rmarkdown tablo olusturmak icin kullaniyoruz datamiz beauty
library(wooldridge)
library(rmarkdown)
data("beauty")
paged_table(beauty)
head ilk 6 verimizi gosteriyor
head(beauty)
## wage lwage belavg abvavg exper looks union goodhlth black female married
## 1 5.73 1.745715 0 1 30 4 0 1 0 1 1
## 2 4.28 1.453953 0 0 28 3 0 1 0 1 1
## 3 7.96 2.074429 0 1 35 4 0 1 0 1 0
## 4 11.57 2.448416 0 0 38 3 0 1 0 0 1
## 5 11.42 2.435366 0 0 27 3 0 1 0 0 1
## 6 3.91 1.363537 0 0 20 3 0 0 0 1 1
## south bigcity smllcity service expersq educ
## 1 0 0 1 1 900 14
## 2 1 0 1 0 784 12
## 3 0 0 1 0 1225 10
## 4 0 1 0 1 1444 16
## 5 0 0 1 0 729 16
## 6 0 1 0 0 400 12
tail son 6 verimizi gosteriyor
tail(beauty)
## wage lwage belavg abvavg exper looks union goodhlth black female
## 1255 1.79 0.5822156 0 0 20 3 0 1 0 1
## 1256 1.61 0.4762342 0 0 25 3 0 1 1 1
## 1257 1.68 0.5187938 1 0 4 2 0 1 0 1
## 1258 3.29 1.1908876 0 0 35 3 0 1 1 1
## 1259 2.31 0.8372475 0 0 15 3 0 1 1 1
## 1260 1.92 0.6523252 0 0 24 3 0 0 0 1
## married south bigcity smllcity service expersq educ
## 1255 1 0 0 0 1 400 8
## 1256 0 0 0 0 1 625 12
## 1257 1 0 0 1 1 16 12
## 1258 0 0 0 1 1 1225 12
## 1259 1 0 1 0 1 225 10
## 1260 0 1 0 1 1 576 16
max komutu en yuksek degeri gosteriyor
max(beauty$wage)
## [1] 77.72
min komutu en kucuk degeri gosteriyor
min(beauty$looks)
## [1] 1
summary dogrusal regresyonun ozetini gosteriyor
summary(lm(wage ~ exper + looks + union + goodhlth + black + female + married + south, data = beauty ))
##
## Call:
## lm(formula = wage ~ exper + looks + union + goodhlth + black +
## female + married + south, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.793 -2.255 -0.713 1.045 72.937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.96934 0.84818 3.501 0.00048 ***
## exper 0.06604 0.01098 6.015 2.35e-09 ***
## looks 0.62336 0.18071 3.449 0.00058 ***
## union 0.56387 0.27686 2.037 0.04189 *
## goodhlth 0.28987 0.49519 0.585 0.55840
## black -0.42852 0.47400 -0.904 0.36615
## female -2.36950 0.27788 -8.527 < 2e-16 ***
## married 0.66968 0.28640 2.338 0.01953 *
## south 0.65126 0.32266 2.018 0.04376 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.329 on 1251 degrees of freedom
## Multiple R-squared: 0.1426, Adjusted R-squared: 0.1372
## F-statistic: 26.02 on 8 and 1251 DF, p-value: < 2.2e-16
summary(lm(wage ~ exper + looks + union + goodhlth + black + female + married + south - 1, data = beauty ))
##
## Call:
## lm(formula = wage ~ exper + looks + union + goodhlth + black +
## female + married + south - 1, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.255 -2.151 -0.603 1.130 72.314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## exper 0.08039 0.01023 7.859 8.32e-15 ***
## looks 1.06896 0.12885 8.296 2.75e-16 ***
## union 0.66546 0.27657 2.406 0.01627 *
## goodhlth 1.26410 0.41144 3.072 0.00217 **
## black -0.34774 0.47557 -0.731 0.46478
## female -2.09384 0.26768 -7.822 1.10e-14 ***
## married 0.91835 0.27870 3.295 0.00101 **
## south 0.74798 0.32292 2.316 0.02070 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.349 on 1252 degrees of freedom
## Multiple R-squared: 0.6944, Adjusted R-squared: 0.6924
## F-statistic: 355.5 on 8 and 1252 DF, p-value: < 2.2e-16
library(car)
## Zorunlu paket yükleniyor: carData
## Warning: package 'carData' was built under R version 4.2.2
model1 <- lm(wage ~ exper + looks + union + goodhlth + black + female + married + south, data = beauty )
anova dogrusal regresyonun icerisinde hangi degiskenin aciklayici
oldugunu gosteriyor
anova(model1)
## Analysis of Variance Table
##
## Response: wage
## Df Sum Sq Mean Sq F value Pr(>F)
## exper 1 1505.5 1505.54 80.3280 < 2.2e-16 ***
## looks 1 234.1 234.06 12.4884 0.0004244 ***
## union 1 160.4 160.36 8.5557 0.0035064 **
## goodhlth 1 33.7 33.73 1.7998 0.1799837
## black 1 109.9 109.93 5.8651 0.0155858 *
## female 1 1688.4 1688.44 90.0867 < 2.2e-16 ***
## married 1 92.3 92.29 4.9240 0.0266655 *
## south 1 76.4 76.36 4.0740 0.0437613 *
## Residuals 1251 23446.7 18.74
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tidyverse dogrusal regresyonu grafik icerisinde gostermek icin
