44441  87.60681  87.76921  87.92794  88.08667  88.25008  88.41348
## 2010  89.40028  89.55340  89.70651  89.86944  90.03236  90.22289  90.41342
## 2011  92.44334  92.80161  93.15988  93.39982  93.63975  93.84970  94.05965
## 2012  95.62347  95.95655  96.28962  96.54669  96.80376  96.94365  97.08353
## 2013  97.37067  97.57465  97.77863  98.01141  98.24418  98.49901  98.75383
## 2014  99.97696 100.08692 100.19688 100.19388 100.19088 100.13145 100.07202
## 2015 100.61674 100.90043 101.18412 101.48393 101.78373 101.98809 102.19245
## 2016 103.31134 103.67683 104.04231 104.37187 104.70143 104.96083 105.22023
## 2017 105.98874 106.19442 106.40010 106.64005 106.87999 107.13555 107.39110
## 2018 108.53384 108.78914 109.04444 109.27664 109.50885 109.71924 109.92962
## 2019 111.20285 111.44804 111.69322 111.95644 112.21966 112.39504 112.57042
## 2020 106.56927 105.30931 104.04934 103.38688 102.72442 102.59403 102.46364
## 2021 110.00438 110.88175 111.75911 112.26149 112.76387 113.08083 113.39780
## 2022 114.86324 115.06235 115.26147 115.47510 115.68873 115.83923 115.98974
## 2023 116.75131 116.86242                                                  
##            Aug       Sep       Oct       Nov       Dec
## 2009  88.59338  88.77329  88.95274  89.13219  89.26623
## 2010  90.66268  90.91194  91.25980  91.60766  92.02550
## 2011  94.26976  94.47988  94.72779  94.97570  95.29959
## 2012  97.10042  97.11730  97.14252  97.16774  97.26920
## 2013  99.00009  99.24636  99.44622  99.64608  99.81152
## 2014 100.05130 100.03057 100.12173 100.21288 100.41481
## 2015 102.28931 102.38617 102.54615 102.70613 103.00874
## 2016 105.37231 105.52438 105.61158 105.69878 105.84376
## 2017 107.59635 107.80160 107.96728 108.13297 108.33340
## 2018 110.15601 110.38239 110.58903 110.79568 110.99926
## 2019 112.33843 112.10644 110.95596 109.80548 108.18737
## 2020 103.18295 103.90226 105.45812 107.01397 108.50918
## 2021 113.63685 113.87590 114.12496 114.37401 114.61862
## 2022 116.12786 116.26598 116.39214 116.51830 116.63480
## 2023


1.5. Cálculo de las tasas

library(dplyr)
library(zoo)

TC_sv %>% as.numeric() %>% as.data.frame() -> TC_df_sv
names(TC_df_sv) <- c("TC_sv")
TC_df_sv %>% mutate(T_1_1 = (TC_sv/dplyr::lag(TC_sv, n = 1) - 1) * 100,
                    T_1_12 = (TC_sv/dplyr::lag(TC_sv, n = 12) - 1) * 100,
                    T_12_12 = (rollapply(TC_sv, 12, mean, 
                                         align = 'right', fill = NA)
                               /rollapply(dplyr::lag(TC_sv, n = 12), 12, mean, 
                                     align = 'right', fill = NA) - 1) * 100) %>%
          #Aquí se realiza el centrado
          mutate(T_1_12C = dplyr::lead(T_1_12, n = 6),
                 T_12_12C = dplyr::lead(T_12_12, n = 12)) %>% 
  ts(start = c(2009, 1), frequency = 12) -> tabla_coyuntura_sv
tail(tabla_coyuntura_sv, n = 12) %>% kable(align = "l") %>% 
  kable_material(html_font = "Times New Roman") %>% kable_styling()
TC_sv T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
115.2615 0.17304748 3.133843 7.503904 2.098839 NA
115.4751 0.18534593 2.862610 7.009903 1.986578 NA
115.6887 0.18500303 2.593794 6.404204 1.874805 NA
115.8392 0.13009289 2.439316 5.758686 1.759034 NA
115.9897 0.12992386 2.285702 5.074966 1.643756 NA
116.1279 0.11907927 2.192074 4.432823 1.564430 NA
116.2660 0.11893764 2.098839 3.830585 NA NA
116.3921 0.10850962 1.986578 3.328714 NA NA
116.5183 0.10839200 1.874805 2.923816 NA NA
116.6348 0.09999144 1.759034 2.608495 NA NA
116.7513 0.09989156 1.643756 2.380675 NA NA
116.8624 0.09516974 1.564430 2.198828 NA NA


1.6. Gráfico de las tasas (centradas)

library(dplyr)
library(forecast)
library(ggplot2)

tabla_coyuntura_sv %>% as.data.frame() %>% 
  select(T_1_12C, T_12_12C) %>% 
  ts(start = c(2009,1), frequency = 12) -> tabla_coyuntura_graficos_sv
autoplot(tabla_coyuntura_graficos_sv) + theme_bw()

tabla_coyuntura_sv %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()





2. Costa Rica

2.1. Crear data de Costa Rica

data_cr <- pivot_longer(data = serie_IMAE[,2],
                        cols = `Costa Rica`,
                     names_to = "pais",
                     values_to = "indice") %>% select("indice")
imae_cr <- data_cr[1:165,] %>% ts(start = c(2009,1),frequency = 12)
print(imae_cr)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009  73.05  70.50  75.68  70.13  72.30  73.43  72.93  72.00  73.64  76.77
## 2010  75.10  73.53  79.92  73.27  75.74  76.43  76.13  75.58  77.14  79.74
## 2011  78.27  76.77  82.00  76.03  79.23  79.63  77.99  77.89  80.05  83.57
## 2012  82.37  82.95  86.03  78.55  82.23  81.83  80.60  81.77  82.75  85.69
## 2013  83.10  82.79  85.62  81.13  84.12  83.77  83.88  83.97  86.04  88.53
## 2014  86.41  87.04  89.12  83.12  86.04  85.36  86.63  86.17  88.14  92.55
## 2015  88.30  90.04  92.86  88.50  92.09  92.53  93.84  92.75  93.78  96.67
## 2016  94.53  95.60  96.36  93.13  95.39  95.66  94.94  94.84  98.12 101.26
## 2017  96.71  96.96 100.85  94.84  99.06  99.90  96.26  96.64  98.99 103.96
## 2018  99.21  99.00 103.55  99.62 104.59 103.43 101.46 101.10 101.62 106.09
## 2019 101.48 101.93 105.94  99.98 103.78 103.63 102.45 101.43 103.57 109.05
## 2020 102.20 104.23 102.60  89.65  91.81  95.78  91.86  92.51  97.39 101.72
## 2021  96.63 100.29 108.09 101.66 104.50 104.73 107.77 105.71 108.62 111.23
## 2022 106.31 108.14 117.49 105.61 108.90 109.10 110.06 110.34 110.48       
##         Nov    Dec
## 2009  78.18  78.35
## 2010  82.16  81.06
## 2011  85.93  84.67
## 2012  89.26  88.63
## 2013  90.77  90.80
## 2014  94.00  95.23
## 2015  98.43  97.87
## 2016 103.90 103.79
## 2017 107.71 108.11
## 2018 108.90 108.01
## 2019 111.47 111.09
## 2020 105.12 110.61
## 2021 116.91 119.84
## 2022
library(ggplot2)

autoplot(imae_cr,
         xlab = "años",
         ylab = "Indice",
         main = "IMAE total de Costa Rica, periodo 2009 - 2022 (septiembre)") +
  theme_bw()


2.2. Proyección a seis meses

library(forecast)

modelo_cr <- auto.arima(y = imae_cr)
summary(modelo_cr)
## Series: imae_cr 
## ARIMA(1,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     sma1   drift
##       0.8511  -0.5096  0.2326
## s.e.  0.0419   0.0813  0.0423
## 
## sigma^2 = 3.381:  log likelihood = -311.14
## AIC=630.28   AICc=630.55   BIC=642.4
## 
## Training set error measures:
##                      ME     RMSE      MAE          MPE     MAPE    MASE
## Training set 0.01327525 1.753237 1.164367 -0.006606559 1.216715 0.28915
##                   ACF1
## Training set -0.068264

Se tiene:

\(ARIMA(1, 0, 0)(0, 1, 1)[12]\)

pronosticos_cr <- forecast(modelo_cr, h = 6)
autoplot(pronosticos_cr) + xlab("Años") + ylab("indice") + theme_bw()

library(forecast)

autoplot(pronosticos_cr$x, series = "IMAE Costa Rica") + autolayer(pronosticos_cr$fitted, series = "Pronóstico") + ggtitle("Ajuste SARIMA")


2.3. Serie ampliada

ivae_h_cr <- ts(as.numeric(rbind(as.matrix(pronosticos_cr$x),
                              as.matrix(pronosticos_cr$mean))),
             start = c(2009,1),
             frequency = 12)
print(ivae_h_cr)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009  73.0500  70.5000  75.6800  70.1300  72.3000  73.4300  72.9300  72.0000
## 2010  75.1000  73.5300  79.9200  73.2700  75.7400  76.4300  76.1300  75.5800
## 2011  78.2700  76.7700  82.0000  76.0300  79.2300  79.6300  77.9900  77.8900
## 2012  82.3700  82.9500  86.0300  78.5500  82.2300  81.8300  80.6000  81.7700
## 2013  83.1000  82.7900  85.6200  81.1300  84.1200  83.7700  83.8800  83.9700
## 2014  86.4100  87.0400  89.1200  83.1200  86.0400  85.3600  86.6300  86.1700
## 2015  88.3000  90.0400  92.8600  88.5000  92.0900  92.5300  93.8400  92.7500
## 2016  94.5300  95.6000  96.3600  93.1300  95.3900  95.6600  94.9400  94.8400
## 2017  96.7100  96.9600 100.8500  94.8400  99.0600  99.9000  96.2600  96.6400
## 2018  99.2100  99.0000 103.5500  99.6200 104.5900 103.4300 101.4600 101.1000
## 2019 101.4800 101.9300 105.9400  99.9800 103.7800 103.6300 102.4500 101.4300
## 2020 102.2000 104.2300 102.6000  89.6500  91.8100  95.7800  91.8600  92.5100
## 2021  96.6300 100.2900 108.0900 101.6600 104.5000 104.7300 107.7700 105.7100
## 2022 106.3100 108.1400 117.4900 105.6100 108.9000 109.1000 110.0600 110.3400
## 2023 108.5389 110.5827 117.3577                                             
##           Sep      Oct      Nov      Dec
## 2009  73.6400  76.7700  78.1800  78.3500
## 2010  77.1400  79.7400  82.1600  81.0600
## 2011  80.0500  83.5700  85.9300  84.6700
## 2012  82.7500  85.6900  89.2600  88.6300
## 2013  86.0400  88.5300  90.7700  90.8000
## 2014  88.1400  92.5500  94.0000  95.2300
## 2015  93.7800  96.6700  98.4300  97.8700
## 2016  98.1200 101.2600 103.9000 103.7900
## 2017  98.9900 103.9600 107.7100 108.1100
## 2018 101.6200 106.0900 108.9000 108.0100
## 2019 103.5700 109.0500 111.4700 111.0900
## 2020  97.3900 101.7200 105.1200 110.6100
## 2021 108.6200 111.2300 116.9100 119.8400
## 2022 110.4800 113.9698 118.1828 120.7984
## 2023


2.4. Descomposición de la serie temporal

library(stats)

fit_cr <- stl(ivae_h_cr,"periodic")
autoplot(fit_cr) + theme_bw()

TC_cr <- fit_cr$time.series[,2]
print(TC_cr)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2009  73.49623  73.61103  73.72584  73.84305  73.96026  74.08960  74.21893
## 2010  75.56195  75.89689  76.23184  76.55175  76.87166  77.11590  77.36013
## 2011  78.63026  78.90632  79.18239  79.48676  79.79114  80.10348  80.41582
## 2012  82.17225  82.44060  82.70896  82.94258  83.17620  83.33039  83.48458
## 2013  84.20802  84.44128  84.67455  84.90429  85.13404  85.36738  85.60071
## 2014  86.87680  87.08175  87.28670  87.54434  87.80199  88.07168  88.34138
## 2015  90.79669  91.34148  91.88626  92.34790  92.80954  93.19650  93.58347
## 2016  95.28402  95.56406  95.84410  96.22755  96.61099  96.97056  97.33012
## 2017  98.74610  98.91413  99.08216  99.28649  99.49082  99.76547 100.04012
## 2018 101.95599 102.29784 102.63969 102.84284 103.04600 103.18399 103.32198
## 2019 103.65880 103.77934 103.89987 104.09372 104.28756 104.48074 104.67393
## 2020 101.93479 101.06362 100.19245  99.50019  98.80793  98.45018  98.09244
## 2021 102.02720 103.05190 104.07659 105.00632 105.93605 106.76990 107.60375
## 2022 110.65032 110.86943 111.08854 111.25684 111.42513 111.57356 111.72198
## 2023 112.87662 113.08235 113.28809                                        
##            Aug       Sep       Oct       Nov       Dec
## 2009  74.37561  74.53230  74.75538  74.97846  75.27020
## 2010  77.54315  77.72618  77.93566  78.14514  78.38770
## 2011  80.72948  81.04313  81.34108  81.63902  81.90564
## 2012  83.55125  83.61792  83.73136  83.84479  84.02640
## 2013  85.85098  86.10126  86.31890  86.53655  86.70667
## 2014  88.63204  88.92271  89.33594  89.74918  90.27294
## 2015  93.92490  94.26634  94.55107  94.83581  95.05991
## 2016  97.58036  97.83059  98.07082  98.31104  98.52857
## 2017 100.29855 100.55698 100.87001 101.18305 101.56952
## 2018 103.42381 103.52565 103.55486 103.58407 103.62144
## 2019 104.64510 104.61627 104.10928 103.60229 102.76854
## 2020  98.26294  98.43344  99.18844  99.94343 100.98532
## 2021 108.31461 109.02546 109.50710 109.98874 110.31953
## 2022 111.90155 112.08111 112.27589 112.47066 112.67364
## 2023


2.5. Cálculo de las tasas

library(dplyr)
library(zoo)

TC_cr %>% as.numeric() %>% as.data.frame() -> TC_df_cr
names(TC_df_cr) <- c("TC_cr")
TC_df_cr %>% mutate(T_1_1 = (TC_cr/dplyr::lag(TC_cr, n = 1) - 1) * 100,
                    T_1_12 = (TC_cr/dplyr::lag(TC_cr, n = 12) - 1) * 100,
                    T_12_12 = (rollapply(TC_cr, 12, mean, 
                                         align = 'right', fill = NA)
                               /rollapply(dplyr::lag(TC_cr, n = 12), 12, mean, 
                                     align = 'right', fill = NA) - 1) * 100) %>%
          #Aquí se realiza el centrado
          mutate(T_1_12C = dplyr::lead(T_1_12, n = 6),
                 T_12_12C = dplyr::lead(T_12_12, n = 12)) %>% 
  ts(start = c(2009, 1), frequency = 12) -> tabla_coyuntura_cr
tail(tabla_coyuntura_cr, n = 12) %>% kable(align = "l") %>% 
  kable_material(html_font = "Times New Roman") %>% kable_styling()
TC_cr T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
111.2568 0.1514999 5.952514 8.704458 2.528406 NA
111.4251 0.1512707 5.181510 8.518254 2.256520 NA
111.5736 0.1332048 4.499075 8.172465 2.133900 NA
111.7220 0.1330276 3.827216 7.671330 2.012013 NA
111.9015 0.1607250 3.311593 7.088425 1.995973 NA
112.0811 0.1604671 2.802693 6.426472 1.979996 NA
112.2759 0.1737787 2.528406 5.775807 NA NA
112.4707 0.1734772 2.256520 5.135735 NA NA
112.6736 0.1804743 2.133900 4.553702 NA NA
112.8766 0.1801492 2.012013 4.027487 NA NA
113.0824 0.1822634 1.995973 3.571466 NA NA
113.2881 0.1819318 1.979996 3.183534 NA NA


2.6. Gráfico de las tasas (centradas)

library(dplyr)
library(forecast)
library(ggplot2)

tabla_coyuntura_cr %>% as.data.frame() %>% 
  select(T_1_12C, T_12_12C) %>% 
  ts(start = c(2009,1), frequency = 12) -> tabla_coyuntura_graficos_cr
autoplot(tabla_coyuntura_graficos_cr) + theme_bw()

tabla_coyuntura_cr %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()





