Let’s represent given system of equation as matrix
A<-matrix(c(1,2,-1,2,1,1,-3,-3,0),3)
B<-matrix(c(5,13,-8),3)
A
## [,1] [,2] [,3]
## [1,] 1 2 -3
## [2,] 2 1 -3
## [3,] -1 1 0
B
## [,1]
## [1,] 5
## [2,] 13
## [3,] -8
Let’s check determinant of A
det(A)
## [1] 0
Determinant of A is zero. So, the vectors of matrix are linearly dependent. Let’s drop a vector and assume value of varaiable (i.e z = 0) and check again
A1<-A[1:2,1:2]
B1<-B[1:2]
det(A1)
## [1] -3
Now, the determinant is non zero. Let’s solve the equation
solve(A1)%*%B1
## [,1]
## [1,] 7
## [2,] -1
So, One of the solutions for the given system equation is x=7, y= -1, z=0
Let’s solve the equation using lm() function. Construct a dataframe with variables and result
df1<-as.data.frame(cbind(A,B))
df1
## V1 V2 V3 V4
## 1 1 2 -3 5
## 2 2 1 -3 13
## 3 -1 1 0 -8
lm(V4~.+0,data=df1)
##
## Call:
## lm(formula = V4 ~ . + 0, data = df1)
##
## Coefficients:
## V1 V2 V3
## 7 -1 NA
From coefficients of the lm() function x=7, y=-1 and z=0
A=matrix(c(4,-3,0,-3,5,1),3)
B=matrix(c(1,3,4,-2),2)
A
## [,1] [,2]
## [1,] 4 -3
## [2,] -3 5
## [3,] 0 1
B
## [,1] [,2]
## [1,] 1 4
## [2,] 3 -2
Matrix Multiplication
A%*%B
## [,1] [,2]
## [1,] -5 22
## [2,] 12 -22
## [3,] 3 -2