kullaniyoruz
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.2
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.5
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## Warning: package 'forcats' was built under R version 4.2.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::recode() masks car::recode()
## ✖ purrr::some() masks car::some()
qplot(beauty$wage,beauty$exper) + geom_smooth(method = "lm", se = F )
## `geom_smooth()` using formula 'y ~ x'

summary(lm(scale(wage) ~ scale(exper) + scale(looks) + union + goodhlth +black +female + married + south, data = beauty ))
##
## Call:
## lm(formula = scale(wage) ~ scale(exper) + scale(looks) + union +
## goodhlth + black + female + married + south, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4574 -0.4838 -0.1529 0.2242 15.6497
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03200 0.11912 -0.269 0.78825
## scale(exper) 0.16952 0.02818 6.015 2.35e-09 ***
## scale(looks) 0.09160 0.02656 3.449 0.00058 ***
## union 0.12099 0.05940 2.037 0.04189 *
## goodhlth 0.06220 0.10625 0.585 0.55840
## black -0.09194 0.10170 -0.904 0.36615
## female -0.50841 0.05962 -8.527 < 2e-16 ***
## married 0.14369 0.06145 2.338 0.01953 *
## south 0.13974 0.06923 2.018 0.04376 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9289 on 1251 degrees of freedom
## Multiple R-squared: 0.1426, Adjusted R-squared: 0.1372
## F-statistic: 26.02 on 8 and 1251 DF, p-value: < 2.2e-16
dplyr table içerdinde ki select mutate sutun ve satır oluşturmak ve
data içersinde ki değişkenler seçmek içn kullanyr
library(dplyr)
beauty %>%
select(wage,exper, union, goodhlth, black, belavg ) %>%
filter(goodhlth == 1 )
## wage exper union goodhlth black belavg
## 1 5.73 30 0 1 0 0
## 2 4.28 28 0 1 0 0
## 3 7.96 35 0 1 0 0
## 4 11.57 38 0 1 0 0
## 5 11.42 27 0 1 0 0
## 6 8.76 12 0 1 0 0
## 7 7.69 5 1 1 0 0
## 8 5.00 5 0 1 0 0
## 9 3.89 12 0 1 0 0
## 10 3.45 3 0 1 0 0
## 11 4.03 6 0 1 0 0
## 12 5.14 19 0 1 0 1
## 13 3.00 8 0 1 0 0
## 14 7.99 12 0 1 0 0
## 15 6.01 17 0 1 0 0
## 16 5.16 7 0 1 0 0
## 17 11.54 12 0 1 0 0
## 18 10.44 10 0 1 0 0
## 19 7.69 7 0 1 0 0
## 20 7.69 7 1 1 0 0
## 21 6.79 19 0 1 0 0
## 22 6.87 33 0 1 0 0
## 23 17.03 32 0 1 0 0
## 24 10.05 12 0 1 0 0
## 25 15.81 24 0 1 0 0
## 26 14.84 29 0 1 0 0
## 27 19.08 17 0 1 0 0
## 28 5.96 10 0 1 0 0
## 29 6.73 41 0 1 0 0
## 30 8.17 18 0 1 0 1
## 31 12.39 28 0 1 0 0
## 32 9.62 37 0 1 0 1
## 33 4.83 20 0 1 1 0
## 34 7.69 10 1 1 0 1
## 35 12.50 31 0 1 0 0
## 36 2.82 18 0 1 0 0
## 37 12.31 9 1 1 0 0
## 38 13.22 42 0 1 0 0
## 39 16.83 14 0 1 0 0
## 40 11.54 27 0 1 0 0
## 41 4.95 20 0 1 1 0
## 42 7.21 14 0 1 0 0
## 43 11.58 4 0 1 0 0
## 44 15.38 13 0 1 0 0
## 45 6.10 5 0 1 0 0
## 46 7.93 32 0 1 0 0
## 47 9.16 19 1 1 0 0
## 48 6.91 14 0 1 0 0
## 49 20.18 28 0 1 0 0
## 50 9.93 31 1 1 0 0
## 51 7.79 18 0 1 0 0
## 52 5.13 23 0 1 0 0
## 53 10.99 14 0 1 0 0
## 54 6.56 17 0 1 0 1
## 55 10.10 16 0 1 0 0
## 56 10.74 19 0 1 0 0
## 57 16.35 26 0 1 0 0
## 58 4.62 20 0 1 0 0
## 59 7.49 18 0 1 0 0
## 60 19.23 35 0 1 0 0
## 61 4.77 9 0 1 0 0
## 62 7.14 20 0 1 0 1
## 63 14.42 7 0 1 0 0
## 64 9.28 40 0 1 0 0
## 65 29.98 12 0 1 0 0
## 66 32.79 33 0 1 0 0
## 67 9.62 16 0 1 0 0
## 68 8.36 15 0 1 0 0
## 69 21.63 11 0 1 0 0
## 70 15.90 24 0 1 0 0
## 71 5.77 6 0 1 0 1
## 72 20.99 40 0 1 0 1
## 73 23.32 15 0 1 0 0
## 74 4.97 9 0 1 0 0
## 75 6.89 16 0 1 0 1
## 76 5.73 12 0 1 0 1
## 77 5.19 8 0 1 0 0
## 78 7.79 25 1 1 0 0
## 79 8.79 24 1 1 0 0
## 80 9.32 25 1 1 0 0
## 81 8.33 7 0 1 0 0
## 82 10.12 40 0 1 1 0
## 83 8.24 13 0 1 0 0
## 84 5.05 5 0 1 0 0
## 85 6.55 10 0 1 0 0
## 86 4.47 25 1 1 0 0
## 87 7.96 10 0 1 0 0
## 88 6.25 20 0 1 0 1
## 89 4.13 7 0 1 0 0
## 90 6.73 25 0 1 0 1
## 91 7.69 8 0 1 0 0
## 92 4.35 8 0 1 0 1
## 93 7.69 28 0 1 0 0
## 94 4.81 37 0 1 0 1
## 95 5.24 31 0 1 0 0
## 96 2.14 24 0 1 0 0
## 97 4.49 33 0 1 0 0
## 98 3.61 8 0 1 0 0
## 99 5.45 33 0 1 0 0
## 100 5.00 30 0 1 0 0
## 101 6.73 23 0 1 0 0
## 102 10.05 24 0 1 0 0
## 103 6.54 4 0 1 0 0
## 104 9.20 40 0 1 0 0
## 105 4.62 1 0 1 0 0
## 106 3.37 36 0 1 1 0
## 107 5.54 7 0 1 0 0
## 108 6.11 7 0 1 0 0
## 109 4.99 14 0 1 0 