3. Guatemala

3.1. Crear data de Guatemala

data_gtm <- pivot_longer(data = serie_IMAE[,4],
                        cols = `Guatemala`,
                     names_to = "pais",
                     values_to = "indice") %>% select("indice")
imae_gtm <- data_gtm[1:165,] %>% ts(start = c(2009,1),frequency = 12)
print(imae_gtm)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009  86.65  84.95  90.17  87.79  85.69  83.92  87.09  85.90  84.65  87.06
## 2010  88.43  87.09  94.14  89.68  88.28  87.49  88.03  87.35  86.92  88.69
## 2011  92.16  91.28  96.96  93.60  92.20  91.60  92.65  92.61  92.08  91.78
## 2012  95.05  94.95 101.10  95.13  95.58  94.13  94.97  95.31  94.02  96.32
## 2013  99.07  98.81 101.72 101.20  99.50  96.72  98.64  98.67  97.72  99.48
## 2014 102.75 102.57 106.76 104.80 104.40 101.05 103.78 102.20 101.78 103.90
## 2015 107.76 107.15 111.74 107.66 106.67 105.63 108.72 107.53 106.64 108.45
## 2016 109.74 109.44 112.96 112.29 111.12 108.40 109.35 110.41 109.80 110.43
## 2017 115.42 114.30 118.07 114.70 113.72 111.63 113.82 113.93 112.07 113.68
## 2018 117.75 117.77 121.77 119.59 118.71 116.35 118.22 118.04 115.42 117.98
## 2019 122.08 122.76 126.05 123.95 123.67 120.45 122.93 121.94 120.78 122.99
## 2020 127.01 125.51 121.38 112.73 111.49 111.55 118.50 120.60 121.73 125.20
## 2021 128.88 128.61 133.29 130.06 130.01 127.53 131.22 130.13 128.77 130.62
## 2022 134.95 134.14 139.23 135.83 135.53 132.00 135.09 136.00 133.97       
##         Nov    Dec
## 2009  87.94  95.19
## 2010  91.35  98.92
## 2011  95.86 101.43
## 2012  98.92 104.11
## 2013 102.16 106.30
## 2014 107.09 112.27
## 2015 111.44 115.24
## 2016 114.99 120.63
## 2017 116.91 122.56
## 2018 121.04 125.20
## 2019 126.94 130.45
## 2020 128.05 135.04
## 2021 135.34 140.77
## 2022
library(ggplot2)

autoplot(imae_gtm,
         xlab = "años",
         ylab = "Indice",
         main = "IMAE total de Guatemala, periodo 2009 - 2022 (septiembre)") +
  theme_bw()


3.2. Proyección a seis meses

library(forecast)

modelo_gtm <- auto.arima(y = imae_gtm)
summary(modelo_gtm)
## Series: imae_gtm 
## ARIMA(1,0,1)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     ma1     sma1   drift
##       0.7685  0.2206  -0.7846  0.3047
## s.e.  0.0640  0.1040   0.0732  0.0147
## 
## sigma^2 = 1.948:  log likelihood = -272.4
## AIC=554.8   AICc=555.2   BIC=569.95
## 
## Training set error measures:
##                       ME     RMSE       MAE         MPE      MAPE      MASE
## Training set -0.02030934 1.326456 0.8825237 -0.03497516 0.8008833 0.2039824
##                     ACF1
## Training set 0.003115459

Se tiene:

\(ARIMA(1, 0, 1)(0, 1, 1)[12]\)

pronosticos_gtm <- forecast(modelo_gtm, h = 6)
autoplot(pronosticos_gtm) + xlab("Años") + ylab("indice") + theme_bw()

library(forecast)

autoplot(pronosticos_gtm$x, series = "IMAE Guatemala") + autolayer(pronosticos_gtm$fitted, series = "Pronóstico") + ggtitle("Ajuste SARIMA")


3.3. Serie ampliada

ivae_h_gtm <- ts(as.numeric(rbind(as.matrix(pronosticos_gtm$x),
                              as.matrix(pronosticos_gtm$mean))),
             start = c(2009,1),
             frequency = 12)
print(ivae_h_gtm)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009  86.6500  84.9500  90.1700  87.7900  85.6900  83.9200  87.0900  85.9000
## 2010  88.4300  87.0900  94.1400  89.6800  88.2800  87.4900  88.0300  87.3500
## 2011  92.1600  91.2800  96.9600  93.6000  92.2000  91.6000  92.6500  92.6100
## 2012  95.0500  94.9500 101.1000  95.1300  95.5800  94.1300  94.9700  95.3100
## 2013  99.0700  98.8100 101.7200 101.2000  99.5000  96.7200  98.6400  98.6700
## 2014 102.7500 102.5700 106.7600 104.8000 104.4000 101.0500 103.7800 102.2000
## 2015 107.7600 107.1500 111.7400 107.6600 106.6700 105.6300 108.7200 107.5300
## 2016 109.7400 109.4400 112.9600 112.2900 111.1200 108.4000 109.3500 110.4100
## 2017 115.4200 114.3000 118.0700 114.7000 113.7200 111.6300 113.8200 113.9300
## 2018 117.7500 117.7700 121.7700 119.5900 118.7100 116.3500 118.2200 118.0400
## 2019 122.0800 122.7600 126.0500 123.9500 123.6700 120.4500 122.9300 121.9400
## 2020 127.0100 125.5100 121.3800 112.7300 111.4900 111.5500 118.5000 120.6000
## 2021 128.8800 128.6100 133.2900 130.0600 130.0100 127.5300 131.2200 130.1300
## 2022 134.9500 134.1400 139.2300 135.8300 135.5300 132.0000 135.0900 136.0000
## 2023 137.9819 137.2163 140.3554                                             
##           Sep      Oct      Nov      Dec
## 2009  84.6500  87.0600  87.9400  95.1900
## 2010  86.9200  88.6900  91.3500  98.9200
## 2011  92.0800  91.7800  95.8600 101.4300
## 2012  94.0200  96.3200  98.9200 104.1100
## 2013  97.7200  99.4800 102.1600 106.3000
## 2014 101.7800 103.9000 107.0900 112.2700
## 2015 106.6400 108.4500 111.4400 115.2400
## 2016 109.8000 110.4300 114.9900 120.6300
## 2017 112.0700 113.6800 116.9100 122.5600
## 2018 115.4200 117.9800 121.0400 125.2000
## 2019 120.7800 122.9900 126.9400 130.4500
## 2020 121.7300 125.2000 128.0500 135.0400
## 2021 128.7700 130.6200 135.3400 140.7700
## 2022 133.9700 135.3104 138.3894 143.2999
## 2023


3.4. Descomposición de la serie temporal

library(stats)

fit_gtm <- stl(ivae_h_gtm,"periodic")
autoplot(fit_gtm) + theme_bw()