0
## 110 5.88 7 0 1 0 0
## 111 5.66 11 1 1 0 0
## 112 4.00 6 0 1 0 0
## 113 6.87 23 0 1 0 0
## 114 4.37 19 0 1 0 1
## 115 5.77 30 0 1 0 0
## 116 5.77 21 0 1 0 0
## 117 12.31 9 0 1 0 0
## 118 19.08 29 1 1 0 0
## 119 7.55 9 0 1 0 0
## 120 5.90 18 0 1 0 0
## 121 6.37 26 0 1 0 0
## 122 6.15 21 1 1 0 0
## 123 1.92 12 1 1 0 1
## 124 3.27 11 0 1 0 0
## 125 2.18 18 0 1 0 0
## 126 5.62 22 0 1 0 0
## 127 9.29 38 0 1 0 0
## 128 6.41 10 1 1 0 0
## 129 7.46 22 1 1 0 0
## 130 6.59 16 1 1 0 1
## 131 6.73 20 1 1 0 1
## 132 5.61 14 1 1 0 0
## 133 3.65 14 0 1 0 0
## 134 13.01 15 1 1 0 0
## 135 6.97 18 1 1 0 0
## 136 7.69 21 1 1 0 0
## 137 6.73 15 0 1 0 0
## 138 5.13 10 1 1 0 0
## 139 2.14 6 0 1 0 0
## 140 4.53 8 1 1 0 1
## 141 9.10 18 0 1 0 1
## 142 9.78 15 1 1 0 0
## 143 3.63 11 0 1 0 0
## 144 10.62 18 1 1 0 0
## 145 4.62 10 1 1 0 0
## 146 6.54 26 1 1 0 0
## 147 7.21 30 1 1 0 0
## 148 3.85 13 1 1 0 0
## 149 2.01 16 0 1 0 0
## 150 3.90 5 1 1 0 0
## 151 6.35 11 1 1 0 0
## 152 2.00 6 0 1 0 0
## 153 7.69 22 1 1 0 0
## 154 2.63 4 0 1 0 0
## 155 5.00 15 1 1 0 0
## 156 6.54 7 0 1 0 0
## 157 5.19 10 0 1 0 0
## 158 9.75 8 1 1 0 0
## 159 2.81 14 0 1 1 0
## 160 4.62 11 1 1 0 0
## 161 7.33 34 1 1 0 0
## 162 7.69 12 1 1 0 0
## 163 3.26 10 1 1 0 0
## 164 5.77 11 0 1 0 1
## 165 5.59 8 1 1 0 0
## 166 5.13 28 0 1 1 0
## 167 14.74 24 1 1 0 1
## 168 3.67 8 1 1 0 0
## 169 9.73 13 0 1 0 0
## 170 3.46 4 1 1 0 0
## 171 6.37 43 1 1 0 0
## 172 6.58 30 0 1 0 0
## 173 10.15 16 1 1 1 0
## 174 9.23 19 1 1 0 0
## 175 10.22 26 0 1 0 0
## 176 4.76 8 1 1 0 0
## 177 1.76 24 0 1 0 0
## 178 12.73 15 1 1 0 0
## 179 5.85 26 1 1 0 0
## 180 5.99 19 0 1 0 1
## 181 4.62 4 0 1 0 0
## 182 1.80 23 0 1 0 0
## 183 5.95 25 0 1 0 0
## 184 7.46 18 0 1 0 0
## 185 8.70 27 0 1 0 1
## 186 3.75 16 0 1 0 0
## 187 7.69 20 0 1 0 0
## 188 10.10 35 0 1 0 0
## 189 3.75 36 0 1 0 1
## 190 5.79 35 0 1 0 0
## 191 5.06 5 0 1 0 0
## 192 7.96 15 1 1 0 0
## 193 12.82 44 1 1 0 0
## 194 8.46 28 0 1 0 0
## 195 3.76 2 1 1 0 0
## 196 2.86 43 0 1 0 0
## 197 11.81 30 1 1 0 0
## 198 7.69 26 0 1 0 0
## 199 2.88 7 0 1 1 0
## 200 5.73 10 1 1 0 0
## 201 4.49 37 0 1 0 1
## 202 9.57 27 1 1 0 0
## 203 3.61 5 0 1 0 0
## 204 7.77 14 0 1 0 1
## 205 9.23 16 0 1 0 1
## 206 5.58 4 0 1 0 0
## 207 5.34 39 0 1 0 0
## 208 5.17 32 1 1 0 0
## 209 6.41 16 0 1 0 0
## 210 7.40 10 0 1 0 0
## 211 6.75 15 0 1 0 0
## 212 8.46 10 0 1 0 0
## 213 4.61 10 0 1 0 0
## 214 5.24 4 0 1 0 0
## 215 15.38 12 0 1 0 0
## 216 2.37 15 0 1 0 0
## 217 6.72 37 0 1 0 0
## 218 9.40 23 0 1 0 0
## 219 7.84 15 0 1 0 0
## 220 15.00 10 0 1 0 0
## 221 4.70 14 0 1 0 0
## 222 11.28 17 0 1 0 0
## 223 11.97 24 0 1 0 0
## 224 13.99 13 0 1 0 0
## 225 3.00 5 0 1 0 0
## 226 3.41 20 0 1 0 0
## 227 9.62 29 0 1 0 0
## 228 6.73 10 0 1 0 0
## 229 9.62 36 0 1 0 0
## 230 5.19 15 0 1 0 0
## 231 4.62 26 0 1 0 0
## 232 5.03 13 0 1 0 0
## 233 9.84 26 0 1 0 0
## 234 5.29 9 1 1 0 0
## 235 10.99 40 0 1 0 1
## 236 8.17 12 0 1 0 1
## 237 5.88 25 0 1 0 0
## 238 7.92 18 0 1 0 0
## 239 4.44 9 0 1 0 0
## 240 6.64 9 1 1 0 0
## 241 9.23 40 0 1 0 0
## 242 12.82 36 0 1 0 0
## 243 14.18 30 0 1 0 0
## 244 11.54 27 1 1 0 0
## 245 9.40 22 1 1 0 0
## 246 10.39 40 1 1 0 0
## 247 5.54 40 0 1 1 0
## 248 7.86 21 0 1 0 0
## 249 4.05 16 0 1 0 0
## 250 2.56 18 0 1 0 0
## 251 12.98 11 0 1 0 0
## 252 4.81 12 0 1 0 0
## 253 1.32 2 1 1 0 0
## 254 3.71 4 0 1 0 0
## 255 4.81 21 1 1 0 0
## 256 4.68 4 0 1 0 0
## 257 8.21 32 1 1 0 1
## 258 4.03 7 0 1 0 0
## 259 15.63 23 0 1 0 0
## 260 7.69 23 1 1 0 0
## 261 7.17 14 0 1 0 0
## 262 8.08 13 0 1 0 0
## 263 9.03 28 0 1 0 0
## 264 6.75 35 0 1 0 0
## 265 8.44 16 0 1 0 0
## 266 6.00 12 0 1 0 0
## 267 6.15 7 0 1 0 0
## 268 4.10 25 0 1 0 0
## 269 14.17 22 1 1 0 0
## 270 6.41 22 0 1 0 0
## 271 10.29 35 0 1 0 0
## 272 5.06 28 0 1 0 0
## 273 6.37 18 0 1 0 0
## 274 2.98 11 0 1 0 0
## 275 13.28 40 0 1 0 0
## 276 4.20 10 0 1 0 1
## 277 8.92 40 0 1 0 0
## 278 2.63 7 0 1 0 0
## 279 26.24 24 0 1 0 0
## 280 7.54 36 0 1 0 0
## 281 8.65 34 0 1 0 0
## 282 20.99 44 0 1 0 0
## 283 10.26 44 0 1 0 0
## 284 8.55 30 0 1 0 0
## 285 2.08 23 0 1 0 0
## 286 6.01 25 0 1 0 0
## 287 10.05 14 0 1 0 0
## 288 5.73 5 0 1 0 0
## 