TC_gtm <- fit_gtm$time.series[,2]
print(TC_gtm)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2009  86.06129  86.27892  86.49655  86.70443  86.91230  87.11913  87.32597
## 2010  88.53167  88.71821  88.90476  89.11966  89.33456  89.59635  89.85814
## 2011  91.78800  92.20524  92.62247  92.98003  93.33759  93.61300  93.88842
## 2012  95.24801  95.49523  95.74245  96.01742  96.29239  96.56241  96.83243
## 2013  98.52919  98.83917  99.14916  99.43305  99.71695  99.97579 100.23463
## 2014 102.24919 102.65525 103.06131 103.46417 103.86703 104.26639 104.66576
## 2015 106.68770 107.10443 107.52117 107.90686 108.29256 108.56870 108.84484
## 2016 110.11261 110.33241 110.55220 110.83620 111.12021 111.49918 111.87815
## 2017 113.84974 114.12818 114.40662 114.61404 114.82146 115.00388 115.18630
## 2018 117.20538 117.60032 117.99525 118.33719 118.67913 118.96821 119.25729
## 2019 121.38235 121.83153 122.28072 122.72953 123.17835 123.55066 123.92297
## 2020 121.49607 121.07629 120.65651 120.62134 120.58617 120.91099 121.23580
## 2021 127.78761 128.59039 129.39317 129.96080 130.52842 131.02954 131.53065
## 2022 134.24207 134.65968 135.07729 135.43940 135.80152 136.03393 136.26633
## 2023 137.15706 137.27954 137.40203                                        
##            Aug       Sep       Oct       Nov       Dec
## 2009  87.53758  87.74919  87.94115  88.13311  88.33239
## 2010  90.13509  90.41205  90.71710  91.02214  91.40507
## 2011  94.12665  94.36487  94.58231  94.79975  95.02388
## 2012  97.08568  97.33894  97.62283  97.90672  98.21795
## 2013 100.50652 100.77840 101.11729 101.45618 101.85268
## 2014 105.01319 105.36063 105.66678 105.97292 106.33031
## 2015 109.04041 109.23598 109.45280 109.66961 109.89111
## 2016 112.25857 112.63899 112.95127 113.26354 113.55664
## 2017 115.43389 115.68149 116.03494 116.38840 116.79689
## 2018 119.55196 119.84663 120.19984 120.55304 120.96770
## 2019 123.95542 123.98787 123.46096 122.93405 122.21506
## 2020 122.05656 122.87733 124.14347 125.40962 126.59862
## 2021 132.00831 132.48597 132.93681 133.38764 133.81486
## 2022 136.42481 136.58328 136.73331 136.88334 137.02020
## 2023


3.5. Cálculo de las tasas

library(dplyr)
library(zoo)

TC_gtm %>% as.numeric() %>% as.data.frame() -> TC_df_gtm
names(TC_df_gtm) <- c("TC_gtm")
TC_df_gtm %>% mutate(T_1_1 = (TC_gtm/dplyr::lag(TC_gtm, n = 1) - 1) * 100,
                    T_1_12 = (TC_gtm/dplyr::lag(TC_gtm, n = 12) - 1) * 100,
                    T_12_12 = (rollapply(TC_gtm, 12, mean, 
                                         align = 'right', fill = NA)
                               /rollapply(dplyr::lag(TC_gtm, n = 12), 12, mean, 
                                     align = 'right', fill = NA) - 1) * 100) %>%
          #Aquí se realiza el centrado
          mutate(T_1_12C = dplyr::lead(T_1_12, n = 6),
                 T_12_12C = dplyr::lead(T_12_12, n = 12)) %>% 
  ts(start = c(2009, 1), frequency = 12) -> tabla_coyuntura_gtm
tail(tabla_coyuntura_gtm, n = 12) %>% kable(align = "l") %>% 
  kable_material(html_font = "Times New Roman") %>% kable_styling()
TC_gtm T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
135.4394 0.26808085 4.215585 6.507957 2.855871 NA
135.8015 0.26736409 4.039809 6.155774 2.620706 NA
136.0339 0.17113588 3.819285 5.778241 2.395356 NA
136.2663 0.17084351 3.600441 5.375992 2.171441 NA
136.4248 0.11629904 3.345620 4.981783 1.945544 NA
136.5833 0.11616394 3.092637 4.595197 1.721043 NA
136.7333 0.10984309 2.855871 4.248599 NA NA
136.8833 0.10972257 2.620706 3.940774 NA NA
137.0202 0.09998366 2.395356 3.667790 NA NA
137.1571 0.09988379 2.171441 3.428776 NA NA
137.2795 0.08930141 1.945544 3.198159 NA NA
137.4020 0.08922174 1.721043 2.975677 NA NA


3.6. Gráfico de las tasas (centradas)

library(dplyr)
library(forecast)
library(ggplot2)

tabla_coyuntura_gtm %>% as.data.frame() %>% 
  select(T_1_12C, T_12_12C) %>% 
  ts(start = c(2009,1), frequency = 12) -> tabla_coyuntura_graficos_gtm
autoplot(tabla_coyuntura_graficos_gtm) + theme_bw()

tabla_coyuntura_gtm %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()





4. Honduras

4.1. Crear data de Honduras

data_hnd <- pivot_longer(data = serie_IMAE[,5],
                        cols = `Honduras`,
                     names_to = "pais",
                     values_to = "indice") %>% select("indice")
imae_hnd <- data_hnd[1:164,] %>% ts(start = c(2009,1),frequency = 12)
print(imae_hnd)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009 157.26 159.33 169.91 156.18 164.17 163.04 155.42 159.89 157.82 166.33
## 2010 165.28 166.91 179.91 165.46 173.89 171.00 162.53 166.65 175.18 172.00
## 2011 176.96 179.46 190.71 175.18 184.30 182.33 175.83 185.67 182.03 185.82
## 2012 181.51 189.25 202.52 183.81 193.45 192.28 185.89 193.61 188.79 199.97
## 2013 189.68 192.66 196.37 195.49 199.00 194.38 190.45 196.66 191.32 201.79
## 2014 194.20 197.58 205.41 197.36 207.03 198.09 194.18 199.21 197.73 205.50
## 2015 200.82 202.02 214.06 206.39 206.66 206.13 201.94 207.78 204.91 213.81
## 2016 207.87 210.56 220.51 211.07 214.45 216.00 205.61 215.98 212.31 220.76
## 2017 219.37 221.50 233.93 218.03 225.53 225.90 216.75 229.08 226.26 232.75
## 2018 228.97 228.12 237.11 227.12 234.88 234.03 225.04 238.66 232.55 244.93
## 2019 235.30 235.08 246.40 234.80 241.51 235.46 238.02 244.65 239.69 252.72
## 2020 242.49 241.65 218.27 186.88 189.07 208.71 209.30 225.80 230.24 249.34
## 2021 229.97 236.28 251.05 235.96 242.36 247.40 239.81 256.77 246.87 265.45
## 2022 247.27 246.62 263.70 248.77 254.73 256.23 246.20 272.14              
##         Nov    Dec
## 2009 163.97 176.16
## 2010 175.48 186.89
## 2011 188.18 198.66
## 2012 199.48 203.10
## 2013 201.54 213.57
## 2014 203.26 221.72
## 2015 214.73 231.40
## 2016 227.59 245.58
## 2017 235.80 251.23
## 2018 245.16 262.48
## 2019 250.26 273.80
## 2020 218.89 258.08
## 2021 264.73 279.05
## 2022
library(ggplot2)

autoplot(imae_hnd,
         xlab = "años",
         ylab = "Indice",
         main = "IMAE total de Honduras, periodo 2009 - 2022 (agosto)") +
  theme_bw()


4.2. Proyección a seis meses

library(forecast)

modelo_hnd <- auto.arima(y = imae_hnd)
summary(modelo_hnd)
## Series: imae_hnd 
## ARIMA(1,0,0)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1     sma1   drift
##       0.7873  -0.6826  0.5907
## s.e.  0.0505   0.0664  0.0756
## 
## sigma^2 = 40.52:  log likelihood = -499.71
## AIC=1007.42   AICc=1007.69   BIC=1019.51
## 
## Training set error measures:
##                     ME     RMSE      MAE         MPE     MAPE      MASE
## Training set 0.1146119 6.067638 3.641689 0.003617344 1.685864 0.3224686
##                     ACF1
## Training set -0.03097548

Se tiene:

\(ARIMA(1, 0, 0)(0, 1, 1)[12]\)

pronosticos_hnd <- forecast(modelo_hnd, h = 6)
autoplot(pronosticos_hnd) + xlab("Años") + ylab("indice") + theme_bw()

library(forecast)

autoplot(pronosticos_hnd$x, series = "IMAE Honduras") + autolayer(pronosticos_hnd$fitted, series = "Pronóstico") + ggtitle("Ajuste SARIMA")