289 5.93 20 0 1 0 0
## 290 4.49 1 0 1 0 1
## 291 5.66 13 0 1 0 0
## 292 10.19 15 0 1 0 0
## 293 20.99 35 0 1 0 0
## 294 9.05 20 0 1 0 0
## 295 3.92 12 0 1 0 0
## 296 4.28 7 0 1 0 0
## 297 2.75 7 0 1 0 0
## 298 2.88 32 0 1 0 0
## 299 6.41 13 0 1 0 0
## 300 7.69 15 0 1 0 0
## 301 6.41 48 0 1 0 0
## 302 11.54 38 0 1 0 0
## 303 11.40 28 0 1 0 0
## 304 2.20 18 0 1 0 0
## 305 1.65 24 0 1 0 1
## 306 6.59 27 0 1 0 0
## 307 11.06 24 0 1 0 0
## 308 1.63 16 0 1 0 0
## 309 3.58 44 0 1 0 0
## 310 12.31 14 0 1 0 0
## 311 6.66 16 0 1 0 0
## 312 10.53 18 0 1 0 0
## 313 1.92 18 0 1 0 1
## 314 19.23 15 0 1 0 0
## 315 7.21 41 0 1 0 0
## 316 25.64 28 0 1 0 0
## 317 3.85 24 0 1 0 0
## 318 10.99 13 0 1 0 0
## 319 10.02 22 0 1 0 0
## 320 5.31 18 0 1 0 0
## 321 7.19 40 0 1 0 0
## 322 3.82 17 0 1 0 0
## 323 9.62 17 0 1 0 0
## 324 9.62 20 0 1 0 0
## 325 3.85 30 0 1 0 0
## 326 7.50 30 0 1 0 0
## 327 6.92 22 0 1 0 0
## 328 7.69 7 0 1 0 0
## 329 9.23 23 0 1 0 0
## 330 1.27 8 0 1 0 0
## 331 4.82 31 0 1 0 0
## 332 6.75 30 0 1 0 0
## 333 8.55 26 0 1 0 1
## 334 6.41 24 1 1 0 0
## 335 7.44 12 1 1 0 0
## 336 1.32 37 0 1 0 0
## 337 4.81 16 0 1 0 0
## 338 14.35 23 0 1 0 0
## 339 2.40 9 0 1 0 1
## 340 3.08 14 0 1 0 1
## 341 10.66 8 0 1 0 0
## 342 7.69 41 0 1 0 1
## 343 2.54 5 0 1 0 0
## 344 6.38 30 0 1 0 0
## 345 4.81 12 0 1 0 0
## 346 3.82 24 0 1 0 0
## 347 7.40 19 0 1 0 0
## 348 7.69 20 0 1 0 0
## 349 8.24 23 0 1 0 1
## 350 2.63 3 0 1 0 0
## 351 5.31 20 0 1 0 0
## 352 3.00 45 0 1 0 1
## 353 5.70 31 0 1 0 0
## 354 17.49 23 0 1 0 0
## 355 3.89 7 0 1 0 0
## 356 16.14 23 1 1 0 0
## 357 18.32 25 0 1 0 0
## 358 24.73 36 0 1 0 0
## 359 7.61 14 0 1 0 0
## 360 10.00 41 0 1 0 0
## 361 1.68 15 0 1 0 0
## 362 7.72 20 0 1 0 0
## 363 13.46 20 0 1 0 0
## 364 17.48 35 0 1 0 0
## 365 1.92 25 0 1 1 0
## 366 5.09 38 0 1 0 0
## 367 6.37 16 0 1 0 0
## 368 5.45 6 0 1 0 1
## 369 3.82 14 0 1 0 0
## 370 20.86 34 0 1 0 0
## 371 6.20 8 0 1 0 0
## 372 26.22 17 0 1 0 0
## 373 2.50 27 0 1 0 0
## 374 8.10 13 0 1 0 0
## 375 6.21 42 0 1 0 0
## 376 5.24 11 0 1 0 0
## 377 5.57 12 0 1 0 0
## 378 7.60 43 0 1 0 0
## 379 17.49 18 0 1 0 0
## 380 10.10 17 0 1 0 0
## 381 4.33 4 0 1 0 1
## 382 5.38 40 0 1 0 0
## 383 5.70 14 0 1 0 0
## 384 15.73 32 0 1 0 0
## 385 3.16 13 0 1 0 0
## 386 7.69 10 0 1 0 0
## 387 3.57 25 0 1 0 0
## 388 5.92 11 0 1 0 0
## 389 13.12 40 0 1 0 0
## 390 38.86 29 0 1 0 0
## 391 10.12 20 1 1 0 0
## 392 12.82 12 0 1 0 0
## 393 5.49 20 0 1 0 0
## 394 14.79 29 0 1 0 0
## 395 10.19 15 0 1 0 1
## 396 2.11 37 1 1 0 0
## 397 9.28 11 0 1 0 0
## 398 5.33 19 0 1 0 0
## 399 9.13 13 0 1 0 0
## 400 9.89 41 0 1 0 0
## 401 6.37 11 0 1 0 0
## 402 4.00 26 0 1 0 0
## 403 5.09 7 0 1 0 0
## 404 5.13 21 0 1 0 0
## 405 2.47 1 0 1 0 0
## 406 3.29 26 0 1 0 0
## 407 3.95 1 0 1 0 0
## 408 3.04 12 0 1 0 0
## 409 2.27 3 0 1 0 1
## 410 3.34 5 0 1 0 0
## 411 4.90 5 1 1 0 1
## 412 7.21 6 0 1 0 0
## 413 3.44 1 0 1 0 0
## 414 2.40 6 0 1 0 0
## 415 8.26 38 0 1 0 0
## 416 10.68 38 0 1 0 0
## 417 4.62 37 0 1 0 0
## 418 7.55 26 0 1 0 0
## 419 7.69 42 0 1 0 0
## 420 7.25 10 0 1 0 0
## 421 8.74 16 0 1 0 0
## 422 4.62 34 0 1 0 1
## 423 3.33 17 0 1 0 1
## 424 4.81 12 0 1 0 0
## 425 4.58 24 0 1 0 0
## 426 4.09 3 0 1 0 0
## 427 3.33 14 0 1 0 0
## 428 3.06 32 0 1 0 0
## 429 4.95 9 0 1 0 0
## 430 11.54 34 0 1 0 0
## 431 5.63 5 0 1 0 0
## 432 4.05 10 0 1 0 1
## 433 1.16 2 0 1 0 0
## 434 4.10 34 0 1 0 0
## 435 2.46 17 0 1 0 0
## 436 4.11 10 0 1 0 0
## 437 6.11 44 0 1 0 0
## 438 4.47 11 0 1 0 0
## 439 4.62 3 0 1 0 0
## 440 1.28 2 0 1 0 0
## 441 4.40 25 0 1 0 0
## 442 1.27 12 0 1 0 0
## 443 3.95 10 0 1 0 0
## 444 3.75 5 0 1 0 0
## 445 3.21 12 0 1 0 0
## 446 2.63 6 0 1 0 0
## 447 5.64 9 0 1 0 0
## 448 3.00 2 0 1 0 0
## 449 1.98 7 0 1 0 0
## 450 4.81 26 0 1 0 0
## 451 2.63 13 0 1 0 0
## 452 3.16 27 0 1 0 0
## 453 6.27 3 1 1 0 0
## 454 4.05 8 0 1 0 0
## 455 1.98 8 0 1 0 0
## 456 2.18 2 0 1 0 0
## 457 2.63 4 0 1 0 0
## 458 2.43 1 0 1 0 0
## 459 1.98 4 0 1 0 0
## 460 4.09 5 0 1 0 0
## 461 2.50 12 0 1 0 0
## 462 2.51 4 0 1 0 0
## 463 3.85 7 1 1 0 0
## 464 5.13 5 0 1 0 0
## 465 4.81 5 0 1 0 0
## 466 4.81 3 0 1 0 0
## 467 7.07 8 1 1 1 0
## 468 2.31 3 0 1 0 0
## 469 3.89 4 0 1 1 0
## 470 1.98 25 0 1 0 1
## 471 1.25 5 0 1 0 0
## 472 7.63 11 0 1 0 0
## 473 6.54 8 0 1 1 0
## 474 13.13 24 0 1 0 0
## 475 4.40 3 0 1 0 0
## 476 7.69 16 0 1 1 0
## 477 3.85 7 0 1 0 0
## 478 7.69 25 0 1 0 0
## 479 5.00 19 0 1 0 0
## 480 8.94 31 1 1 0 0
## 481 5.09 7 0 1 0 0
## 482 3.16 1 0 1 1 0
## 483 10.58 21 0 1 0 0
## 484 2.14 4 0 1 1 0
## 485 5.13 15 0 1 0 0
## 486 1.95 10 1 1 0 1
## 487 1.92 8 0 1 0 0
## 488 2.65 18 0 1 0 0
## 489 2.62 10 1 1 0 0
## 490 7.91 6 1 1 0 0
## 491 8.55 30 1 1 0 0
## 492 8.44 19 1 1 0 0
## 493 7.96 30 1 1 0 0
## 494 4.67 4 0 1 0 0
## 495 4.28 7 0 1 0 0
## 496 3.61 4 0 1 0 0
## 497 1.92 2 0 1 0 0
## 498 1.68 5 0 1 0 0
## 499 4.46 21 0 1 0 0
## 500 2.11 12 0 1 0 0
## 501 3.81 4 0 1 0 0
## 502 6.25 11 0 1 0 0
## 503 3.08 5 0 1 1 0
## 504 9.89 35 1 1 1 0
## 505 2.98 12 0 1 0 0
## 506 2.92 12 0 1 0 0
## 507 4.17 34 0 1 0 0
## 508 3.34 20 0 1 1 1
## 509 2.26 3 0 1 0 0
## 510 10.12 18 0 1 0 0
## 511 6.35 20 0 1 0 0
## 512 7.80 6 0 1 1 0
## 513 3.75 9 0 1 0 0
## 514 3.59 3 0 1 0 0
## 515 4.52 7 0 1 0 0
## 516 4.47 12 0 1 0 0
## 517 5.29 12 0 1 0 0
## 518 5.29 10 0 1 0 0
## 519 4.81 9 0 1 0 0
## 520 1.98 3 0 1 0 1
## 521 3.17 2 0 1 0 0
## 522 2.88 40 0 1 0 0
## 523 3.47 5 0 1 0 0
## 524 3.92 15 0 1 0 1
## 525 3.46 13 0 1 0 0
## 526 4.95 10 0 1 1 0
## 527 2.18 2 0 1 0 0
## 528 4.10 23 0 1 0 0
## 529 2.62 15 0 1 0 0
## 530 6.59 30 0 1 0 0
## 531 3.96 15 0 1 0 1
## 532 4.81 11 0 1 0 0
## 533 3.75 27 0 1 0 0
## 534 7.34 9 1 1 0 0
## 535 2.93 1 0 1 0 0
## 536 3.47 15 0 1 0 0
## 537 5.64 16 0 1 0 0
## 538 3.75 3 0 1 0 0
## 539 5.45 19 0 1 0 0
## 540 3.75 4 0 1 0 0
## 541 6.73 14 0 1 0 0
## 542 3.28 8 1 1 0 0
## 543 3.57 10 0 1 0 0
## 544 6.01 33 0 1 0 0
## 545 4.62 9 0 1 0 0
## 546 6.84 26 0 1 0 0
## 547 6.41 15 0 1 0 0
## 548 3.44 31 0 1 0 1
## 549 3.85 22 1 1 0 0
## 550 7.15 30 1 1 0 0
## 551 4.05 3 0 1 1 0
## 552 2.91 4 0 1 0 0
## 553 4.42 9 0 1 0 0
## 554 8.49 7 1 1 0 0
## 555 4.28 3 1 1 1 0
## 556 3.33 5 0 1 0 0
## 557 8.46 48 0 1 0 0
## 558 8.65 3 0 1 0 0
## 559 1.16 5 0 1 0 0
## 560 1.98 5 0 1 1 0
## 561 2.57 3 0 1 0 0
## 562 2.58 6 0 1 1 0
## 563 2.51 10 0 1 0 0
## 564 77.72 9 1 1 1 0
## 565 4.33 26 1 1 0 0
## 566 4.09 33 1 1 0 0
## 567 5.73 12 1 1 0 0
## 568 4.81 11 1 1 0 0
## 569 7.69 10 0 1 0 0
## 570 5.73 9 1 1 0 0
## 571 5.88 17 1 1 0 0
## 572 4.27 37 0 1 0 0
## 573 9.62 28 0 1 0 0
## 574 9.36 16 0 1 0 0
## 575 3.95 2 0 1 0 0
## 576 5.73 34 1 1 0 0
## 577 2.60 7 0 1 0 0
## 578 3.75 4 0 1 0 0
## 579 5.61 12 0 1 0 0
## 580 5.73 20 0 1 0 0
## 581 3.85 17 0 1 0 0
## 582 2.88 0 0 1 0 1
## 583 2.75 7 0 1 0 0
## 584 11.57 13 0 1 0 0
## 585 4.33 4 0 1 1 0
## 586 2.75 3 0 1 0 0
## 587 5.34 5 0 1 0 0
## 588 6.56 19 0 1 0 0
## 589 4.68 12 0 1 0 0
## 590 1.98 10 0 1 0 1
## 591 7.96 18 1 1 0 0
## 592 4.87 18 0 1 0 1
## 593 3.16 44 1 1 0 0
## 594 6.25 5 0 1 0 0
## 595 3.00 18 0 1 0 0
## 596 3.75 12 1 1 0 0
## 597 3.75 6 0 1 0 0
## 598 6.54 13 0 1 1 0
## 599 4.19 10 0 1 0 0
## 600 5.37 20 0 1 0 1
## 601 2.14 32 0 1 0 0
## 602 4.81 32 0 1 0 0
## 603 3.53 8 0 1 0 0
## 604 4.33 25 0 1 0 0
## 605 6.13 18 1 1 0 0
## 606 8.21 30 1 1 0 0
## 607 2.39 8 0 1 0 0
## 608 4.58 18 0 1 0 0
## 609 6.97 16 0 1 0 0
## 610 10.12 29 1 1 0 0
## 611 3.75 30 0 1 0 1
## 612 3.52 8 0 1 0 1
## 613 8.41 22 0 1 0 0
## 614 7.96 15 0 1 0 0
## 615 8.24 20 1 1 0 1
## 616 3.22 18 0 1 0 0
## 617 7.96 36 0 1 0 0
## 618 8.65 11 1 1 0 0
## 619 4.27 3 0 1 1 0
## 620 12.66 22 1 1 0 0
## 621 7.96 16 1 1 0 0
## 622 3.49 44 0 1 0 0
## 623 10.12 20 0 1 0 1
## 624 3.08 5 0 1 0 0
## 625 7.96 8 1 1 0 0
## 626 2.75 2 0 1 0 0
## 627 3.39 10 0 1 0 0
## 628 5.49 7 0 1 0 1
## 629 4.27 11 0 1 0 0
## 630 5.71 18 1 1 0 0
## 631 3.46 8 0 1 0 1
## 632 15.38 37 0 1 0 0
## 633 8.41 12 0 1 0 0
## 634 10.12 11 0 1 0 0
## 635 3.85 7 0 1 0 0
## 636 4.62 23 0 1 0 0
## 637 3.41 5 0 1 0 0
## 638 10.58 22 1 1 0 0
## 639 10.10 35 1 1 0 0
## 640 7.96 6 0 1 0 0
## 641 6.81 14 0 1 0 0
## 642 7.21 37 1 1 0 0
## 643 6.41 32 1 1 0 0
## 644 4.77 30 1 1 0 0
## 645 6.05 10 1 1 0 0
## 646 3.75 9 1 1 0 1
## 647 9.16 14 1 1 0 0
## 648 3.33 19 0 1 0 0
## 649 4.77 6 1 1 0 0
## 650 