4.3. Serie ampliada

ivae_h_hnd <- ts(as.numeric(rbind(as.matrix(pronosticos_hnd$x),
                              as.matrix(pronosticos_hnd$mean))),
             start = c(2009,1),
             frequency = 12)
print(ivae_h_hnd)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 157.2600 159.3300 169.9100 156.1800 164.1700 163.0400 155.4200 159.8900
## 2010 165.2800 166.9100 179.9100 165.4600 173.8900 171.0000 162.5300 166.6500
## 2011 176.9600 179.4600 190.7100 175.1800 184.3000 182.3300 175.8300 185.6700
## 2012 181.5100 189.2500 202.5200 183.8100 193.4500 192.2800 185.8900 193.6100
## 2013 189.6800 192.6600 196.3700 195.4900 199.0000 194.3800 190.4500 196.6600
## 2014 194.2000 197.5800 205.4100 197.3600 207.0300 198.0900 194.1800 199.2100
## 2015 200.8200 202.0200 214.0600 206.3900 206.6600 206.1300 201.9400 207.7800
## 2016 207.8700 210.5600 220.5100 211.0700 214.4500 216.0000 205.6100 215.9800
## 2017 219.3700 221.5000 233.9300 218.0300 225.5300 225.9000 216.7500 229.0800
## 2018 228.9700 228.1200 237.1100 227.1200 234.8800 234.0300 225.0400 238.6600
## 2019 235.3000 235.0800 246.4000 234.8000 241.5100 235.4600 238.0200 244.6500
## 2020 242.4900 241.6500 218.2700 186.8800 189.0700 208.7100 209.3000 225.8000
## 2021 229.9700 236.2800 251.0500 235.9600 242.3600 247.4000 239.8100 256.7700
## 2022 247.2700 246.6200 263.7000 248.7700 254.7300 256.2300 246.2000 272.1400
## 2023 260.0353 260.4971                                                      
##           Sep      Oct      Nov      Dec
## 2009 157.8200 166.3300 163.9700 176.1600
## 2010 175.1800 172.0000 175.4800 186.8900
## 2011 182.0300 185.8200 188.1800 198.6600
## 2012 188.7900 199.9700 199.4800 203.1000
## 2013 191.3200 201.7900 201.5400 213.5700
## 2014 197.7300 205.5000 203.2600 221.7200
## 2015 204.9100 213.8100 214.7300 231.4000
## 2016 212.3100 220.7600 227.5900 245.5800
## 2017 226.2600 232.7500 235.8000 251.2300
## 2018 232.5500 244.9300 245.1600 262.4800
## 2019 239.6900 252.7200 250.2600 273.8000
## 2020 230.2400 249.3400 218.8900 258.0800
## 2021 246.8700 265.4500 264.7300 279.0500
## 2022 265.0962 277.6778 269.2452 289.4112
## 2023


4.4. Descomposición de la serie temporal

library(stats)

fit_hnd <- stl(ivae_h_hnd,"periodic")
autoplot(fit_hnd) + theme_bw()

TC_hnd <- fit_hnd$time.series[,2]
print(TC_hnd)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 162.8929 162.9561 163.0194 163.1303 163.2413 163.4432 163.6452 163.9242
## 2010 167.0260 168.0565 169.0871 170.0043 170.9216 171.6407 172.3599 173.0451
## 2011 177.8868 179.1969 180.5071 181.5959 182.6848 183.3904 184.0961 184.6435
## 2012 188.4348 189.4048 190.3749 191.3038 192.2328 192.7783 193.3238 193.4674
## 2013 194.8125 195.2254 195.6384 196.0381 196.4378 196.8346 197.2315 197.5486
## 2014 199.5783 200.0938 200.6092 201.0205 201.4318 201.7751 202.1184 202.4675
## 2015 205.0900 205.8980 206.7060 207.4727 208.2393 208.8819 209.5246 210.0341
## 2016 213.0173 213.7139 214.4105 215.1539 215.8972 216.7680 217.6388 218.5649
## 2017 223.3707 224.4099 225.4492 226.2883 227.1275 227.7553 228.3831 228.9430
## 2018 232.1604 232.9145 233.6685 234.4485 235.2286 236.0122 236.7959 237.4830
## 2019 240.4423 241.0225 241.6028 242.1963 242.7897 243.4264 244.0631 243.7318
## 2020 232.0460 229.5277 227.0094 225.2767 223.5440 222.7540 221.9639 223.2827
## 2021 237.1844 239.4830 241.7816 243.9924 246.2031 248.2298 250.2565 251.5898
## 2022 256.2256 257.0716 257.9175 258.9447 259.9720 261.0707 262.1694 263.1515
## 2023 268.2480 269.2274                                                      
##           Sep      Oct      Nov      Dec
## 2009 164.2033 164.7060 165.2087 166.1173
## 2010 173.7303 174.6313 175.5324 176.7096
## 2011 185.1909 185.9133 186.6357 187.5352
## 2012 193.6110 193.8109 194.0107 194.4116
## 2013 197.8658 198.2317 198.5976 199.0879
## 2014 202.8165 203.2806 203.7446 204.4173
## 2015 210.5437 211.0889 211.6342 212.3257
## 2016 219.4910 220.4128 221.3345 222.3526
## 2017 229.5029 230.1126 230.7224 231.4414
## 2018 238.1702 238.7462 239.3221 239.8822
## 2019 243.4005 240.9754 238.5503 235.2982
## 2020 224.6016 227.8072 231.0128 234.0986
## 2021 252.9232 253.8282 254.7332 255.4794
## 2022 264.1337 265.1653 266.1970 267.2225
## 2023


4.5. Cálculo de las tasas

library(dplyr)
library(zoo)

TC_hnd %>% as.numeric() %>% as.data.frame() -> TC_df_hnd
names(TC_df_hnd) <- c("TC_hnd")
TC_df_hnd %>% mutate(T_1_1 = (TC_hnd/dplyr::lag(TC_hnd, n = 1) - 1) * 100,
                    T_1_12 = (TC_hnd/dplyr::lag(TC_hnd, n = 12) - 1) * 100,
                    T_12_12 = (rollapply(TC_hnd, 12, mean, 
                                         align = 'right', fill = NA)
                               /rollapply(dplyr::lag(TC_hnd, n = 12), 12, mean, 
                                     align = 'right', fill = NA) - 1) * 100) %>%
          #Aquí se realiza el centrado
          mutate(T_1_12C = dplyr::lead(T_1_12, n = 6),
                 T_12_12C = dplyr::lead(T_12_12, n = 12)) %>% 
  ts(start = c(2009, 1), frequency = 12) -> tabla_coyuntura_hnd
tail(tabla_coyuntura_hnd, n = 12) %>% kable(align = "l") %>% 
  kable_material(html_font = "Times New Roman") %>% kable_styling()
TC_hnd T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
257.9175 0.3290682 6.673751 10.013832 4.432366 NA
258.9447 0.3982731 6.128209 9.810425 4.466462 NA
259.9720 0.3966932 5.592463 9.412695 4.500315 NA
261.0707 0.4226321 5.172975 8.879544 4.596477 NA
262.1694 0.4208535 4.760281 8.216186 4.692079 NA
263.1515 0.3746166 4.595455 7.553127 4.728556 NA
264.1337 0.3732185 4.432366 6.890368 NA NA
265.1653 0.3905831 4.466462 6.328132 NA NA
266.1970 0.3890635 4.500315 5.862449 NA NA
267.2225 0.3852338 4.596477 5.496442 NA NA
268.2480 0.3837555 4.692079 5.227119 NA NA
269.2274 0.3651127 4.728556 5.016246 NA NA


4.6. Gráfico de las tasas (centradas)

library(dplyr)
library(forecast)
library(ggplot2)

tabla_coyuntura_hnd %>% as.data.frame() %>% 
  select(T_1_12C, T_12_12C) %>% 
  ts(start = c(2009,1), frequency = 12) -> tabla_coyuntura_graficos_hnd
autoplot(tabla_coyuntura_graficos_hnd) + theme_bw()

tabla_coyuntura_hnd %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()