5.79 28 0 1 0 1
## 651 3.96 10 0 1 0 0
## 652 6.41 37 1 1 0 1
## 653 5.55 41 1 1 0 0
## 654 7.69 14 0 1 0 0
## 655 8.17 12 1 1 0 0
## 656 6.40 26 0 1 0 0
## 657 3.57 19 0 1 1 0
## 658 6.59 22 0 1 0 0
## 659 7.69 27 0 1 0 0
## 660 10.26 27 0 1 1 0
## 661 7.08 25 0 1 0 0
## 662 10.42 10 0 1 0 0
## 663 8.08 7 0 1 0 0
## 664 4.95 7 0 1 0 0
## 665 9.81 24 0 1 0 0
## 666 5.77 10 0 1 0 0
## 667 4.81 3 0 1 0 0
## 668 11.95 28 0 1 0 0
## 669 6.12 23 0 1 0 0
## 670 4.58 37 0 1 0 0
## 671 4.37 5 0 1 0 0
## 672 7.71 42 0 1 0 1
## 673 7.96 20 0 1 0 0
## 674 8.93 33 0 1 0 0
## 675 5.73 14 1 1 0 0
## 676 7.26 10 0 1 0 0
## 677 4.73 21 0 1 0 1
## 678 5.38 8 0 1 0 0
## 679 9.00 42 0 1 0 0
## 680 4.91 10 0 1 0 0
## 681 14.31 40 1 1 0 1
## 682 9.74 13 0 1 0 0
## 683 4.13 39 0 1 0 0
## 684 3.75 9 0 1 0 0
## 685 5.26 26 0 1 0 1
## 686 21.74 24 1 1 0 0
## 687 8.81 14 1 1 0 0
## 688 8.17 12 1 1 0 0
## 689 7.50 35 1 1 0 0
## 690 8.89 18 1 1 0 0
## 691 4.16 32 0 1 0 0
## 692 8.17 23 1 1 0 0
## 693 8.12 22 0 1 0 0
## 694 10.12 29 0 1 0 0
## 695 12.50 30 1 1 0 0
## 696 4.33 15 0 1 0 1
## 697 5.20 10 0 1 0 0
## 698 9.62 12 0 1 0 0
## 699 16.03 25 0 1 0 0
## 700 9.28 29 0 1 0 0
## 701 7.21 34 0 1 1 0
## 702 8.00 18 0 1 0 0
## 703 4.47 12 0 1 0 1
## 704 7.07 10 0 1 0 0
## 705 1.66 15 0 1 0 0
## 706 7.93 39 1 1 0 1
## 707 5.23 18 1 1 0 0
## 708 7.96 18 1 1 0 0
## 709 7.03 16 1 1 0 1
## 710 3.75 18 0 1 0 0
## 711 5.29 4 0 1 0 0
## 712 4.46 4 0 1 0 0
## 713 7.96 39 0 1 0 0
## 714 5.45 16 0 1 0 0
## 715 6.87 23 0 1 0 0
## 716 10.30 14 1 1 0 0
## 717 8.01 12 0 1 0 0
## 718 6.25 40 0 1 0 0
## 719 7.96 44 1 1 0 0
## 720 3.93 8 0 1 0 0
## 721 7.75 23 1 1 0 0
## 722 4.30 11 1 1 0 1
## 723 4.90 8 1 1 0 0
## 724 5.56 45 0 1 0 0
## 725 5.73 19 0 1 0 0
## 726 5.70 19 0 1 0 0
## 727 4.57 7 0 1 0 1
## 728 4.15 8 0 1 0 0
## 729 4.71 34 0 1 0 0
## 730 7.21 20 0 1 0 0
## 731 7.04 12 1 1 0 0
## 732 1.48 13 0 1 0 1
## 733 9.62 4 1 1 0 0
## 734 3.75 3 0 1 0 0
## 735 7.14 17 1 1 0 0
## 736 6.99 10 0 1 0 0
## 737 8.46 26 1 1 0 0
## 738 4.76 12 0 1 0 0
## 739 3.90 2 0 1 1 0
## 740 5.77 11 0 1 0 0
## 741 8.74 19 0 1 0 0
## 742 6.56 4 0 1 0 0
## 743 4.24 9 0 1 0 0
## 744 4.09 15 0 1 0 0
## 745 20.99 25 0 1 0 0
## 746 7.69 7 0 1 0 0
## 747 4.58 29 1 1 0 0
## 748 12.82 3 1 1 0 0
## 749 9.62 9 1 1 0 0
## 750 8.89 42 1 1 0 0
## 751 10.58 17 1 1 0 0
## 752 7.21 29 0 1 0 0
## 753 1.65 7 0 1 0 1
## 754 10.58 15 1 1 0 0
## 755 3.04 15 1 1 0 0
## 756 4.55 43 0 1 0 0
## 757 7.69 44 1 1 0 0
## 758 3.00 11 0 1 0 0
## 759 12.02 31 1 1 0 0
## 760 5.99 21 1 1 0 0
## 761 8.94 35 1 1 0 0
## 762 4.00 7 0 1 0 0
## 763 1.98 3 1 1 0 0
## 764 1.27 0 0 1 0 0
## 765 5.57 10 0 1 0 0
## 766 7.36 39 0 1 0 1
## 767 3.08 5 0 1 0 0
## 768 9.64 36 1 1 0 0
## 769 5.09 18 0 1 0 0
## 770 10.12 17 1 1 0 0
## 771 9.62 40 1 1 1 0
## 772 5.77 5 1 1 0 0
## 773 8.32 26 1 1 0 0
## 774 5.73 34 1 1 0 1
## 775 5.73 11 0 1 0 0
## 776 7.21 43 1 1 0 0
## 777 8.78 24 1 1 0 0
## 778 7.96 15 1 1 0 0
## 779 9.62 11 1 1 0 0
## 780 7.45 38 1 1 0 0
## 781 18.46 20 1 1 0 0
## 782 8.85 9 1 1 0 0
## 783 8.00 7 0 1 0 0
## 784 5.73 47 0 1 0 0
## 785 10.61 17 1 1 0 0
## 786 6.84 45 1 1 0 0
## 787 7.78 9 1 1 0 0
## 788 4.21 18 0 1 0 0
## 789 10.12 28 1 1 0 0
## 790 5.56 10 0 1 0 1
## 791 5.77 24 0 1 0 1
## 792 3.85 14 0 1 0 0
## 793 4.33 31 0 1 0 0
## 794 4.09 3 0 1 1 0
## 795 6.98 38 1 1 0 0
## 796 5.69 35 1 1 0 0
## 797 1.20 5 0 1 0 0
## 798 7.48 3 1 1 0 0
## 799 3.13 5 0 1 1 0
## 800 5.61 13 0 1 0 0
## 801 3.27 4 0 1 0 0
## 802 6.25 10 1 1 0 0
## 803 7.69 10 1 1 0 0
## 804 4.00 23 1 1 0 1
## 805 4.66 38 0 1 0 0
## 806 3.82 4 0 1 0 0
## 807 5.24 13 1 1 0 0
## 808 3.37 2 1 1 0 1
## 809 6.41 5 1 1 0 1
## 810 4.81 13 1 1 0 0
## 811 5.61 25 1 1 0 0
## 812 7.97 9 1 1 0 0
## 813 3.75 20 0 1 0 1
## 814 5.15 10 1 1 0 0
## 815 5.77 17 1 1 0 0
## 816 4.94 46 1 1 0 0
## 817 3.75 3 0 1 0 0
## 818 1.98 23 0 1 0 0
## 819 2.52 3 0 1 0 0
## 820 2.93 42 0 1 1 0
## 821 5.09 35 1 1 0 0
## 822 2.40 4 0 1 0 0
## 823 4.87 12 1 1 0 0
## 824 6.59 20 0 1 1 0
## 825 1.20 4 0 1 0 0
## 826 3.33 8 0 1 0 0
## 827 1.96 1 0 1 0 1
## 828 2.73 41 0 1 0 1
## 829 2.63 0 1 1 0 1
## 830 3.75 1 0 1 0 0
## 831 3.08 8 1 1 1 0
## 832 4.50 11 0 1 0 0
## 833 5.53 8 0 1 0 1
## 834 4.09 5 1 1 1 0
## 835 4.55 5 0 1 0 0
## 836 4.12 12 0 1 0 0
## 837 4.81 3 1 1 0 0
## 838 5.77 6 0 1 0 0
## 839 4.81 42 1 1 0 0
## 840 8.65 22 1 1 0 0
## 841 1.92 3 0 1 0 0
## 842 6.01 8 1 1 0 0
## 843 3.35 4 0 1 0 0
## 844 6.01 32 0 1 0 0
## 845 2.96 2 1 1 0 0
## 846 10.82 24 0 1 0 0
## 847 4.81 23 0 1 0 0
## 848 8.79 40 0 1 0 0
## 849 4.81 5 1 1 0 0
## 850 3.75 44 1 1 0 0
## 851 5.29 12 1 1 0 0
## 852 6.50 9 1 1 0 0
## 853 5.82 30 1 1 0 0
## 854 1.79 2 1 1 0 0
## 855 4.28 3 1 1 0 0
## 856 2.31 9 0 1 0 0
## 857 3.50 10 1 1 1 0
## 858 4.37 2 0 1 0 0
## 859 3.75 19 0 1 0 1
## 860 2.64 8 0 1 0 0
## 861 2.26 21 1 1 0 0
## 862 1.98 25 0 1 0 0
## 863 3.37 9 0 1 0 1
## 864 1.98 19 1 1 0 0
## 865 3.37 11 0 1 0 0
## 866 3.75 36 1 1 0 0
## 867 3.75 6 0 1 0 0
## 868 6.59 33 0 1 0 0
## 869 3.75 35 0 1 1 0
## 870 3.75 28 0 1 0 1
## 871 6.61 11 1 1 0 0
## 872 8.65 42 1 1 1 0
## 873 5.02 33 0 1 0 1
## 874 11.54 42 1 1 0 0
## 875 5.90 25 0 1 0 0
## 876 3.75 6 0 1 1 0
## 877 8.70 41 1 1 0 0
## 878 21.54 34 0 1 0 0
## 879 3.30 17 0 1 0 0
## 880 5.49 44 1 1 0 0
## 881 2.40 42 1 1 0 0
## 882 4.09 1 1 1 0 0
## 883 1.98 35 0 1 1 0
## 884 7.21 42 1 1 0 0
## 885 8.50 4 1 1 0 0
## 886 1.98 1 0 1 0 0
## 887 7.18 18 1 1 0 0
## 888 4.81 6 0 1 0 0
## 889 5.24 15 1 1 0 0
## 890 9.13 24 0 1 0 0
## 891 3.75 25 0 1 0 0
## 892 7.69 40 1 1 1 0
## 893 8.60 31 1 1 1 0
## 894 5.29 20 0 1 0 1
## 895 6.67 15 1 1 0 1
## 896 3.85 5 1 1 1 0
## 897 8.49 36 0 1 0 0
## 898 7.21 18 1 1 0 1
## 899 3.33 22 0 1 0 1
## 900 4.27 2 1 1 0 0
## 901 2.88 4 0 1 0 0
## 902 4.09 10 0 1 0 1
## 903 2.75 36 0 1 1 0
## 904 4.12 9 1 1 1 0
## 905 9.62 15 1 1 0 0
## 906 5.53 5 0 1 0 0
## 907 4.01 5 0 1 0 0
## 908 3.41 4 0 1 0 0
## 909 6.92 3 0 1 0 0
## 910 7.96 5 1 1 0 0
## 911 3.75 6 1 1 1 0
## 912 4.28 7 1 1 0 0
## 913 2.31 35 1 1 0 1
## 914 4.09 5 0 1 0 0
## 915 3.85 12 1 1 0 0
## 916 3.75 23 1 1 0 1
## 917 3.00 10 1 1 1 0
## 918 3.96 1 1 1 1 0
## 919 8.55 20 1 1 0 0
## 920 3.75 14 1 1 1 0
## 921 6.00 1 0 1 0 0
## 922 4.81 6 1 1 0 1
## 923 2.50 26 0 1 0 0
## 924 4.32 18 1 1 1 0
## 925 1.27 4 0 1 0 0
## 926 5.77 13 1 1 0 1
## 927 4.20 33 1 1 0 1
## 928 13.74 28 1 1 0 0
## 929 2.56 4 0 1 0 0
## 930 5.13 42 1 1 0 0
## 931 7.21 39 1 1 0 0
## 932 4.24 7 0 1 0 0
## 933 4.10 38 0 1 0 1
## 934 8.50 19 1 1 0 0
## 935 5.94 29 1 1 0 0
## 936 10.54 35 1 1 1 0
## 937 3.50 18 0 1 0 0
## 938 5.95 8 1 1 0 0
## 939 8.89 20 1 1 0 0
## 940 5.73 34 1 1 0 1
## 941 1.05 29 0 1 1 0
## 942 3.85 8 1 1 0 0
## 943 2.88 4 0 1 0 0
## 944 8.44 15 1 1 0 0
## 945 3.61 6 0 1 0 0
## 946 5.77 20 1 1 0 0
## 947 3.33 35 1 1 1 0
## 948 4.49 17 1 1 0 0
## 949 2.38 3 0 1 0 0
## 950 5.08 40 1 1 0 0
## 951 5.31 18 0 1 0 0
## 952 5.31 23 1 1 0 0
## 953 6.54 10 0 1 0 0
## 954 7.43 18 1 1 1 0
## 955 5.29 42 1 1 0 0
## 956 11.09 38 1 1 0 0
## 957 3.33 5 0 1 1 0
## 958 3.27 25 0 1 0 1
## 959 3.85 26 1 1 0 1
## 960 8.04 11 0 1 0 0
## 961 4.62 16 0 1 0 0
## 962 7.96 40 1 1 0 0
## 963 4.85 7 0 1 0 0
## 964 6.97 17 0 1 0 0
## 965 4.81 44 0 1 0 0
## 966 3.98 8 0 1 0 0
## 967 5.56 31 0 1 0 0
## 968 7.32 26 1 1 0 0
## 969 7.69 20 1 1 0 0
## 970 6.29 22 0 1 0 1
## 971 9.62 11 1 1 0 0
## 972 7.63 8 0 1 0 0
## 973 4.29 40 1 1 0 0
## 974 25.64 13 0 1 0 0
## 975 4.24 3 0 1 0 0
## 976 3.87 10 0 1 0 0
## 977 5.73 18 1 1 0 0
## 978 3.50 5 0 1 0 0
## 979 5.05 16 1 1 1 0
## 980 7.96 10 1 1 0 0
## 981 7.96 10 1 1 0 0
## 982 3.41 3 1 1 0 0
## 983 5.73 40 1 1 0 0
## 984 8.89 35 0 1 0 0
## 985 4.81 28 1 1 0 0
## 986 4.81 16 0 1 0 0
## 987 3.75 19 0 1 1 0
## 988 13.41 11 1 1 0 0
## 989 5.09 10 0 1 0 1
## 990 2.88 4 1 1 1 0
## 991 3.21 2 0 1 1 0
## 992 4.55 5 0 1 0 0
## 993 5.77 31 1 1 0 1
## 994 8.85 28 1 1 0 0
## 995 4.41 9 1 1 0 0
## 996 4.27 12 0 1 0 0
## 997 10.12 17 0 1 0 0
## 998 5.29 37 0 1 1 0
## 999 5.73 35 1 1 0 1
## 1000 7.63 35 1 1 0 0
## 1001 7.69 10 1 1 0 0
## 1002 7.49 27 1 1 0 0
## 1003 6.37 5 1 1 0 0
## 1004 6.41 5 1 1 0 0
## 1005 1.98 3 0 1 0 0
## 1006 7.05 14 0 1 0 0
## 1007 5.13 21 0 1 0 0
## 1008 6.35 7 1 1 0 0
## 1009 6.69 27 1 1 0 0
## 1010 4.62 1 0 1 0 0
## 1011 5.02 