5. Nicaragua

5.1. Crear data de Nicaragua

data_nic <- pivot_longer(data = serie_IMAE[,6],
                        cols = `Nicaragua`,
                     names_to = "pais",
                     values_to = "indice") %>% select("indice")
imae_nic <- data_nic[1:164,] %>% ts(start = c(2009,1),frequency = 12)
print(imae_nic)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009 105.02  99.61  99.82  97.86 105.33 102.92 111.29 106.11 100.80 103.08
## 2010 107.22 102.04 106.17 100.25 108.47 107.98 116.44 110.70 106.35 110.07
## 2011 112.84 105.40 114.89 106.19 118.57 116.46 126.36 118.61 112.82 113.74
## 2012 128.39 116.85 118.64 112.51 126.31 118.10 130.29 123.88 117.08 126.20
## 2013 132.07 122.40 122.30 126.76 132.79 123.18 138.36 130.19 125.12 130.05
## 2014 135.68 129.80 132.03 128.86 139.04 130.03 143.73 133.05 131.23 137.49
## 2015 141.73 135.06 139.10 131.32 143.71 134.69 151.29 141.67 141.01 146.60
## 2016 148.01 141.73 143.00 140.87 153.13 144.24 155.81 149.66 143.57 149.07
## 2017 159.90 150.21 154.66 144.21 159.98 150.52 161.86 154.39 147.57 154.82
## 2018 165.61 154.20 158.41 150.62 151.56 130.54 153.23 148.98 141.06 143.07
## 2019 151.81 138.11 139.71 137.92 145.19 135.01 150.33 143.56 138.82 147.62
## 2020 153.26 145.11 140.70 124.93 134.77 130.15 148.61 139.39 140.78 148.10
## 2021 155.54 148.15 152.24 145.97 159.52 155.10 165.84 154.92 151.40 160.62
## 2022 166.47 154.51 161.07 153.46 166.82 160.07 171.29 161.96              
##         Nov    Dec
## 2009 109.25 120.21
## 2010 116.56 124.67
## 2011 125.90 128.32
## 2012 130.71 142.11
## 2013 134.02 147.29
## 2014 141.38 157.08
## 2015 148.63 163.14
## 2016 155.85 171.41
## 2017 164.86 176.56
## 2018 153.82 165.28
## 2019 154.00 165.59
## 2020 145.86 164.76
## 2021 165.95 178.63
## 2022
library(ggplot2)

autoplot(imae_nic,
         xlab = "años",
         ylab = "Indice",
         main = "IMAE total de Nicaragua, periodo 2009 - 2022 (agosto)") +
  theme_bw()


5.2. Proyección a seis meses

library(forecast)

modelo_nic <- auto.arima(y = imae_nic)
summary(modelo_nic)
## Series: imae_nic 
## ARIMA(0,1,1)(0,1,1)[12] 
## 
## Coefficients:
##           ma1     sma1
##       -0.3543  -0.7814
## s.e.   0.0847   0.0856
## 
## sigma^2 = 13.91:  log likelihood = -417.72
## AIC=841.44   AICc=841.6   BIC=850.49
## 
## Training set error measures:
##                        ME     RMSE      MAE         MPE     MAPE      MASE
## Training set -0.007934041 3.554758 2.510458 -0.04869239 1.813168 0.3469974
##                    ACF1
## Training set 0.02827215

Se tiene:

\(ARIMA(0, 1, 1)(0, 1, 1)[12]\)

pronosticos_nic <- forecast(modelo_nic, h = 6)
autoplot(pronosticos_nic) + xlab("Años") + ylab("indice") + theme_bw()

library(forecast)

autoplot(pronosticos_nic$x, series = "IMAE Nicaragua") + autolayer(pronosticos_nic$fitted, series = "Pronóstico") + ggtitle("Ajuste SARIMA")


5.3. Serie ampliada

ivae_h_nic <- ts(as.numeric(rbind(as.matrix(pronosticos_nic$x),
                              as.matrix(pronosticos_nic$mean))),
             start = c(2009,1),
             frequency = 12)
print(ivae_h_nic)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 105.0200  99.6100  99.8200  97.8600 105.3300 102.9200 111.2900 106.1100
## 2010 107.2200 102.0400 106.1700 100.2500 108.4700 107.9800 116.4400 110.7000
## 2011 112.8400 105.4000 114.8900 106.1900 118.5700 116.4600 126.3600 118.6100
## 2012 128.3900 116.8500 118.6400 112.5100 126.3100 118.1000 130.2900 123.8800
## 2013 132.0700 122.4000 122.3000 126.7600 132.7900 123.1800 138.3600 130.1900
## 2014 135.6800 129.8000 132.0300 128.8600 139.0400 130.0300 143.7300 133.0500
## 2015 141.7300 135.0600 139.1000 131.3200 143.7100 134.6900 151.2900 141.6700
## 2016 148.0100 141.7300 143.0000 140.8700 153.1300 144.2400 155.8100 149.6600
## 2017 159.9000 150.2100 154.6600 144.2100 159.9800 150.5200 161.8600 154.3900
## 2018 165.6100 154.2000 158.4100 150.6200 151.5600 130.5400 153.2300 148.9800
## 2019 151.8100 138.1100 139.7100 137.9200 145.1900 135.0100 150.3300 143.5600
## 2020 153.2600 145.1100 140.7000 124.9300 134.7700 130.1500 148.6100 139.3900
## 2021 155.5400 148.1500 152.2400 145.9700 159.5200 155.1000 165.8400 154.9200
## 2022 166.4700 154.5100 161.0700 153.4600 166.8200 160.0700 171.2900 161.9600
## 2023 172.5742 162.9901                                                      
##           Sep      Oct      Nov      Dec
## 2009 100.8000 103.0800 109.2500 120.2100
## 2010 106.3500 110.0700 116.5600 124.6700
## 2011 112.8200 113.7400 125.9000 128.3200
## 2012 117.0800 126.2000 130.7100 142.1100
## 2013 125.1200 130.0500 134.0200 147.2900
## 2014 131.2300 137.4900 141.3800 157.0800
## 2015 141.0100 146.6000 148.6300 163.1400
## 2016 143.5700 149.0700 155.8500 171.4100
## 2017 147.5700 154.8200 164.8600 176.5600
## 2018 141.0600 143.0700 153.8200 165.2800
## 2019 138.8200 147.6200 154.0000 165.5900
## 2020 140.7800 148.1000 145.8600 164.7600
## 2021 151.4000 160.6200 165.9500 178.6300
## 2022 158.8882 165.6427 170.7768 184.1819
## 2023


5.4. Descomposición de la serie temporal

library(stats)

fit_nic <- stl(ivae_h_nic,"periodic")
autoplot(fit_nic) + theme_bw()

TC_nic <- fit_nic$time.series[,2]
print(TC_nic)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 103.7474 104.0257 104.3039 104.5511 104.7982 105.0392 105.2803 105.5336
## 2010 106.8872 107.3985 107.9098 108.5315 109.1533 109.6689 110.1845 110.5973
## 2011 113.3401 114.0861 114.8322 115.5596 116.2870 117.0083 117.7296 118.3527
## 2012 120.6025 121.1265 121.6505 122.3302 123.0099 123.6561 124.3023 124.8340
## 2013 127.7848 128.3827 128.9805 129.4640 129.9475 130.3456 130.7437 131.1448
## 2014 133.4107 133.9444 134.4781 135.0743 135.6705 136.2535 136.8365 137.2926
## 2015 139.5101 140.1693 140.8286 141.5379 142.2473 142.8757 143.5041 144.0480
## 2016 146.9604 147.4556 147.9509 148.4325 148.9141 149.5811 150.2482 150.9694
## 2017 154.0120 154.5054 154.9989 155.4324 155.8658 156.2886 156.7114 157.1097
## 2018 156.4340 155.5569 154.6798 153.6371 152.5944 151.4120 150.2296 149.0951
## 2019 145.8680 145.6309 145.3937 145.3315 145.2693 145.4599 145.6505 145.8659
## 2020 144.4457 143.9696 143.4935 143.1543 142.8152 142.7984 142.7815 143.5215
## 2021 150.7900 152.1981 153.6062 154.8379 156.0696 157.1453 158.2209 158.9661
## 2022 161.8980 162.4347 162.9715 163.4583 163.9451 164.4453 164.9456 165.4437
## 2023 167.8960 168.3823                                                      
##           Sep      Oct      Nov      Dec
## 2009 105.7869 106.0016 106.2163 106.5518
## 2010 111.0100 111.4965 111.9830 112.6615
## 2011 118.9758 119.4013 119.8267 120.2146
## 2012 125.3657 125.9593 126.5530 127.1689
## 2013 131.5459 131.9884 132.4309 132.9208
## 2014 137.7487 138.1401 138.5316 139.0208
## 2015 144.5919 145.1781 145.7643 146.3623
## 2016 151.6907 152.3040 152.9173 153.4646
## 2017 157.5081 157.5538 157.5996 157.0168
## 2018 147.9607 147.2269 146.4931 146.1806
## 2019 146.0813 145.8251 145.5689 145.0073
## 2020 144.2615 145.8039 147.3463 149.0681
## 2021 159.7112 160.2728 160.8344 161.3662
## 2022 165.9419 166.4320 166.9222 167.4091
## 2023