31 0 1 0 0
## 1012 4.23 42 0 1 0 1
## 1013 6.54 34 1 1 0 0
## 1014 7.13 9 1 1 0 0
## 1015 3.85 3 0 1 0 0
## 1016 2.17 2 0 1 0 0
## 1017 5.29 36 1 1 1 0
## 1018 6.49 27 1 1 0 0
## 1019 10.19 39 0 1 0 0
## 1020 5.79 9 0 1 0 0
## 1021 3.82 47 0 1 0 0
## 1022 12.54 13 0 1 0 0
## 1023 7.69 28 0 1 0 0
## 1024 8.55 26 0 1 0 0
## 1025 5.92 34 0 1 0 1
## 1026 13.74 28 0 1 0 0
## 1027 2.12 17 0 1 0 1
## 1028 16.14 10 0 1 0 1
## 1029 1.79 15 0 1 0 0
## 1030 2.32 15 0 1 0 0
## 1031 3.70 11 0 1 0 0
## 1032 6.75 37 0 1 0 0
## 1033 8.44 43 0 1 0 0
## 1034 26.24 37 0 1 0 1
## 1035 8.88 24 0 1 0 0
## 1036 2.50 17 0 1 0 0
## 1037 7.28 16 0 1 0 0
## 1038 7.84 36 0 1 0 0
## 1039 26.24 37 0 1 0 0
## 1040 6.33 38 0 1 0 0
## 1041 4.16 9 0 1 0 0
## 1042 3.21 36 0 1 0 0
## 1043 2.02 41 0 1 0 1
## 1044 9.23 10 1 1 0 0
## 1045 2.68 33 0 1 0 0
## 1046 8.65 5 0 1 0 0
## 1047 2.08 1 0 1 0 0
## 1048 1.92 8 0 1 0 1
## 1049 3.08 6 0 1 0 1
## 1050 2.11 12 0 1 0 0
## 1051 3.46 26 0 1 0 1
## 1052 4.81 14 1 1 0 0
## 1053 3.37 13 1 1 0 0
## 1054 5.77 39 1 1 0 1
## 1055 3.34 10 0 1 0 1
## 1056 3.73 5 0 1 0 0
## 1057 2.21 6 1 1 0 0
## 1058 3.53 1 1 1 1 0
## 1059 1.80 8 0 1 0 0
## 1060 2.60 15 0 1 0 0
## 1061 1.17 1 0 1 1 1
## 1062 1.88 25 1 1 0 0
## 1063 2.88 15 1 1 1 0
## 1064 1.92 7 0 1 0 0
## 1065 1.88 1 0 1 0 0
## 1066 3.37 12 0 1 0 0
## 1067 1.82 3 0 1 0 0
## 1068 1.46 2 0 1 1 0
## 1069 2.26 3 0 1 0 0
## 1070 2.07 2 0 1 0 1
## 1071 3.54 16 0 1 0 0
## 1072 1.26 32 0 1 1 1
## 1073 2.26 20 0 1 0 0
## 1074 3.95 17 0 1 0 0
## 1075 2.65 15 0 1 0 0
## 1076 3.75 19 0 1 0 1
## 1077 2.19 29 1 1 1 0
## 1078 3.21 7 0 1 0 0
## 1079 2.47 23 0 1 0 1
## 1080 3.00 5 0 1 0 0
## 1081 3.75 29 0 1 0 0
## 1082 2.00 13 0 1 0 0
## 1083 2.26 10 0 1 0 1
## 1084 2.88 12 0 1 0 0
## 1085 4.69 7 1 1 0 0
## 1086 3.95 9 0 1 0 0
## 1087 6.54 4 0 1 0 0
## 1088 3.57 26 0 1 0 0
## 1089 5.31 15 0 1 0 0
## 1090 2.63 19 0 1 0 0
## 1091 2.25 12 0 1 1 1
## 1092 2.75 11 0 1 0 0
## 1093 3.29 6 1 1 0 0
## 1094 5.77 13 0 1 0 0
## 1095 4.74 8 0 1 0 0
## 1096 4.12 7 0 1 0 0
## 1097 2.89 12 0 1 1 0
## 1098 6.96 11 1 1 0 0
## 1099 6.41 41 0 1 0 1
## 1100 4.28 7 1 1 0 0
## 1101 1.28 9 0 1 0 0
## 1102 2.56 40 1 1 0 0
## 1103 4.62 7 0 1 1 0
## 1104 1.98 9 0 1 0 0
## 1105 1.92 13 0 1 0 0
## 1106 1.98 17 0 1 0 0
## 1107 2.00 3 0 1 1 1
## 1108 2.11 8 0 1 0 0
## 1109 2.11 3 0 1 0 0
## 1110 2.77 9 0 1 0 0
## 1111 3.46 30 0 1 0 0
## 1112 6.00 5 0 1 0 0
## 1113 4.81 13 0 1 1 0
## 1114 2.33 5 0 1 0 1
## 1115 3.57 9 0 1 0 0
## 1116 1.98 8 0 1 0 0
## 1117 5.13 20 0 1 1 1
## 1118 4.47 3 0 1 0 0
## 1119 2.07 5 1 1 0 0
## 1120 6.97 20 1 1 0 0
## 1121 1.98 2 0 1 0 0
## 1122 4.62 7 0 1 0 0
## 1123 3.21 5 0 1 0 0
## 1124 1.80 46 0 1 0 0
## 1125 4.62 10 1 1 0 0
## 1126 6.11 27 0 1 0 0
## 1127 5.73 39 0 1 1 0
## 1128 3.57 13 0 1 0 0
## 1129 1.58 27 0 1 0 0
## 1130 4.21 7 0 1 0 0
## 1131 1.75 18 0 1 0 0
## 1132 2.15 6 0 1 0 1
## 1133 1.02 11 0 1 0 0
## 1134 2.40 10 0 1 1 1
## 1135 2.83 28 0 1 1 0
## 1136 3.29 2 0 1 0 0
## 1137 1.98 45 0 1 0 0
## 1138 23.16 9 0 1 0 0
## 1139 5.49 13 0 1 0 0
## 1140 3.00 40 0 1 0 0
## 1141 2.88 15 0 1 0 0
## 1142 2.63 12 0 1 0 0
## 1143 5.82 20 0 1 0 1
## 1144 1.09 8 0 1 0 1
## 1145 1.28 13 0 1 0 0
## 1146 6.25 3 0 1 0 0
## 1147 2.88 7 0 1 0 0
## 1148 7.69 18 1 1 0 0
## 1149 7.14 13 0 1 0 0
## 1150 6.93 36 1 1 0 0
## 1151 1.56 4 0 1 0 0
## 1152 1.98 8 0 1 0 0
## 1153 8.75 24 1 1 0 0
## 1154 4.81 31 0 1 0 1
## 1155 4.71 16 0 1 0 0
## 1156 4.87 10 0 1 0 0
## 1157 4.62 10 0 1 0 0
## 1158 2.40 12 0 1 0 0
## 1159 5.34 20 0 1 0 1
## 1160 4.21 13 1 1 0 0
## 1161 4.72 9 1 1 0 0
## 1162 12.82 15 1 1 0 0
## 1163 6.73 34 0 1 0 0
## 1164 5.39 8 1 1 0 0
## 1165 5.31 3 0 1 0 0
## 1166 10.58 19 0 1 0 0
## 1167 8.65 10 1 1 0 0
## 1168 4.17 13 0 1 0 0
## 1169 6.81 7 1 1 0 0
## 1170 9.62 21 1 1 0 0
## 1171 1.22 10 0 1 0 0
## 1172 1.79 20 0 1 0 0
## 1173 1.61 25 0 1 1 0
## 1174 1.68 4 0 1 0 1
## 1175 3.29 35 0 1 1 0
## 1176 2.31 15 0 1 1 0
beauty %>%
select(wage,exper, union, goodhlth, black, belavg ) %>%
group_by(goodhlth) %>%
summarise(mean(exper))
## # A tibble: 2 × 2
## goodhlth `mean(exper)`
## <int> <dbl>
## 1 0 24.1
## 2 1 17.8