5.5. Cálculo de las tasas

library(dplyr)
library(zoo)

TC_nic %>% as.numeric() %>% as.data.frame() -> TC_df_nic
names(TC_df_nic) <- c("TC_nic")
TC_df_nic %>% mutate(T_1_1 = (TC_nic/dplyr::lag(TC_nic, n = 1) - 1) * 100,
                    T_1_12 = (TC_nic/dplyr::lag(TC_nic, n = 12) - 1) * 100,
                    T_12_12 = (rollapply(TC_nic, 12, mean, 
                                         align = 'right', fill = NA)
                               /rollapply(dplyr::lag(TC_nic, n = 12), 12, mean, 
                                     align = 'right', fill = NA) - 1) * 100) %>%
          #Aquí se realiza el centrado
          mutate(T_1_12C = dplyr::lead(T_1_12, n = 6),
                 T_12_12C = dplyr::lead(T_12_12, n = 12)) %>% 
  ts(start = c(2009, 1), frequency = 12) -> tabla_coyuntura_nic
tail(tabla_coyuntura_nic, n = 12) %>% kable(align = "l") %>% 
  kable_material(html_font = "Times New Roman") %>% kable_styling()
TC_nic T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
162.9715 0.3304316 6.096918 8.906175 3.901214 NA
163.4583 0.2987148 5.567363 8.674304 3.842958 NA
163.9451 0.2978251 5.046167 8.308167 3.785108 NA
164.4453 0.3051179 4.645430 7.849802 3.744830 NA
164.9456 0.3041898 4.250143 7.302228 3.704817 NA
165.4437 0.3020289 4.074861 6.750095 3.661519 NA
165.9419 0.3011195 3.901214 6.193522 NA NA
166.4320 0.2953553 3.842958 5.698114 NA NA
166.9222 0.2944855 3.785108 5.261674 NA NA
167.4091 0.2917101 3.744830 4.895316 NA NA
167.8960 0.2908616 3.704817 4.596985 NA NA
168.3823 0.2896379 3.661519 4.347184 NA NA


5.6. Gráfico de las tasas (centradas)

library(dplyr)
library(forecast)
library(ggplot2)

tabla_coyuntura_nic %>% as.data.frame() %>% 
  select(T_1_12C, T_12_12C) %>% 
  ts(start = c(2009,1), frequency = 12) -> tabla_coyuntura_graficos_nic
autoplot(tabla_coyuntura_graficos_nic) + theme_bw()

tabla_coyuntura_nic %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()





6. Panamá

6.1. Crear data de Panamá

data_pan <- pivot_longer(data = serie_IMAE[,7],
                        cols = `Panamá`,
                     names_to = "pais",
                     values_to = "indice") %>% select("indice")
imae_pan <- data_pan[1:164,] %>% ts(start = c(2009,1),frequency = 12)
print(imae_pan)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2009 195.71 189.71 204.64 188.06 193.65 199.60 188.20 190.96 195.45 204.89
## 2010 201.01 200.42 220.03 203.11 202.73 210.75 198.31 206.22 205.20 213.91
## 2011 212.36 218.50 228.61 218.93 227.12 226.92 210.41 225.69 222.92 233.74
## 2012 233.23 237.88 260.05 237.89 248.64 251.02 239.86 246.47 238.38 249.62
## 2013 253.29 254.04 276.60 262.60 268.38 269.16 256.27 265.08 259.72 280.51
## 2014 265.09 267.31 286.56 275.53 274.45 283.35 268.30 278.43 272.53 296.66
## 2015 281.48 276.75 307.31 280.85 281.06 294.76 279.85 290.40 283.40 310.57
## 2016 292.53 289.67 318.79 292.13 296.56 306.77 293.76 303.34 296.96 322.82
## 2017 305.84 307.27 344.01 309.60 316.06 324.68 304.97 318.19 310.13 335.94
## 2018 320.57 323.91 349.99 311.69 317.94 324.94 308.98 323.54 315.15 333.20
## 2019 332.39 332.73 353.65 319.17 325.72 332.45 325.11 336.06 332.01 346.53
## 2020 346.02 341.78 357.06 243.21 222.17 233.12 240.66 242.56 259.86 298.72
## 2021 304.59 322.77 354.90 307.26 314.67 309.91 306.48 318.85 317.91 344.08
## 2022 354.01 368.38 390.50 334.96 344.38 348.03 317.45 359.51              
##         Nov    Dec
## 2009 185.82 190.56
## 2010 202.49 205.63
## 2011 226.59 231.09
## 2012 251.28 247.71
## 2013 272.24 270.52
## 2014 282.62 292.03
## 2015 295.47 300.89
## 2016 309.18 312.22
## 2017 322.13 324.80
## 2018 328.79 330.41
## 2019 341.09 341.27
## 2020 296.58 339.78
## 2021 332.46 395.90
## 2022
library(ggplot2)

autoplot(imae_pan,
         xlab = "años",
         ylab = "Indice",
         main = "IMAE total de Panamá, periodo 2009 - 2022 (agosto)") +
  theme_bw()


6.2. Proyección a seis meses

library(forecast)

modelo_pan <- auto.arima(y = imae_pan)
summary(modelo_pan)
## Series: imae_pan 
## ARIMA(1,0,2)(0,1,1)[12] with drift 
## 
## Coefficients:
##          ar1      ma1     ma2     sma1   drift
##       0.8591  -0.0045  0.1297  -0.4593  1.0167
## s.e.  0.0537   0.1011  0.0880   0.1003  0.3442
## 
## sigma^2 = 135.4:  log likelihood = -588.3
## AIC=1188.6   AICc=1189.18   BIC=1206.75
## 
## Training set error measures:
##                      ME    RMSE      MAE         MPE     MAPE      MASE
## Training set 0.07830014 11.0181 5.999723 -0.06832539 2.122395 0.2800424
##                     ACF1
## Training set 0.000449099

Se tiene:

\(ARIMA(1, 0, 2)(0, 1, 1)[12]\)

pronosticos_pan <- forecast(modelo_pan, h = 6)
autoplot(pronosticos_pan) + xlab("Años") + ylab("indice") + theme_bw()

library(forecast)

autoplot(pronosticos_pan$x, series = "IMAE Panamá") + autolayer(pronosticos_pan$fitted, series = "Pronóstico") + ggtitle("Ajuste SARIMA")


6.3. Serie ampliada

ivae_h_pan <- ts(as.numeric(rbind(as.matrix(pronosticos_pan$x),
                              as.matrix(pronosticos_pan$mean))),
             start = c(2009,1),
             frequency = 12)
print(ivae_h_pan)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 195.7100 189.7100 204.6400 188.0600 193.6500 199.6000 188.2000 190.9600
## 2010 201.0100 200.4200 220.0300 203.1100 202.7300 210.7500 198.3100 206.2200
## 2011 212.3600 218.5000 228.6100 218.9300 227.1200 226.9200 210.4100 225.6900
## 2012 233.2300 237.8800 260.0500 237.8900 248.6400 251.0200 239.8600 246.4700
## 2013 253.2900 254.0400 276.6000 262.6000 268.3800 269.1600 256.2700 265.0800
## 2014 265.0900 267.3100 286.5600 275.5300 274.4500 283.3500 268.3000 278.4300
## 2015 281.4800 276.7500 307.3100 280.8500 281.0600 294.7600 279.8500 290.4000
## 2016 292.5300 289.6700 318.7900 292.1300 296.5600 306.7700 293.7600 303.3400
## 2017 305.8400 307.2700 344.0100 309.6000 316.0600 324.6800 304.9700 318.1900
## 2018 320.5700 323.9100 349.9900 311.6900 317.9400 324.9400 308.9800 323.5400
## 2019 332.3900 332.7300 353.6500 319.1700 325.7200 332.4500 325.1100 336.0600
## 2020 346.0200 341.7800 357.0600 243.2100 222.1700 233.1200 240.6600 242.5600
## 2021 304.5900 322.7700 354.9000 307.2600 314.6700 309.9100 306.4800 318.8500
## 2022 354.0100 368.3800 390.5000 334.9600 344.3800 348.0300 317.4500 359.5100
## 2023 377.5661 387.0177                                                      
##           Sep      Oct      Nov      Dec
## 2009 195.4500 204.8900 185.8200 190.5600
## 2010 205.2000 213.9100 202.4900 205.6300
## 2011 222.9200 233.7400 226.5900 231.0900
## 2012 238.3800 249.6200 251.2800 247.7100
## 2013 259.7200 280.5100 272.2400 270.5200
## 2014 272.5300 296.6600 282.6200 292.0300
## 2015 283.4000 310.5700 295.4700 300.8900
## 2016 296.9600 322.8200 309.1800 312.2200
## 2017 310.1300 335.9400 322.1300 324.8000
## 2018 315.1500 333.2000 328.7900 330.4100
## 2019 332.0100 346.5300 341.0900 341.2700
## 2020 259.8600 298.7200 296.5800 339.7800
## 2021 317.9100 344.0800 332.4600 395.9000
## 2022 353.6559 381.5419 369.4203 411.3908
## 2023


6.4. Descomposición de la serie temporal

library(stats)

fit_pan <- stl(ivae_h_pan,"periodic")
autoplot(fit_pan) + theme_bw()

TC_pan <- fit_pan$time.series[,2]
print(TC_pan)
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2009 192.5034 193.0118 193.5203 193.9132 194.3061 194.6900 195.0739 195.5994
## 2010 199.1110 200.4670 201.8231 203.2822 204.7414 205.9343 207.1272 207.8752
## 2011 213.2980 215.1717 217.0455 219.1430 221.2405 223.1781 225.1157 226.6507
## 2012 235.3317 237.5384 239.7452 241.7110 243.6768 245.2283 246.7798 247.8806
## 2013 254.6459 256.7700 258.8942 261.1832 263.4723 265.1834 266.8945 267.6906
## 2014 271.1301 272.4223 273.7144 275.2501 276.7857 278.3031 279.8204 280.8491
## 2015 284.3681 285.4116 286.4550 287.7133 288.9715 290.1608 291.3500 292.2442
## 2016 296.4131 297.5917 298.7703 300.1445 301.5187 302.8779 304.2371 305.5342
## 2017 312.0120 313.3711 314.7301 316.1266 317.5231 318.7218 319.9204 320.6350
## 2018 322.1079 322.4591 322.8103 323.2576 323.7049 324.2519 324.7989 325.3460
## 2019 328.5264 329.7135 330.9007 332.1880 333.4753 334.5676 335.6599 335.6851
## 2020 313.0948 304.9626 296.8305 290.7894 284.7484 281.6624 278.5763 279.4113
## 2021 303.7174 308.8374 313.9574 317.6293 321.3012 324.7792 328.2573 332.0488
## 2022 348.3066 350.6275 352.9484 354.9738 356.9993 359.6712 362.3430 364.9106
## 2023 379.0465 382.2866                                                      
##           Sep      Oct      Nov      Dec
## 2009 196.1249 196.7355 197.3461 198.2286
## 2010 208.6231 209.5807 210.5384 211.9182
## 2011 228.1857 229.7888 231.3920 233.3618
## 2012 248.9814 250.1836 251.3857 253.0158
## 2013 268.4868 268.9704 269.4540 270.2921
## 2014 281.8779 282.4382 282.9985 283.6833
## 2015 293.1385 293.8552 294.5720 295.4925
## 2016 306.8314 308.0977 309.3641 310.6881
## 2017 321.3495 321.5466 321.7437 321.9258
## 2018 325.8932 326.4139 326.9346 327.7305
## 2019 335.7102 331.8942 328.0782 320.5865
## 2020 280.2463 285.3590 290.4716 297.0945
## 2021 335.8404 339.2806 342.7208 345.5137
## 2022 367.4782 370.2250 372.9719 376.0092
## 2023


6.5. Cálculo de las tasas

library(dplyr)
library(zoo)

TC_pan %>% as.numeric() %>% as.data.frame() -> TC_df_pan
names(TC_df_pan) <- c("TC_pan")
TC_df_pan %>% mutate(T_1_1 = (TC_pan/dplyr::lag(TC_pan, n = 1) - 1) * 100,
                    T_1_12 = (TC_pan/dplyr::lag(TC_pan, n = 12) - 1) * 100,
                    T_12_12 = (rollapply(TC_pan, 12, mean, 
                                         align = 'right', fill = NA)
                               /rollapply(dplyr::lag(TC_pan, n = 12), 12, mean, 
                                     align = 'right', fill = NA) - 1) * 100) %>%
          #Aquí se realiza el centrado
          mutate(T_1_12C = dplyr::lead(T_1_12, n = 6),
                 T_12_12C = dplyr::lead(T_12_12, n = 12)) %>% 
  ts(start = c(2009, 1), frequency = 12) -> tabla_coyuntura_pan
tail(tabla_coyuntura_pan, n = 12) %>% kable(align = "l") %>% 
  kable_material(html_font = "Times New Roman") %>% kable_styling()
TC_pan T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
352.9484 0.6619302 12.419185 15.576603 9.420485 NA
354.9738 0.5738609 11.757267 15.756172 9.120609 NA
356.9993 0.5705865 11.110477 15.570294 8.826752 NA
359.6712 0.7484281 10.743272 15.155499 8.826136 NA
362.3430 0.7428683 10.383848 14.522132 8.825529 NA
364.9106 0.7086040 9.896666 13.781796 9.029259 NA
367.4782 0.7036182 9.420485 12.940730 NA NA
370.2250 0.7474859 9.120609 12.155172 NA NA
372.9719 0.7419400 8.826752 11.421780 NA NA
376.0092 0.8143509 8.826136 10.822528 NA NA
379.0465 0.8077728 8.825529 10.350756 NA NA
382.2866 0.8547957 9.029259 9.989364 NA NA


6.6. Gráfico de las tasas (centradas)

library(dplyr)
library(forecast)
library(ggplot2)

tabla_coyuntura_pan %>% as.data.frame() %>% 
  select(T_1_12C, T_12_12C) %>% 
  ts(start = c(2009,1), frequency = 12) -> tabla_coyuntura_graficos_pan
autoplot(tabla_coyuntura_graficos_pan) + theme_bw()

tabla_coyuntura_pan %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()





Gráfico de todas las tasas (centradas) - comparativa

tabla_coyuntura_graficos_sv -> tcg_SV
tabla_coyuntura_graficos_cr -> tcg_CR
tabla_coyuntura_graficos_gtm -> tcg_GTM
tabla_coyuntura_graficos_hnd -> tcg_HND
tabla_coyuntura_graficos_nic -> tcg_NIC
tabla_coyuntura_graficos_pan -> tcg_PAN

tabla_coyuntura_graficos_comparativa <- cbind(tcg_SV,
                                              tcg_CR,
                                              tcg_GTM,
                                              tcg_HND,
                                              tcg_NIC,
                                              tcg_PAN)
autoplot(tabla_coyuntura_graficos_comparativa) + theme_bw()

tabla_coyuntura_sv %>% as.data.frame() %>% select(T_1_12) %>% ts(start = c(2009,1),frequency = 12) -> tc_SV
tabla_coyuntura_cr %>% as.data.frame() %>% select(T_1_12) %>% ts(start = c(2009,1),frequency = 12) -> tc_CR
tabla_coyuntura_gtm %>% as.data.frame() %>% select(T_1_12) %>% ts(start = c(2009,1),frequency = 12) -> tc_GTM
tabla_coyuntura_hnd %>% as.data.frame() %>% select(T_1_12) %>% ts(start = c(2009,1),frequency = 12) -> tc_HND
tabla_coyuntura_nic %>% as.data.frame() %>% select(T_1_12) %>% ts(start = c(2009,1),frequency = 12) -> tc_NIC
tabla_coyuntura_pan %>% as.data.frame() %>% select(T_1_12) %>% ts(start = c(2009,1),frequency = 12) -> tc_PAN

tabla_coyuntura_grafico_comparativa_T_1_2 <- cbind(tc_SV,
                                                   tc_CR,
                                                   tc_GTM,
                                                   tc_HND,
                                                   tc_NIC,
                                                   tc_PAN)
autoplot(tabla_coyuntura_grafico_comparativa_T_1_2)